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Abstract

Background: Advances in biotechnology have raised expectations that biomarkers, including genetic pro-
files, will yield information to accurately predict outcomes for individuals. However, results to date have been
disappointing. In addition, statistical methods to quantify the predictive information in markers have not
been standardized.

Methods: We discuss statistical techniques to summarize predictive information, including risk distribu-
tion curves and measures derived from them, that relate to decision making. Attributes of these measures are
contrasted with alternatives such as receiver operating characteristic curves, R?, percent reclassification, and
net reclassification index. Data are generated from simple models of risk conferred by genetic profiles for
individuals in a population. Statistical techniques are illustrated, and the risk prediction capacities of different
risk models are quantified.

Results: Risk distribution curves are most informative and relevant to clinical practice. They show propor-
tions of subjects classified into clinically relevant risk categories. In a population in which 10% have the out-
come event and subjects are categorized as high risk if their risk exceeds 20%, we identified some settings
where more than half of those destined to have an event were classified as high risk by the risk model. Either
150 genes each with odds ratio of 1.5 or 250 genes each with odds ratio of 1.25 were required when the minor
allele frequencies are 10%. We show that conclusions based on receiver operating characteristic curves may
not be the same as conclusions based on risk distribution curves.

Conclusions: Many highly predictive genes will be required to identify substantial numbers of subjects at

high risk. Cancer Epidemiol Biomarkers Prev; 19(3); 655-65. ©2010 AACR.

Background

Predicting risk is a natural part of human life. In the
context of cancer research, we seek markers that can pre-
dict the risk of developing cancer, predict the chance of
responding to treatment for cancer, predict the risk of re-
currence after treatment for cancer, and so forth. We have
greeted advances in genomic, proteomic, and imaging
technologies with enthusiasm in part because of their po-
tential to help predict outcomes for individuals. The first
goal of this article is to explore the extent to which we can
we expect genes or other factors to be predictive of indi-
vidual risk.

Statistical measures used to quantify the predictive in-
formation in a marker are often difficult to understand
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and not directly relevant to clinical practice. For example,
the AUC [area under the receiver operating characteristic
(ROC) curve] has been used to quantify the potential of
newly discovered single nucleotide polymorphisms and
genes to improve risk prediction (1, 2). However, there
is no direct relationship between increments in the
AUC and clinically meaningful improvements in risk
prediction. A second goal of this article is to give guid-
ance on clinically relevant ways to measure the predictive
information provided by a genetic profile or other risk
predictor.

Measures that Quantify Predictive Capacity of a
Marker

Context

Suppose two risk prediction calculators have been de-
veloped for predicting an outcome event, such as con-
tracting cancer or dying from cancer within a specified
period, using different sets of genes and possibly other
risk factors. For each subject in the data set, his risk of
a bad outcome can be calculated using both models,
model A and model B. For example, according to the
values of genes in model A, the risk of an event for a sub-
ject may be calculated as 30%. On the other hand, when
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the information on genes in model B is used to calculate
risk, his risk is calculated to be 50%. The topic of this sec-
tion concerns how to quantify and compare the predic-
tive capacities of models A and B. In other words, in
this population, which set of genes does the better job
of predicting risk.

We use a very large simulated data set to illustrate sta-
tistical approaches to quantifying predictive information.
On purpose, we do not provide details of the data here to
focus on the statistical method. Details are provided in
Appendix A (see online supplementary data). Overall,
10% of subjects have an event and both risk calculators
are “correct” in the following sense: the calculated risk
value for a subject with genetic profile y,, in which ya
are the genes in model A, reflects the proportion of
events among all individuals who have genetic profile
ya and similarly for model B. In standard statistical ter-
minology, this means that both models are well calibrated.
The issue is that one set of genes may be more infor-
mative than the other. Note that a risk model with com-
pletely uninformative genes would “correctly” assign
risk equal to 10% to everyone because uninformative
markers tell us nothing about individual risk. We now
discuss various ways to describe the predictive informa-
tion provided by models A and B.

