8

STUDY DESIGN AND HYPOTHESIS TESTING

8.1 The phases of medical test development
8.1.1 Research as a process

The development of a medical test is a process. At the beginning of the process
there are small exploratory studies that seek to identify how best to apply the
test and whether or not it has potential for use in practice. At the end of the
process there are studies that seek to determine the value of the test when applied
in particular populations. In this chapter we first outline the series of research
steps involved in developing a test.

It is important to have this ‘big picture’ in mind when designing a particular
study. Where the study fits into the development process is critical for defining
appropriate scientific objectives for a study, and consequently its design and
evaluation. We categorize here the development process for a medical test into
five distinct phases. Later in this chapter we will discuss sample size calculations.
It facilitates our discussion of sample size calculations to consider them separately
for studies in each phase.

Those familiar with therapeutic research will recognize that there is already
an analogous well-established paradigm for the development of a new therapeutic
agent. The research process for therapeutic drugs is categorized into five phases: a
preclinical testing phase, three clinical phases prior to regulatory approval, known
as phases 1, 2 and 3, and a post-marketing surveillance phase, sometimes called
phase 4. The process is so well established that regulatory agencies in Europe, the
United States and Japan have outlined a joint document with guidelines for study
design and evaluation at each phase (ICH, 1999). Preclinical testing involves
in vitro and animal studies of toxicity and biologic efficacy. Phase 1 studies
typically involve establishing pharmacokinetic profiles, toxicity parameters and
preliminary measures of biologic efficacy in humans. Appropriate doses, routes
and regimens for administering the drug are also determined in phase 1. Phase 2
studies evaluate biologic efficacy. That is, the effects of the treatment on biologic
measures of disease, which are supposedly targeted by the drug, are determined.
If the treatment is successful in phase 2 then a comprehensive and usually large
phase 3 study is undertaken to determine if the treatment is better than existing
therapies in ways that tangibly benefit the patient. Clinical efficacy in phase 3
is often defined by mortality or quality of life parameters. A treatment approved
in phase 3 for marketing will need to be monitored for low-frequency adverse
effects that occur when the treatment is made available on a large scale. Such
effects observed in this so-called post-marketing phase 4 may not be apparent in
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the studies at earlier phases conducted with limited sample sizes.

Categorizing the research development process for therapeutic agents has
lead to widely accepted standards for study design and evaluation, and a devel-
opment process that is regarded as reasonably rigorous and efficient. In a similar
vein, categorizing the phases of development for a medical test can help clarify
study objectives and streamline the development process, potentially making the
process more rigorous and efficient.

8.1.2 Five phases for the development of a medical test

The phases shown in Table 8.1 were proposed for cancer biomarker research
(Pepe et al., 2001). We adapt this structure here for more general tests. Although
this paradigm will not apply exactly to all tests, the basic structure is useful to
consider for many tests.

Phase 1 is the initial phase. Its purpose is basically exploratory, to see if
the test might be worth developing and evaluating rigorously. It is therefore
appropriate to study the test in a wide range of circumstances (Guyatt et al.,
1986). Subjects with a variety of characteristics should be tested. In particular,
subjects with diverse manifestations and severities of disease are tested. Non-
diseased subjects with conditions that might be confused with disease should be
tested in order to gain some insight into the limitations of the test for distin-
guishing disease from non-disease. The test should be implemented in a variety

Table 8.1 Phases of research for the development of a medical test

Phase Description Typical objectives Typical design
1 Exploratory Identify promising tests and Case-control study with
investigations settings for application convenience sampling
2 Retrospective Determine if minimally acceptable Population-based
validation (FPFo, TPFy) are achieved case-control sampling
3 Retrospective  Define criteria for screen Large-scale
refinement positivity. Determine covariates comprehensive
affecting Sp and ROC. Compare  population-based
promising tests. Develop case-control study

algorithms for combining tests

4 Prospective Determine positive predictive Cohort study
application values, detection and false referral
probabilities when the test is
applied in practice

5 Disease impact Determine effects of testing on Randomized
cost and mortality associated with prospective trial
disease comparing new test

with standard of
practice
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of settings and by a variety of test operators. The operating parameters for the
test can be varied. For example, the frequency and/or intensity of the auditory
stimulus might be varied for a hearing test. The protocol for collecting and stor-
ing the clinical specimen might be varied for a laboratory test. In summary, one
should determine at this early phase if the test is reasonably robust to the cir-
cumstances under which it is performed or if it only operates well in particular
settings. The reproducibility of results is an important factor to address in phase
1, and the test should be improved in this regard if necessary. Often, at the ex-
ploratory phase, subjects and samples that are conveniently available (e.g. from
a clinic or blood bank) are studied. Rigorous evaluation of a test in a well-defined
sense begins in the next phase.