Risk Distributions

Figure 1 (top) shows the population distributions of
risk calculated according to the models. Displaying risk
distributions is a fundamental step in evaluating the per-
formance of a risk prediction model (3, 4), a step that is
often overlooked in practice. We can see from the risk dis-
tributions the proportions of subjects identified as high
risk or as low risk according to the risk models. For ex-
ample, suppose we want to select for preventive inter-
vention or treatment subjects at high risk for the event
in which risk levels at or above 20% are considered high.
Only 1% of the population is identified as high risk ac-
cording to model A, whereas 10% are identified as high
risk according to model B. In this sense, model B is better
at identifying high-risk subjects. Model B would be more
useful as a screening tool for selecting patients to a clin-
ical trial. The curves would also be of interest to indivi-
duals who are deciding whether to have their genetic
information measured. Suppose an individual will opt
for an intervention only if his risk is >20%. In the absence
of genetic information, his risk is calculated as 10% and he
declines intervention. There is only a 1% chance that his
decision about intervention will change if he ascertains
the genetic information required for model A, but a 10%
chance for model B. That is, the information in model A is
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Figure 1. Distributions of risks for two risk
models involving different sets of genes,
models A and B. Distributions are displayed
using probability density functions. Probability
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unlikely to alter medical decisions, whereas the informa-
tion in model B is more likely to have an effect.

The information displayed in Fig. 1 (top) is also dis-
played in Fig. 2 (top) but using cumulative distribution
curves rather than probability density curves. The cumu-
lative distribution curves are more useful because one can
directly read from them the proportions of subjects whose
risk values lie below or above a threshold of interest.

In considering the effect of risk models on individual
decision making, one should consider the costs and ben-
efits consequent to those decisions. Subjects who would
have an event in the absence of intervention, whom we
call cases, will benefit on average from high-risk designa-
tion because they will receive the potentially beneficial
intervention. On the other hand, subjects who would
not have an event in the absence of intervention, whom
we call control subjects, will not benefit from intervention
but will only suffer its negative effects, including mone-
tary costs. Figures 1 and 2 (bottom) display risk distribu-
tions separately for case subjects and for control subjects.
These displays are also important and useful in evaluat-
ing risk prediction models. One observes, for example,
that the proportions of case subjects placed in the high-
risk category are 26% with use of model B but only 2%
with use of model A. From this, we conclude that there is
more benefit to be gained with use of model B. However,
we also see that, unfortunately, 8% of controls are desig-

nated as high risk with model B, which is substantially
more than the corresponding proportion, 1%, for model
A. In this sense, there is more cost associated with model
B as well as more benefit. An alternative but equivalent
way to display the information in Figs. 1 and 2 was pre-
viously described (4) and is displayed in Fig. 3.

The ROC curve is derived from the case and control
risk distributions. It plots the proportion of case risk va-
lues exceeding a threshold, TPR(risky), versus the pro-
portion of control risk values exceeding that same
threshold, FPR(risky;), in which risky is the risk threshold
(see Fig. 4). Unfortunately, the risk thresholds themselves
are not visible from the ROC curve so one cannot see the
correspondence between risk threshold and case and
control proportions that one can see from the risk distri-
butions in Figs. 2 and 3. Moreover, from the ROC curves
alone, one cannot compare two risk models with regard
to total, case, or control population proportions that ex-
ceed a risk threshold of interest. Therefore, we suggest
displaying the risk distributions because they are more
informative than the ROC curves.

Standard Statistical Summary Indices

A single number is often used to summarize the pre-
dictive performance of a risk prediction model. The
AUC is the most popular statistical index. However,
it has been criticized (6) and recent criticisms in the
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cardiovascular literature (7) have led to much debate
about alternative approaches to summarizing predictive
performance (3, 8-10). The AUC is

AUC = probability (the risk value of a random case >
the risk value of a random control).

This entity is not of interest in practice because the prac-
tical problem is not to determine the case and control iden-
tities in a random case-control pair. Rather, the problem is
to correctly flag subjects at high risk of an event. AUC va-
lues of 0.6 for model A and 0.7 for model B (Table 1) sug-
gest that model B is superior but do not quantify their
predictive capacities in a clinically useful way.

Most standard statistical indices of predictive perfor-
mance summarize the difference between case and control
risk distributions. The AUC is the Mann-Whitney-Wilcoxon
statistic for testing for differences between these two risk
distributions. The R? statistic, which is familiar from linear
regression of continuous outcomes, generalizes to dichot-
omous event outcomes as

R? = mean risk in cases — mean risk in controls.

Again, this entity, the difference in mean risks, does not
relate directly to the task of identifying subjects at high
risk. The average risk for cases — average risk for controls

is 0.11 — 0.10 = 0.01 for model A and 0.15 — 0.09 = 0.06 for
model B. Interestingly, this version of R?is the same (11) as
the integrated discrimination improvement statistic re-
cently proposed by Pencina et al. (8) as an alternative to
the AUC. However, it does not solve the main problem
with AUC, namely the lack of clinical usefulness. Other
versions of R? that average functions of the risk values
(12) lack easy interpretation as well as practical relevance.

Because the AUC and R do not represent quantities of
clinical relevance, what should their roles be in evaluat-
ing the population performance of risk prediction mod-
els? We recommend that they be de-emphasized in
reporting study results. Rather than focusing on these
single numerical summaries, the risk distributions them-
selves should be given greater prominence. Using a few
risk thresholds of interest, one should report proportions
of the case, control, and overall populations that have
risk values exceeding those thresholds. When no specific
risk thresholds or risk ranges are of interest, one could
complement the risk distribution displays with AUC or
R? summary statistics and compare risk models by bas-
ing hypothesis tests on them (13).

New Summary Indices Using Risk Categories
Two new indices, the reclassification percent and the
net reclassification improvement (NRI), have been
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proposed recently and are both based on the idea of cat-
egorizing risk. When two risk categories are defined,
high versus low, based on a single risk threshold value,
these statistics are directly related to the population pro-
portions at high risk discussed earlier. We use our exam-
ple with risk threshold equal to 20% to illustrate.

Consider first comparing a model, for example, model
B, with no model. The reclassification percent (7) is the
proportion of the whole population that is classified as
high risk by the model (10%) because in the absence of
genetic data, all subjects are classified as low risk by as-
signing them risk values equal to the population preva-
lence p = 10%. The NRI index proposed by Pencina et al.
(8) is the difference between the proportions of cases and
controls classified as high risk (TPR — FPR = 18%) in the
notation used above. We recommend reporting the two
components, TPR = 26% and FPR = 8%, separately
because it is more informative than just reporting the
difference and offers the flexibility to weight differently
the benefits and costs of high-risk designations for cases
and controls, respectively.

Now consider NRI and reclassification percent when
comparing two models, model B versus model A. In this
case, NRI = (TPRg — TPR,) - (FPRg — FPRy) = 17%.
Again, reporting the components, namely the change in
TPR [(TPRg — TPR,) = 26% — 2% = 24%] and the change
in FPR [(FPRg — FPR,L) = 8% — 1% = 7%], seems much
more informative than reporting the single composite
17% number. The reclassification percent for comparing
models A and B is the proportion of subjects who are
classified in different risk categories according to the
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Figure 4. ROC curves for risk values calculated according to models A
and B. The solid and filled circles are the true- and false-positive rates
corresponding to the high-risk threshold of risky = 20%. Sensitivity = TPR
and FPR = 1 - specificity. The AUCs are 0.60 for model A and 0.70 for
model B.

Table 1. Statistical measures summarizing and
comparing models A and B

Model A Model B
No risk categories
AUC 0.601 0.705
R? 0.012 0.058

Two risk categories (high and low)
Proportion of subjects classified as high risk

All subjects 0.009 0.098
Case subjects 0.020 0.258
Control subjects 0.008 0.081
Reclassification percent 0.9% 9.8%
Net reclassification index 0.012 0.177

Four risk categories
Proportion of subjects classified as high risk

All subjects 0.009 0.098
Case subjects 0.020 0.258
Control subjects 0.008 0.081
Proportion of subjects classified as medium-high risk
All subjects 0.403 0.275
Case subjects 0.519 0.382
Control subjects 0.390 0.263
Proportion of subjects classified as medium-low risk
All subjects 0.569 0.376
Case subjects 0.453 0.275
Control subjects 0.582 0.387
Proportion of subjects classified as low risk
All subjects 0.019 0.251
Case subjects 0.009 0.085
Control subjects 0.020 0.269
Reclassification percent 59.7% 72.5%
Net reclassification index 0.15 0.47

NOTE: The two risk categories, high and low risk, are
defined as risk above or below 20%. The four risk catego-
ries are defined by risk thresholds at 5%, 10%, and 20%.
Overall, 10% of subjects in the population have an event.
Reclassification percent and net reclassification index
compare each of models A and B with no model.

two models. This measure can be large or small even if
the two models have exactly the same performance be-
cause it is a function of the correlation between the genes
in the two models. Therefore, it has been argued (10) that
reclassification percent is not well suited to the task of
comparing models.

The reclassification percent and the NRI are both de-
fined for settings involving more than two risk categories
but suffer additional weaknesses in these settings. They
do not distinguish between small and large changes in
risk. Moreover, they are highly dependent on the number
and nature of risk categories chosen. In Table 1, using
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four risk categories defined by the risk thresholds 0.05,
0.10, and 0.20, we report values for reclassification per-
cent of 60% when comparing model A with no model
and 73% when comparing model B with no model.
Corresponding NRI values are 0.15 and 0.47, respectively.
Observe the dramatic changes in values by use of four
versus two risk categories. In our opinion, reclassification
percent and NRI are not compelling measures of predic-
tive performance. More informative than the single num-
ber summaries that accumulate data over multiple risk
categories are the proportions of the total, case, and con-
trol populations whose risks are in each of the four risk
categories (Table 1). These values can be read from the
risk distribution curves in Fig. 2 as well. The curves have
the advantage that the reader can specify his own risk
categories of interest.