Phase 2 is called the validation phase to contrast it with the exploratory
(hypothesis generating) phase 1. Selection criteria for cases and controls, the
tester (if applicable) and the protocol for performing the test are specified in
rigorous detail in phase 2. This allows the results to be interpreted without
ambiguity and as pertaining to a relevant well-defined population. Sampling of
cases and controls was discussed in the early chapters of this book. The choice of
tester (e.g. technician and radiologist in an imaging study) is also an important
factor to consider. In phase 2, expert testers might be employed in contrast
to later phases where testers might be population based. We discussed common
sources of bias of which investigators should be aware in Chapter 1. Care must be
taken to avoid these in phase 2, as in all phases of development. A key objective of
phase 2 is to ascertain true and false positive fractions of the test in a particular
setting. Thus, in order to design a phase 2 study, some minimally acceptable
true and false positive fractions should be specified in advance. The study can
then be designed with adequate sample sizes, so that conclusions can be drawn
from it with regard to the test meeting these minimal operating characteristics
or not.

A test that meets these criteria in phase 2 and appears promising for further
development should undergo thorough evaluation in more comprehensive case-
control studies before it proceeds to be applied as a practical testing tool in
prospective studies at phase 4. We call phase 3 this intermediate phase. Often
a primary objective of phase 3 is to determine criteria that should be used for
defining screen positivity in phase 4. ROC curves can be employed to determine
an operating point with desirable trade-offs between the TPF and the FPF, and
the corresponding threshold can then be used as the positivity criterion in phase
4. Factors affecting test results from non-diseased subjects should be determined
at this stage. If necessary, covariate-specific thresholds can then be defined. In
addition, covariates that affect the TPFs or the ROC curve should be identified
so that the populations or circumstances in which the test is performed can
be optimized in phase 4. Tests are often compared in case-control studies. We
consider such studies to be part of phase 3 also, because the purpose is usually
to select tests that should undergo prospective phase 4 evaluation. In addition,
algorithms for combining tests to define a useful composite for application in
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phase 4 may be developed in phase 3.

Phases 1, 2 and 3 are typically retrospective case-control studies. Testing is
therefore done only for research purposes (the disease status of the patient is
already determined by other means). In contrast, the prospective cohort studies
of phase 4 apply the test to subjects whose disease status is generally unknown
at the time of testing. The results of the test frequently determine if further
diagnostic work-up is even undertaken for a patient. Due to their prospective
nature, the care of the patient enters into consideration when designing phase
4 studies. For example, definitive diagnostic testing may not be undertaken for
subjects that screen negative in phase 4, or may only be undertaken for a subset
of such patients, as discussed in Chapter 7. The objective of phase 4 is to deter-
mine the operating characteristics of the test when used as a diagnostic tool in a
designated patient population. The extent and characteristics of disease detected
with the test are determined. The false referral probability and characteristics
of subjects that falsely screen positive must be determined. Promising tests are
often compared in phase 4, because this is the phase where their practical per-
formances as diagnostic tools are measured, and hence where the most relevant
comparisons can be made.

Although a test accurately diagnoses disease, this does not necessarily mean
that there is benefit to the patient. As delineated in Chapter 1 (see Table 1.1),
effective treatment must be available for the disease detected with the test. Test-
ing, work-up and treatment must be affordable and acceptable to patients, and
so on. Ideally, the test is evaluated for its impact on the patient population be-
fore becoming part of routine healthcare. Its impact can be measured in terms
of disease outcomes (mortality and quality of life) and cost. Such can be done
through a randomized clinical trial, for example. Studies that evaluate the overall
impact of the test on the population are called phase 5 studies.

Some general principles of study design were discussed in Chapter 1. These
apply to studies at all phases of test development, but particularly starting at
phase 2. Rigorous definitions of disease, clear protocols for applying the test,
criteria for enrolling subjects and so forth must be undertaken with the same
sort of care that is typically required for therapeutic studies. Sources of bias
(see Section 1.2.5) must be minimized. Efforts should include blinding, for ex-
ample. Comparative studies of test accuracy should be undertaken following the
principles discussed in Section 3.1. Finally, in phase 5, randomized trials with
mortality and cost as outcome measures are ideal and the reader is referred to
the large body of literature on the design of randomized trials for study design
principles (see Pocock, 1982, for example).