Cost-Benefit Analysis for Decision Making

A subject will need to consider several factors simulta-
neously in evaluating the potential benefit associated
with using a risk model. These factors are his overall
chance of having an event in the absence of intervention,
denoted by p, and equal to 10% in our example; the
chance that the model will assign him a high-risk status
if he is destined to be a case in the absence of treatment,
denoted by TPR; and the chance that the model will as-
sign him a high-risk status if he is destined to be a control
in the absence of treatment, denoted by FPR. These va-
lues are TPR = 26% and FPR = 8%, respectively, for mod-
el B in our example (Fig. 2). Finally, he will need to
consider the relative values of the potential benefit and
of the potential cost associated with high-risk designa-
tion. Interestingly, Vickers and Elkin (5) and several other
articles drawing on results from decision theory note that
use of a high-risk threshold, risky, is equivalent to con-
sidering the cost-benefit ratio to be cost/benefit =
risky /(1 — risky). In our example, the risk threshold is
risky = 20%, which is equivalent to a cost-benefit ratio
of 20%/(100% — 20%) = 0.25. That is, the use of the
20% risk threshold implies that the net benefit associated
with intervention for a subject who would have an event
in the absence of intervention is considered four times the
net cost of intervention to subjects who would not have
an event.

Formally, the expected benefit associated with the use
of the risk model and assigning high-risk status to those
with risks exceeding risky is calculated as:

expected benefit = p x Benefit x TPR — (1 — p) x Cost x FPR
= Benefit x {p x TPR — (1 — p) x (visky/(1 —risky)) x FPR},

in which “Benefit” denotes the benefit associated with a
case being designated as high risk; this is the unit in
which benefit is measured. In our example, with risk
threshold risky = 20%, the expected benefit associated
with use of model B is (0.1 x 0.258 — 0.9 x 0.25 x 0.081) =
0.0076. That is, the expected benefit is positive and equal
to 0.0076 times the benefit associated with a case being
designated as high risk. For model A, the expected ben-

efit is nearly zero (0.0002). Figure 5 displays the expected
benefit for the two models using risk thresholds ranging
from 0 to 0.4. We see that no matter what risk threshold
is used, or equivalently no matter what cost-benefit ratio
is entertained, model B yields more expected benefit.
The calculations presented here ignore the costs associat-
ed with obtaining the information needed to calculate
the modeled risks. Therefore, the expected benefit asso-
ciated with any model is at least as good as not using
any model (expected benefit >0). The expected benefit
could be negative if the cost of genetic testing were tak-
en into consideration.

The decision curves (5) shown in Fig. 5 are useful in
deciding whether to obtain genetic information for an in-
dividual who has in mind a specific risk threshold that
would lead to an action. Risk thresholds may vary from
individual to individual so the expected benefit for one
individual may not be the same as that expected for an-
other. Higher expected benefits correspond to lower risk
thresholds in Fig. 5 because subjects with low-risk thresh-
olds perceive low cost compared with benefit. To summa-
rize the expected benefit of applying a risk model across
the population, one needs to integrate with the decision
curve the probability distribution of risk thresholds likely
to be used in practice. For example, suppose that 50% of
individuals in the target population use a risk threshold
equal to 0.20, but that 25% use the lower threshold of 0.10
and 25% use the larger threshold of 0.30. The average
benefit in the population is then calculated as the weight-
ed average of expected benefits associated with each of
the three thresholds: for model A, the average benefit is
0.003, whereas for model B, the average benefit is 0.011.

e ]
o
[ce]
o
S
%
5 S
o o
©
9
[§] <
g S
< o
()
N
o 4
P
o
O_ —_
ST | | | |
0.0 0.1 0.2 0.3 0.4
risk threshold

Figure 5. Decision curves for models A and B. The expected benefit of
using the risk model is calculated for each risk threshold value, risky,
where the ratio of the cost of high-risk designation for a control to the
benefit of high-risk designation for a case is risky/(1 — risky). The unit for
expected benefit is the benefit of high-risk designation for a case.

Cancer Epidemiol Biomarkers Prev; 19(3) March 2010

Cancer Epidemiology, Biomarkers & Prevention



Risk Prediction

In conclusion, we promote displays of case and control
risk distribution curves (Figs. 1, 2, or 3) in conjunction
with decision curves (Fig. 5) for evaluating and compar-
ing risk prediction models. The case- and control-specific
risk distribution curves that display the TPR and FPR va-
lues associated with the subject's risk threshold are easy
to understand and are key to his decision about ascer-
taining his genetic profile and other risk factors in the
risk prediction model. Decision curves provide addition-
al insights by formalizing the cost-benefit analysis. Be-
cause subjects vary in their tolerance for risk, having
the distributions displayed is convenient because it al-
lows the use of various risk threshold values. The overall
benefit associated with the use of a risk model in the pop-
ulation can only be summarized into a single meaningful
number if one specifies a population distribution for risk
thresholds used by individuals.

Predictive Potential of Genes

Scenarios Evaluated

Janssens et al. (2) evaluated the predictive potential of
genetic profiling by simulating a wide variety of scenar-
ios. We investigate the same scenarios as Janssens did.
The illustrative data set shown in Figs. 1 to 3 was simu-
lated using two such scenarios. Our simulation program
is publicly available so that an investigator can simulate
specific scenarios of interest for themselves. The use of
the program is described in Appendix A.

A scenario is specified by the number of subjects, the
overall event rate in the population, p, the number of
genes that confer risk, the allele frequencies for the genes,
and the association of each allele with risk. We consider
simple settings in which each gene has two alleles, with
genotypes and allele frequencies in the Hardy-Weinberg
equilibrium, and no linkage disequilibrium between
genes. The true risk of an event for a subject is derived
from a standard additive model on the logistic scale. That
is, the logarithm of the odds of having an event is a sum
of terms associated with each high-risk allele—high-risk
homozygotes contributing two equal terms, one for each
allele—and there are no statistical interactions between
genes. The lower frequency allele for each gene is associ-
ated with higher risk. The magnitude of the association
between a gene and risk is quantified by the odds ratio
(OR) for the high-risk allele: OR = odds of an event for
heterozygotes/odds of an event for homozygotes with
the dominant lower-risk allele variant. Details of how da-
ta are simulated are given in Appendix A.

Very large sample sizes were used in our simulation
studies. Consequently, the results in Tables 1, 2, and 3
show the true values (precise to two decimal places) of
the prediction performance measures for each risk model,
not estimates. We evaluate predictive performance by fo-
cusing on the proportions of high-risk subjects identified
from the information in their genetic profiles and ex-
pected benefit. We use the high-risk threshold equal to
20% for illustration. Tables for other risk thresholds and

other scenarios are provided in Appendix A. In contrast
to our approach, Janssens (2) reported AUCs and R? sum-
mary statistics. These are provided here as well for com-
pleteness. In addition to generating data, investigators
can use our programs to calculate all of the summary in-
dices shown in Tables 2 and 3 after specifying a risk
threshold that defines the high-risk (or low-risk) category.

Results for Equally Predictive Genes

In the first set of simulations (Table 2), all genes in a
gene profile have the same minor allele frequency and
are equally predictive. We investigated settings in which
the number of genes associated with risk ranged from 50
to 350, the frequency of the minor allele varied from 5%
to 30%, and the OR associated with the heterozygous ge-
notype ranged from 1.05 to 1.5. Subjects whose risks are
20% or more are considered at high risk. This contrasts
with the overall event rate of 10%.

The proportion of high-risk subjects identified is gener-
ally low in the scenarios we studied. The maximum value
for the proportion of high-risk subjects identified was
~17%. For example, when the gene profile consists of
350 predictive genes each with a minor allele frequency
of 5% and OR equal to 1.5, 17% of the population have
calculated risk values exceeding 20%.

The high-risk population proportion typically in-
creases with larger numbers of predictive genes, with
stronger associations of genes with risk and with higher
minor allele frequencies. However, counter examples
abound. For example, with a common OR value of 1.5,
the proportion of the population at high risk is 17.5%
when 150 genes are predictive but smaller and 13.1%
when 250 genes are predictive. The overall reduction in
the proportion at high risk in this example is due to the
facts that fewer controls are deemed at high risk by the
more predictive 250-gene model and that the bulk of
the population is composed of controls.

The sensitivity of risk models is low especially when
genetic associations are weak. We see that less than half
the cases are classified as high risk when ORs are <1.1,
regardless of the number of genes in the profile. Even
when the common OR is 1.25, to classify >50% of cases,
at least 250 genes with allele frequencies of 10% or 150
genes with allele frequencies of 30% are required in the
model. When only 50 genes are in the model, the propor-
tion of cases classified as high risk only exceeded 50% in
one scenario, namely for common genes with allele fre-
quencies of 30% and large ORs equal to 1.5.