We focus in this chapter on the sample size calculations needed to ensure
that conclusions can be drawn from a study. Sample size calculations for phases
2, 3 and 4 are considered in detail in Sections 8.2, 8.3 and 8.4, respectively. The
following section describes matching and stratification as two additional issues
that can be considered in study design.
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8.2 Sample sizes for phase 2 studies

A phase 1 study is exploratory by definition. Its design is not based on a specific
well-defined hypothesis. Rather, its purpose is to generate such a hypothesis for
testing in phase 2. Thus formal sample size calculations are not considered here
for phase 1, and we begin with phase 2. Multiple strategies are possible for sample
size calculations. There are at least as many possibilities as there are for data
analysis! We first describe a strategy that we find particularly straightforward
and conceptually appealing for binary tests. It is extended to continuous tests in
Section 8.2.2. Another strategy that has been proposed is described in Section
8.2.3.

8.2.1 Retrospective validation of a binary test

A phase 2 study is designed when a well-defined test and its target population
are already identified. Assume that random samples of cases and controls will be
drawn from the population and estimates of test accuracy will be made. In this
section we assume that Y is binary, and therefore estimates of (FPF, TPF) will
be made.

One needs to identify values for (FPF, TPF) that are minimally acceptable
in order to design the study. Let (FPFq, TPFy) denote such values. These are
specified by the investigators and depend on the trade-off between false positives
and true positives that are acceptable within the context of the test, disease,
available resources and the population in which it is to be applied (Baker, 2000).
Suppose that the goal of the phase 2 study is to determine if the test meets these
minimal criteria.

Formally, the study will test the null hypothesis depicted in Fig. 8.1, namely

Hy : {TPF < TPF, or FPF > FPF,}. (8.1)

From a study that rejects Hy it will be concluded that TPF > TPF; and FPF <
FPFy, i.e. that the test meets minimal criteria.

The hypothesis can be tested by calculating a joint 1—a confidence region for
(FPF, TPF), as described in Section 2.2.2. When the null hypothesis is one-sided,
a rectangular confidence region made up of the cross-product of two one-sided,
1 — a* = /1 — «a confidence intervals is appropriate, as shown in Fig. 8.2. If
the 1 — a confidence region for (FPF, TPF) lies entirely within the region of
acceptable values (unshaded region in Fig. 8.1), one can reject Hy and make a
positive conclusion about the test. We refer the reader back to Chapter 2 for a
discussion of confidence interval construction.

The sample sizes for the phase 2 study, np and np, should be chosen suffi-
ciently large to ensure that a positive conclusion will be drawn with power 1 — 8
if the accuracy of the test is in fact at some specified, desirable levels. We denote
these desirable classification probabilities by (FPF;, TPF;). These reflect a test
with levels of performance that the research community would want to undergo
further development. In summary, we require that
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TPFq

TPF

Hy

0 FPFq 1
FPF

Fi1a. 8.1. Regions in the (FPF, TPF) space for a binary test that correspond
to unacceptable tests (Hp, shaded region) and acceptable tests (unshaded
region)

TPFq

Hy

TPF

0 FPFq 1
FPF

F1G. 8.2. A one-sided rectangular confidence region for (FPF, TPF) of the ex-
ercise stress test calculated from the CASS data. The classification proba-
bilities meet the minimal criteria: FPF < 0.35 and TPF > 0.70. The points
indicated with asterisks represent FPF%* and TPF%*, the upper and lower
a* =1—+/1 — a confidence limits for FPF and TPF, respectively



220 STUDY DESIGN AND HYPOTHESIS TESTING

1— 3 =P[TPF} >TPF, and FPF{ < FPF,|FPF,, TPF,]
= P[TPF} > TPF,|TPF,]|P[FPF{ < FPF,|FPF,],

where TPF%* and FPF?}* denote the lower and upper one-sided limits of the
confidence intervals for TPF and FPF, respectively. If np is chosen so that
P[TPF$ > TPF,|TPF,] = /1 - and nj so that P[FPF < FPF,|FPF,] =
v/1 — (3, then this ensures adequate study power 1 — /3 since the product is 1 — 3.
We define g* =1 - /1 - 4.