In Table 2, there are tendencies for improvements in
proportions of cases and controls classified as high risk
by the models with inclusion of larger numbers of predic-
tive genes, with stronger associations of genes with risk
and with higher minor allele frequencies. However, there
are no absolute rules evident in this regard. On the other
hand, the expected benefit due to the use of the risk mod-
el always improved with these three factors: with inclu-
sion of larger numbers of predictive genes, with stronger
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Table 2. The predictive capacity of genetic profiling under different scenarios defined by the number of
genes involved, the OR associated with the high-risk allele, and the population frequency of the risk allele
No. of Total at Cases at Controls at Expected Net R? AUC
genes high risk high risk high risk net reclassification
(TPR) (FPR) benefit index
A. Risk allele frequency 5%

OR 1.05 50 0 0 0 0 0 0.001 0.533
150 0 0 0 0 0 0.003 0.550
250 0 0.001 0 0 0.001 0.005 0.568
350 0.002 0.004 0.002 0 0.002 0.007 0.574
OR 1.10 50 0 0.001 0 0 0 0.004 0.560
150 0.009 0.024 0.008 0.001 0.016 0.013 0.602
250 0.030 0.073 0.026 0.002 0.047 0.021 0.629
350 0.054 0.127 0.045 0.003 0.082 0.029 0.648
OR 1.25 50 0.028 0.075 0.023 0.002 0.052 0.026 0.639
150 0.119 0.327 0.097 0.011 0.230 0.075 0.723
250 0.131 0.407 0.100 0.018 0.307 0.116 0.768
350 0.132 0.459 0.096 0.024 0.363 0.157 0.801
OR 1.50 50 0.128 0.371 0.101 0.014 0.271 0.089 0.738
150 0.175 0.612 0.127 0.033 0.485 0.217 0.842
250 0.131 0.603 0.077 0.043 0.526 0.302 0.885
350 0.170 0.736 0.107 0.050 0.629 0.364 0.908

B. Risk allele frequency 10%
OR 1.05 50 0 0 0 0 0 0.002 0.541
150 0.001 0.002 0.001 0 0.001 0.006 0.568
250 0.006 0.014 0.005 0 0.009 0.010 0.588
350 0.016 0.032 0.014 0 0.018 0.013 0.602
OR 1.10 50 0.005 0.010 0.004 0 0.005 0.008 0.582
150 0.038 0.090 0.032 0.002 0.058 0.024 0.634
250 0.061 0.160 0.050 0.005 0.110 0.039 0.667
350 0.096 0.250 0.078 0.007 0.172 0.054 0.694
OR 1.25 50 0.074 0.195 0.060 0.006 0.136 0.047 0.684
150 0.144 0.454 0.110 0.021 0.344 0.130 0.781
250 0.133 0.503 0.091 0.030 0.411 0.197 0.829
350 0.144 0.590 0.095 0.038 0.496 0.253 0.862
OR 1.50 50 0.125 0.437 0.090 0.024 0.348 0.150 0.796
150 0.144 0.662 0.087 0.047 0.575 0.328 0.897
250 0.166 0.777 0.098 0.056 0.679 0.420 0.929
350 0.144 0.792 0.073 0.063 0.719 0.490 0.948

C. Risk allele frequency 30%
OR 1.05 50 0 0 0 0 0 0.005 0.563
150 0.015 0.033 0.013 0 0.021 0.014 0.607
250 0.037 0.087 0.031 0.002 0.056 0.024 0.639
350 0.054 0.130 0.046 0.003 0.084 0.032 0.655
OR 1.10 50 0.021 0.048 0.018 0.001 0.030 0.018 0.620
150 0.094 0.247 0.077 0.007 0.170 0.055 0.700
250 0.111 0.329 0.086 0.014 0.244 0.089 0.744
350 0.132 0.417 0.101 0.019 0.316 0.121 0.777
OR 1.25 50 0.116 0.358 0.088 0.016 0.269 0.100 0.756
150 0.142 0.578 0.094 0.037 0.484 0.246 0.862
250 0.152 0.685 0.092 0.048 0.593 0.340 0.904
350 0.151 0.738 0.085 0.055 0.652 0.407 0.926

(Continued on the following page)
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Table 2. The predictive capacity of genetic profiling under different scenarios defined by the number of
genes involved, the OR associated with the high-risk allele, and the population frequency of the risk allele

(Cont'd)

No. of Total at Cases at Controls at Expected Net R? AUC

genes high risk high risk high risk net reclassification

(TPR) (FPR) benefit index

OR 1.50 50 0.163 0.646 0.108 0.040 0.538 0.268 0.874
150 0.142 0.779 0.071 0.062 0.708 0.480 0.947
250 0.152 0.867 0.073 0.070 0.794 0.576 0.967
350 0.132 0.863 0.051 0.075 0.812 0.631 0.976

NOTE: The proportion of subjects in the population who have an event is 10%. Subjects with risks exceeding 20% are classified as

high risk.
Abbreviations: TPR, true-positive rate; FPR, false-positive rate.

associations of genes with risk, and with higher minor
allele frequencies.

Note that the expected benefit values displayed in Ta-
ble 2 are weighted averages of the proportions of cases
and controls classified as high risk. The weighting ac-
knowledges that use of 0.20 as the high-risk threshold
implies that the cost for a control classified as high risk
is equivalent to one fourth of the benefit for a case clas-
sified as high risk. Let us consider how to interpret the
expected benefit values shown in Table 2 with a concrete
example. Suppose a policy maker is deciding if ascertain-
ing information such as genotype is economically advan-
tageous. Assume some hypothetical monetary costs for
treatment, for example, $20,000 for treating a subject di-
agnosed with disease and $1,000 for interventions to
prevent disease occurring in the first place. If preven-
tion interventions reduce the risk of disease by 25%,
then the expected benefit for a subject that would be
a case in the absence of intervention is 0.25 x ($20,000) —
$ 1,000 = $4,000, whereas the expected cost for a subject
that would be a control in the absence of intervention is
$1,000. The cost-benefit ratio is therefore $1,000/%$4,000 =
1/4 in this setting, leading to the use of the risk thresh-
old 0.2. The expected benefit values in Table 2 are in
units corresponding to the benefit of high-risk designa-
tion for a case. That is, to convert the values in Table 2
to monetary values in this hypothetical setting, we mul-
tiply by $4000. Thus, for example, the expected mone-
tary benefit associated with the model in the last row
in Table 2A is 0.05 x $4000 = $200 per person. If testing
costs more than $200, there is no gain in financial terms
by using this risk model. However, nonmonetary aspects
must be factored into policy making as well.

Results for Heterogeneously Predictive Genes

In the second set of simulations summarized in Table 3,
the genetic profiles are such that the ORs and minor allele
frequencies both vary. The ORs for the strongest 20 genes

vary uniformly from a maximum value displayed in Ta-
ble 3 to 1.15, whereas the OR decreases uniformly from
1.15 to 1.05 over the remaining genes. The minor allele
frequency starts at 0.05 and increases by 0.005 for each
gene over the first 50 genes, then by 0.0005 for each of
the remaining genes. A key feature in these scenarios is
that the strong genes are uncommon whereas the genes
weakly associated with risk are relatively more common.
Again, our scenarios mimic those reported by Janssens
et al. (2).

We see that the population proportions at high risk,
overall for cases and for controls, and the expected net
benefit are determined to a large extent by the relatively
few genes in the strong set, especially when their ORs
are high.

Use of Risk Distributions versus AUC

Tables 2 and 3 display values of the AUC for each risk
model. Janssens et al. (2) use the criterion AUC >0.80 to
indicate high discriminative accuracy. Others use similar
criteria. However, a model may have AUC as large as
0.80, yet it may not be useful in practice. For example,
the model in row 12 of Table 2 has an expected benefit
of 0.024. Assuming the hypothetical values mentioned
earlier for monetary costs and benefits as well as risk re-
ductions afforded by prevention interventions, the ex-
pected monetary benefit of using this test is $96 per
person. If the cost of testing is $96, there is no net benefit
despite the fact that the AUC for the risk model is 0.801.
On the other hand, Gail and Pfeiffer (12) have shown that
the modified Gail model for breast cancer risk (model 2 in
Costantino et al., 1999) is useful for selecting women for
prevention treatment with tamoxifen despite the fact that
its AUC is 0.66. As another example, consider that the ex-
pected monetary benefit for the model in Table 2A with
50 genes each and with ORs of 1.25 is 0.002 x $4000 = $8
per person, which is derived from its capacity to classify
7.5% cases and 2.3% controls as high risk using the risk
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Table 3. The predictive capacity of genetic profiling when there is a mixture of strongly predictive genes
and weakly predictive genes
Max OR No. of Total at Cases at Controls at Expected Net R? AUC
genes high risk high risk high risk net benefit reclassification
(TPR) (FPR) index
1.5 20 0.050 0.126 0.042 0.003 0.084 0.029 0.642
50 0.079 0.210 0.064 0.007 0.146 0.048 0.684
150 0.129 0.394 0.099 0.017 0.295 0.108 0.767
250 0.140 0.463 0.103 0.023 0.360 0.143 0.794
350 0.145 0.492 0.105 0.026 0.388 0.163 0.812
2.0 20 0.106 0.312 0.082 0.013 0.229 0.080 0.723
50 0.117 0.358 0.090 0.016 0.268 0.098 0.746
150 0.141 0.472 0.104 0.024 0.368 0.151 0.802
250 0.145 0.516 0.103 0.028 0.413 0.180 0.820
350 0.148 0.539 0.104 0.031 0.436 0.198 0.834
3.0 20 0.140 0.515 0.098 0.029 0.417 0.191 0.819
50 0.142 0.540 0.098 0.032 0.442 0.202 0.830
150 0.150 0.590 0.101 0.036 0.489 0.241 0.856
250 0.150 0.610 0.098 0.039 0.511 0.258 0.865
350 0.15 0.622 0.098 0.04 0.525 0.274 0.873
NOTE: ORs for the weakly predictive genes vary from 1.05 to 1.15, whereas ORs for the 20 strongly predictive genes vary from 1.15
to max OR. Genes with higher ORs are infrequent, and genes with lower ORs are common. The minor allele frequency of the 50
strongest genes varies from 0.05 to 0.15 and increases by 0.0005 after the 50th gene. The proportion of subjects in the population
who have an event is 10%. Subjects with risks exceeding 20% are classified as high risk.