If the confidence limits are based on asymptotic normal distribution theory
for the estimates, then sample sizes can be based on the asymptotic variance
formulae. These yield the following sample size requirements:

2
(Zl—a* /TPFo(1 — TPF,) + Z'~#"\/TPF, (1 — TPFl))

_ 2
o (TPF, — TPF,)? (82)

and

* * 2
(zl—a V/FPFy(1 — FPFy) + Z'=#"\/FPF; (1 — FPFl))
(FPF; — FDF,)? ’

np = (83)

where Z'"*" = ® (1 —a*) and Z' 7" =&~1(1 - B*).

Since phase 2 studies tend to be small, confidence limits may be better cal-
culated using exact methods. Sample sizes that yield adequate power for such
analysis can be calculated with simulation studies. The above asymptotic theory-
based formulae provide useful starting points for simulation studies, as illustrated
next.

Example 8.1

It is hoped that a urinary test for chlamydia is 95% specific and 90% sensi-
tive. It must be shown to be at least 80% specific and 75% sensitive in order
to be considered for further evaluation. Thus (FPF;, TPF;) = (0.05,0.90) and
(FPFy, TPFy) = (0.20,0.75). Conclusions will be based on a 90% rectangular
confidence region using one-sided exact confidence limits.

If the study is to have 90% power, the formulae (8.2) and (8.3) based on
asymptotic theory indicate that np = 64 and np = 46. A set of 5000 simulation
studies generating binary test data with classification probabilities (FPF;, TPF;)
show that these sample sizes yield 88% power. Raising the sample sizes to np =
70 and np = 50 increases the power to 91%. Therefore, about 70 cases and 50
controls should be enrolled in the phase 2 validation study. "

8.2.2  Retrospective validation of a continuous test

When Y, the result of the test, is on a continuous scale, the question to answer
is whether or not, for some threshold ¢, the dichotomized test, I[Y" > ¢], has
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acceptable performance. That is, can the test operate at TPF and FPF values
that reach or exceed the minimal criteria? In Fig. 8.3 the shaded region again
corresponds to unacceptable test performance while performance parameters in
the unshaded region are acceptable. If the ROC curve for Y passes through this
unshaded region, then it is an acceptable test, because for some threshold it has
acceptable (FPF, TPF) values. On the other hand, if the ROC curve lies entirely
in the shaded region, then the test is unacceptable. For the ROC curves in Fig.
8.3, we see that test A meets the minimal criteria but test B does not.

Observe that the ROC curve for a test crosses the unshaded region if and
only if ROC(FPF,) > TPFy. An equivalent formulation is that ROC™(TPF,) <
FPF(. We write the null hypothesis as

Hy : ROC(FPF,) < TPF, . (8.4)

Under the null hypothesis, the ROC curve for Y lies fully in the unacceptable
region of the (FPF, TPF) space. A hypothesis test can be based on the lower
(1 — a)-level confidence limit for ROC(FPFy). If this lower limit exceeds TPFy,
then (8.4) is rejected and we conclude that the test meets the minimal criterion
for further development. In Fig. 8.4 we show the 95% lower confidence limit for
the ROC(0.2) of the CA-19-9 marker for pancreatic cancer based on data from
Wieand et al. (1989). If the minimally acceptable levels for the (FPF, TPF) of a
pancreatic cancer biomarker were (0.2, 0.6), say, we would conclude that CA-19-9
meets these criteria. That is, we reject Hp: ROC(0.2) < 0.6.

Test A
TPF, / Test B

TPF

Hy

0 FPF, 1
FPF

FiG. 8.3. ROC curves for two (hypothetical) tests. The upper one meets the
minimally acceptable criterion that it can attain operating points which ex-
ceed (FPFg, TPFy), whereas the lower one does not
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0.6

Hy

TPF

0 0.2 1
FPF

F1G. 8.4. A test of the null hypothesis that, at the threshold corresponding
to FPFy = 0.2, the TPF does not exceed 0.6 for the CA-19-9 marker of

pancreatic cancer. Shown is the lower 95% confidence limit for ROC(0.2)
using data from Wieand et al. (1989)

Turning now to sample size calculations, we need to consider how the lower
confidence limit for ROC(FPFy) will be constructed. A confidence limit based
on asymptotic distribution theory derived in Chapter 5 is

ROC(FPF)§ = ROC(FPF,) — & 1(1 — a)\/var{RC)C(FPFO)} : (8.5)

In practice, we find that the confidence limits based on the logit transform,
logit ROC(FPFO), that were described in Section 5.2.3, have better coverage in
small samples and we implement analyses with these limits. However, asymptotic
theory-based sample size calculations are similar for both the untransformed and
transformed approaches. Thus, for simplicity, we proceed here with the expres-
sion (8.5) for the untransformed lower limit. A positive conclusion is drawn from
the study if we find that ROC(FPF,)¢ > TPF,.