threshold of 0.20, which is deemed clinically relevant in
our hypothetical example. If the corresponding genetic
test costs are less than $8 per person, then it will be cost
effective to offer it to people. Yet, the AUC for this model
is only 0.64.

The crucial issue is that one cannot assess the value of a
risk model according to AUC, which ignores the popula-
tion and clinical context in which the model is to be ap-
plied. For example, the AUC does not incorporate the
case prevalence in the population. Another problem with
the AUC is that it does not take into consideration risk
thresholds that motivate intervention in the clinical con-
text. Consider the setting in row 12 of Table 2A again. If
the benefit of treating a case is constant but the cost of
treating a control is high, so that only subjects at very
high risk, say >30%, should receive intervention, the ben-
efit of using the model will be different than if the cost of
treating a control is less where subjects with risks, say
>10%, should be intervened upon. With risk threshold
equal to 30%, only 32% of cases and 5% of controls satisfy
the criterion for high risk, and the expected benefit is
0.014. The corresponding numbers using the lower risk
threshold equal to 10% are 73% of cases and 28% of con-
trols, and have an expected benefit of 0.045. Clearly, the
implications of the risk model are different in these two
scenarios. Yet, AUC makes no distinction. Indeed, it accu-
mulates over all possible risk thresholds, considering all
values between 0 and 1 as plausible.

The R? summary statistic and the NRI, also shown in
Tables 2 and 3, share many of the same drawbacks as
AUC. They do not incorporate the clinical context into
their calculations. Interestingly, R varies with population
prevalence and NRI varies with the high-risk threshold.
However, neither is incorporated in ways that make the
resulting measure clinically relevant for evaluating the
risk prediction model.

Discussion

Our simulations indicate that to identify a sizable num-
ber of subjects at substantially increased risk for an event,
large numbers of independent genes that confer at least
moderately elevated relative risks or, alternatively, a few
genes that are strongly associated with risk are required.
To date, whole genome analyses have yielded genes and
single nucleotide polymorphisms in particular that are
only weakly associated with outcome. These are unlikely
to be helpful in identifying large groups of individuals at
substantially elevated risk.

Our conclusions are limited to the set of scenarios stud-
ied here. Tables for additional settings are provided in
Appendix A, and alternative scenarios can be investigat-
ed using the general programs we have developed. A key
feature of the scenarios simulated is that genes are in
linkage equilibrium and that they have statistically inde-
pendent effects on disease risk. Correlations between
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genes are likely to give rise to prediction models with
poorer performance. On the other hand, it is possible that
certain types of interactions between genes and interac-
tions between environmental factors and genes may
yield better capacities to predict risk.

In addition to exploring the potential predictive capac-
ities of specific genetic profiles, we have argued for using
clinically relevant, easy to understand ways of quantify-
ing the capacity of genes, markers, and other factors to
predict risk. We promote the use of risk distribution plots
because they are both easy to understand and because
they give clinically useful information. Moreover, all sta-
tistical summaries of predictive capacity are derived from
them. In addition, decision curves that are relatively sim-
ple and useful for formal cost-benefit analyses are de-
rived from them.

We showed that risk distribution curves are prefera-
ble to ROC curves. In particular, criteria based on
AUC can be misleading. A risk model that is beneficial
in a particular population may not have an AUC that
indicates good discrimination. A risk model that is not
beneficial in a particular population may have an excel-
lent AUC. Although Gail (1) previously evaluated an
addition of seven single nucleotide polymorphisms to
a breast cancer risk model using AUC, he has more re-
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