Suppose that the diagnostic test, in fact, has a TPF value of TPF; when the
threshold corresponding to FPFy is used. That is, suppose that ROC(FPFy) =
TPF;. Then, the power of the study to draw a positive conclusion is

P |ROC(FPFy) — & (1 — a)\/var{ROC(FPFO)} > TPF, |, (8.6)

where the probability is calculated assuming that TPF; = ROC(FPF).
With the power (8.6) specified at some desired level 1 — 3, this implies that
the sample sizes np and np should be chosen to satisfy
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"

- (@ 11— a)+ & (1 -B))° = (TPF, — TPFy)?,

where Vi /np is the asymptotic theory-based expression for var{fROC(FPF,)}
calculated under the alternative hypothesis ROC(FPFy) = TPF;. Using the
empirical ROC curve estimator, ROC.(FPFy), and the analytic form for its
asymptotic variance derived in Result 5.1, we write

Vi = TPF;(1 — TPF,) + kr;iFPFy(1 — FPFy), (8.7)

where r; denotes the slope of the ROC curve at FPFy and k denotes the ratio
of cases to controls, np/np. The next result summarizes the discussion.

Result 8.1

If study conclusions are based on ROC(FPFg)¢ exceeding TPF,, where
ROC(FPFy)¢ is the lower 1 —«a confidence interval calculated with the empirical
ROC curve, then in order to achieve power 1 — 3 when TPF; = ROC(FPFy) we
require that
{2 '(1-a)+® 1(1-p))°
"o = (TPF, — TPF,)?

where V] is defined in (8.7). .

Vi, (8.8)

Example 8.2

The largest acceptable false positive fraction for a test based on a new biomarker
is FPFy = 0.10. It is anticipated that it will be 95% sensitive (TPF; = 0.95) at
the threshold corresponding to FPF = 0.10, but it must be shown to be at least
75% sensitive there (TPFo = 0.75) in order to proceed with further development.
The study will enrol equal numbers of cases and controls (k = 1) and we choose
a = 0.05 and # = 0.10. All components of the sample size formula (8.8) are now
defined except for 71, the slope of the ROC curve at FPF,. We have

(1.64 + 1.28)% {(0.95)(0.05) + (r1)2(0.10)(0.90)}
(0.95 — 0.75)2

np =

Suppose that the biomarker is anticipated to have a binormal ROC curve,
ROC(t) = ®(a + b®~1(t)). Then by the chain rule we have

9
ot

d(a + bd (1))
p(2=1(2))

Suppose further that we anticipate the slope parameter b = 1 under both the
null and alternative hypotheses. Under these assumptions we can determine the
values of a that correspond to each of the hypotheses. We do this by noting that
ROC(FPFy) = ®(a + ®~'(FPF)) = 0.75 under the null, which implies that

ROC(t) = b

r =
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a = 1.96. Similarly, under the alternative ROC(FPFy) = 0.95, which implies
that @ = 2.93. Substituting b = 1 and these values for a into the expression for
r1 yields corresponding values of 1.81 and 0.58 for ;. To be conservative, we
use the larger value, having found from experience that this generally provides
a better sample size calculation. Substituting r; = 1.81 into the expression for
np we find np = 73. The choice k = 1 implies that np = 73 also.

This sample size calculation is based on asymptotic distribution theory. Sim-
ulation studies are used to assess the adequacy of the calculations. In particular,
we generate data under H; and calculate the empirical power as the proportion
of simulated studies in which a positive conclusion is drawn. Data for np = 73
cases and np = 73 controls are generated from the binormal model with ROC
intercept a = 2.93 and slope b = 1, as we assumed in the sample size calculations
above. Normal distributions are used, with Y ~ N(0,1) and Y ~ N(a/b,1/b%).
Recall that, since the analysis uses only the ranks of the data, the Gaussian
distributional forms used in the simulations are irrelevant. The study power,
calculated as 89%, appears to be adequate.

Additional simulations are performed under the null hypothesis, simply to
check if inference using the confidence limits is valid with sample sizes of 73.
That is, we wish to confirm that the size of the test procedure using the 95%
lower confidence limit is the nominal 5%. Data are generated from the binor-
mal model under the null. Hence we choose a = 1.96 and b = 1.0 so that
ROC(FPFy) = TPFy. The null hypothesis is rejected in 6% of simulations, close
enough to the nominal level. We reiterate that these confidence limits, based on
the logit transform, are better behaved in small samples than are those based
on the untransformed estimate of ROC(FPFy). The null is rejected in 10% of
simulations that used the latter confidence limits, which is unacceptably large
compared with the nominal 5% level. "

8.2.3 Sample size based on the AUC

A non-binary diagnostic test can also be evaluated by comparing its AUC or other
ROC summary index with a value that is considered to be minimally acceptable.
Specifying a minimally acceptable AUC may be more difficult, in my opinion,
than specifying a minimally acceptable (FPF, TPF) combination. However, the
strategy does have the advantage of incorporating information across multiple
operating points of the test, rather than being limited to only one point, as in
the previous subsection.

Suppose that we estimate the AUC either with nonparametric or other meth-
ods and compare the estimate with the minimally acceptable value, which we
denote by AUC,. To test

Hy : AUC < AUC,

the 1—a lower confidence limit is calculated and Hj is rejected if it exceeds AUC,.
In practice, we use confidence limits based on logit AUC, but again, to simplify
the sample size calculations, we suppose that the lower limit of the confidence
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interval is based on asymptotic normality of the untransformed estimate, AUC.
That is, we reject Hy if

AUC — &7 '(1 — a)y/var(AUC) > AUC,,

where var(AUC) denotes the estimated variance.

To calculate sample sizes using standard calculations so that a power of 1—4 is
achieved when the AUC is at some desirable value, AUC;, the following equation
must be satisfied:

var(AUC) (871(1 — a) + ' (1 - B))?
(AUC,; — AUCy)”

Once a, 8, AUCy and AUC; are specified, the remaining task is to postulate a
value for the variance. This is not a simple task because the variance depends, not
only on the sample sizes and postulated AUCs, but on the underlying probability
distributions. The next result shows that for the empirical AUC estimate, AUC,,
the asymptotic variance expression can be written in terms of the ROC curve.
Therefore, if one postulates an ROC curve under the null and alternative, the
asymptotic variance can be calculated and so approximate sample sizes can be
derived.

~1. (8.9)

Result 8.2

In large samples, .
var(AUC,) = varp /np + varp /np,

where

1
varp = / (ROC(t))? dt — AUC?,
0

varp = /Ol(Rocl(t))Z’ dt — (1— AUC)2.

Proof Consider the expression for var(AUC,) given in Result 5.5:

var(AUC,) = var (S[_;(YD)) n Var(S[{(YD)) .
n np

Observe that
var (Sp(Yp)) = E{Sp(Yp)}* = [E{Sp(Yp)}]°
=~ [ Shw)dspl) - avc?
- /1 Sp (S5 (1)) dt — AUC?

:/ (ROC(t))? dt — AUC? .
0
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Similarly
var (Sp(Yn)) = E{Sp(Yn)}” = [E{Sp(Yn)}]*
:/0 {ROC™'(t)}" dt — {/0 ROC™ (t)dt}

and the second term is (1 — AUC)?. .

2

As a consequence of (8.9) and Result 8.2, we have the following expression
for sample sizes:

11— )+ 0 1(1-B) } | (5.10)

np = (kvarp + varp) { ATC, —ATC,
where & = np/np. Approximations to var(AUC, ) have been reported previously.
Hanley and McNeil (1982) assume exponential probability distributions for Yp
and Yy to derive an expression. Obuchowski (1994) found that the Hanley and
MecNeil approximation performed poorly for binormal ROC curves and proposed
an alternative expression suitable for the binormal setting. Our Result 8.2 is
much more general than either of theirs.

Given an assumed ROC curve, one can calculate var(AUC,) in at least two
ways. One can use the expressions in Result 8.2 directly and numerically integrate
the squared terms. Another tactic is to simulate large amounts of data from
the ROC model, transform the raw data to placement values and calculate the
variance terms var(Sp(Yp)) and var(Sp(Yp)) empirically. We take the latter
approach in the next example.

Example 8.3

Suppose that the standard biomarker has a binormal ROC curve with a = 0.545
and b = 1.0. That is, its AUC is @ (a/v/1 + b?) = 0.65. A new biomarker will be
considered for further development if its AUC is shown to be greater than this
value. Thus, the minimally acceptable AUC is AUCy = 0.65. The new biomarker
is anticipated to have a binormal ROC curve with ¢ = 1.19 and b = 1.0. Thus,
we identify AUC; as 0.80.

Let us calculate the variance components in Result 8.2, assuming that the
ROC curve for the biomarker is what we anticipate it will be: ROC(t) = ®(1.19+
®1(t)). We generated 10000 disease and non-disease observations from the bi-
normal ROC curve, with Y5 ~ N(0,1) and Yp ~ N(1.19,1). Recall again that,
because the ROC curve is a function of only the ranks of the data, the actual
distributional forms chosen are irrelevant. All that matters is that the ROC curve
is of the stipulated form. The placement values calculated have variances

var(Sp(Yp)) =0.048 and var(Sp(Yp)) = 0.045.

Therefore, if the biomarker is as good as we hope, we will have
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- .04 .04
var(AUC,) = On() 8 + 0n() 6.
D D

Suppose that equal numbers of cases and controls will be enrolled to the study.
Substituting into eqn (8.8), with a = 0.05 and 8 = 0.10, yields

(1.64 + 1.28)2

np =
Asymptotic theory therefore suggests that 36 cases and 36 controls be enrolled,
in order to be 90% sure that the lower 95% confidence limit for the AUC based
on the empirical estimator will exceed AUC).

The calculations are based on asymptotic theory that may not hold exactly
in small samples. They provide starting points for simulation studies that fine
tune the sample size calculations. Data are generated from the binormal model
as before, but now using sample sizes np = np = 36 and repeated 500 times.
The lower 95% confidence limit for the AUC exceeds 0.65 with a rate of only
81%. This power is not as large as desired. We therefore increase the sample
sizes to np = np = 50, repeat the simulation study and find that the power
is 90%. Thus sample sizes of np = np = 50 are recommended. Finally, data
are generated under the null hypothesis and confirm that the rejection rate is
adequate for the study. It is 5.4%, a value that is close enough to the nominal
level. .

Our development of sample size calculations is based on the nonparametric
estimate of the AUC. If a parametric estimator of the AUC is to be used for
inference, then sample size calculations could acknowledge the smaller variance
that such an estimator is likely to have relative to that of AUC.. Obuchowski
(1994) provides a variance formula for the fully parametric AUC estimator that
assumes normal distributions for test results, namely Yp ~ N(up,0%) and Yj ~
N(up,0%). As described in Example 5.3, this AUC estimator has the form

AUCy =& | K2 ZHED.

6h + 6%
where parameters are estimated with sample means and variances. Obuchowski’s
expression for Var(AIjC ~) relies on the asymptotic joint normal distribution for
{iip, 6%, it D,&%} and the delta method. Variance formulae for parametric dis-
tribution-free estimates of the AUC (see Section 5.5) have not been derived and
may be complicated. We suggest that AUC, be used for sample size calculations,
even if a fully parametric or a parametric distribution-free estimator will be used
for analysis. The rationale is based on the observation that AUC, is very efficient,
at least under the normal theory model (Dodd, 2001). Therefore, calculated
sample sizes will not be that much larger than required for those AUC estimators
that make parametric assumptions.
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Summary measures other than the AUC can be used to quantify the ac-
curacy of a test and may also provide the basis for power calculations. The
principles for power calculations are the same. However, since we often do not
have explicit analytic expressions for variances, the calculations must be done
entirely using simulation studies. For instance, when using nonparametric es-
timates of the partial AUC, a simulation-based sample size calculation seems
to be the only currently available option. Obuchowski and McClish (1997) and
Obuchowski (1998) present analytic expressions for variances of fully parametric
estimates of the partial AUC from which sample sizes can then be calculated.
These might provide useful starting points for simulation-based calculations of
sample sizes needed for studies that will use semiparametric or nonparametric
inference about the partial AUC.

Use of an ROC summary index such as the AUC or pAUC is likely to be
more efficient than the use of a single ROC point for inference. Therefore the
strategy of the previous section is likely to require larger sample sizes than the
calculations in the current section. To illustrate, consider the assumed binormal
curves of Example 8.3. The ROC point at FPFy = 0.1 corresponds to TPFs of
TPFy = 0.23 under Hy and TPF; = 0.46 under the alternative. The asymptotic
theory-based calculations for testing ROC(FPFy) = TPFy with 90% power at
a = 0.05 yield np = np = 115. These are substantially larger than the AUC-
based sample sizes calculated in Example 8.3.

The main disadvantage of basing inference on the AUC or pAUC is that these
measures are less clinically relevant than the measure considered in the previous
section, namely the TPF corresponding to the minimally acceptable FPF. In my
opinion, specification of a practically meaningful improvement in the AUC (i.e.
AUCQC,) is likely to be more difficult than specification of an improvement in the
TPF (i.e. TPF;) corresponding to the minimally acceptable false positive frac-
tion, ROC(FPFy). However, others may disagree with me on this point. Perhaps
experience with the AUC index in a specific context may lead one to an intu-
ition for the magnitudes of improvement that correspond to clinically meaningful
improvements in test performance in that context.

8.2.4 Ordinal tests

Sample size calculations geared specifically towards ordinal tests have not re-
ceived sufficient attention in the literature. Obuchowski has been the main con-
tributor to this area. She employs ROC summary indices as the basis for in-
ference. Her calculations, however, use variances that apply to continuous data
and are based on the assumption that test results have normal distributions. She
implicitly assumes that these apply to ROC summary indices estimated from or-
dinal data with the Dorfman and Alf (1968) binormal distribution-free method.
Simulation studies (Obuchowski and McClish, 1997) suggest that these variances
for continuous data underestimate the actual variances of summary indices calcu-
lated from ordinal study data. Nevertheless, the continuous data sample size for-
mulae may provide reasonable starting points for simulation-based calculations
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of sample size for ordinal tests. Obuchowski and McClish refer to the simulation
program ROCPWR, which is part of the ROC software developed primarily for
ordinal data by Metz and colleagues at the University of Chicago.

Another approach is to dichotomize the ordinal test for the purposes of sample
size calculations. The methods described in Section 8.2.1 can then be employed.
This requires one to specify an appropriate category as the threshold for defining
the binary test. Further work to allow some flexibility in this regard would be
worthwhile.

8.3 Sample sizes for phase 3 studies

The types of objectives for a phase 3 study are more varied than they are for
phase 2. We consider here sample size calculations for studies that address three
different types of objectives. First, there are studies that seek to compare two
different tests. We assume that a paired case-control study design is employed.
The two different tests may actually be the same test, but done at different
time points or under different circumstances on the same subject. The key is
that within-subject comparisons are to be made. Next, case-control studies that
seek to compare tests in different subpopulations will be considered in order to
determine if subject characteristics affect test performance. The key statistical
aspect here is that comparisons are made between subjects, not within subjects.
The sample size calculations would also apply to the comparison of two tests
in an unpaired design. Lastly, we consider estimation of the threshold value
corresponding to a pre-specified false positive fraction, one important component
of the effort in phase 3 to define a screen positive criterion that can be employed
in phase 4.

8.3.1 Comparing two binary tests—paired data

In this book we have emphasized the multiplicative scale for quantifying the rela-
tive performance of two tests. Thus, for the two tests under consideration, test A
and test B, we base inference on rTPF(A, B) = TPF4/TPFp and rFPF(A, B) =
FPF 4 /FPFp. Other scales can be used. In particular, absolute differences,
(FPF(A) — FPF(B), TPF(A) — TPF(B)), have been used (Obuchowski, 1998;
Obuchowski and Zhou, 2002). Their large sample theory calculations yield sam-
ple sizes that are similar to ours because the test procedures are asymptotically
equivalent under the null hypothesis.

Some comparative studies seek to determine if one test is superior to the
other. However, in some instances a test might be preferable to another even
if its accuracy parameters are not superior. For example, if an existing test is
costly or invasive, then a new inexpensive noninvasive test may be preferable to
the existing test as long as its accuracy is not substantially less. In this case the
scientific objective is to determine if the accuracy of the new test is substantially
inferior to the standard or not.

Therapeutic clinical trials are often classified as superiority studies or as
non-inferiority (equivalence) studies (ICH, 1999). The same idea is pertinent to



