Title

roc — Receiver-Operating-Characteristic (ROC) analysis

Syntax
roctab refvar classvar [W@ighf] [if exp} [in range] [, bamber hanley detail
lorenz table binomial level(#) norefline graph specificity sgummary
plot(plot) rlopts(line_options) connected_options Mwoway.options }
roctit refvar classvar [weight} {if e.\'p] [in range] {, continuous (#)
generate (newvar) level (#) nolog maximize_options }

rocplot [, confband level(#) norefline ciopts(rarea_options)

plot(plot) rlopts(line_options) scatter_options rwoway_options 1

roccomp refvar classvar {Classvars] [weiglzt} {if exp] [in range] [, by (varname)
binormal level(#) test(marname) norefline separate graph summary

rlopts (line_oprions) connected_options hwoway-—options ]

rocgold refvar goldvar classvar [classvars} [weight} [if e,\'p} [in mnge] [,

by (varname) binormal level(#) test(matname) graph summary sidak

rlopts (line_options) connected_options twoway_options J

fweights are allowed: see [U] 14.1.6 weight.

Description

The above commands are used to perform Receiver Operating Characteristic (ROC) analyses with
rating and discrete classification data.

The two variables refvar and classvar must be numeric. The reference variable indicates the true
state of the observation such as diseased and nondiseased or normal and abnormal, and must be coded
as 0 and 1. The rating or outcome of the diagnostic test or test modality is recorded in classvar.
which must be at least ordinal, with higher values indicating higher risk.

roctab is used to perform nonparametric ROC analyses. By default, roctab calculates the area
under the ROC curve. Optionally, roctab can plot the ROC curve, display the data in tabular form,
and produce Lorenz-like plots.

rocfit fits maximum-likelihood ROC models assuming a binormal distribution of the latent variable.
rocplot may be used after rocfit to plot the fitted ROC curve and simultaneous confidence
bands.
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roccomp tests the equality of two or more ROC areas obtained from applying two or more test
modalities to the same sample or to independent samples. roccomp expects the data to be in wide
form when comparing areas estimated from the same sample, and in long form for areas estimated
from independent samples.

rocgold independently tests the equality of the ROC area of each of several test modalities.
specified by classvar, against a “gold” standard ROC curve, goldvar. For each comparison, rocgold
reports the raw and the Bonferroni adjusted significance probability. Optionally, Siddk's adjustment
for multiple comparisons can be obtained.

Options

Options unique to roctab

bamber specifies that the standard error for the area under the ROC curve be calculated using the
method suggested by Bamber (1975). Otherwise. standard errors are obtained as suggested by
Del.ong, Del.ong, and Clarke-Pearson (1988).

hanley specifies that the standard error for the area under the ROC curve be calculated using the method
suggested by Hanley and McNeil (1982). Otherwise, standard errors are obtained as suggested by
Delong, Delong. and Clarke-Pearson (1988).

detail outputs a table displaying the sensitivity, specificity, percent of subjects correctly classified.
and two likelihood ratios for each possible cut-point of classvai.

lorenz specifies that Gini and Pietra indices be reported. Optionally, graph will plot the Lorenz-like
curve.

table outputs a 2 X k contingency table displaying the raw data.
binomial specifies that exact binomial confidence intervals be calculated.

specificity produces a graph of sensitivity versus specificity. instead of sensitivity versus
(1 — specificity). specificity implies graph.

Options unique to rocfit
continuous (#) specifies that the continuous classvar should be divided into # groups of approximately
equal length. This option is required when classvar takes on more than 20 distinct values.

continuous(.) may be specified to indicate that classvar is to be used as it is, even though it
could have more than 20 distinct values.

generate (newvar) specifies the new variable that is to coniain the values indicating the groups
produced by continuous(#). generate() may only be specified with continuous().

nolog prevents rocfit from showing the iteration log.

maximize_options control the maximization process; see [R] maximize. You should never have to
specify any of these options.
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Options unique to rocplot

confband specifies that simultaneous confidence bands be plotted around the ROC curve.
ciopts(rarea_options) affect the rendition of the confidence bands; see [G] graph twoway rarea.

scatter _options affect the rendition of the plotted points; see [G] graph twoway scatter.

Options unique to roccomp and rocgold

by (varname) is required when comparing independent ROC areas. The by () variable identifies the
groups to be compared.

binormal specifies that the areas under the ROC curves to be compared should be estimated using
the binormal distribution assumption. By default, areas to be compared are computed using the
trapezoidal rule.

test (matname) specifies the contrast matrix to be used when comparing ROC areas. By default, the
null hypothesis that all areas are equal is tested.

separate is meaningful only with roccomp; it says that each ROC curve should be placed on its
own graph rather than one curve on top of the other.

sidak (rocgold only) requests that the significance probability be adjusted for the effect of multiple
comparisons using Siddk’s method. Bonferroni’s adjustment is reported by default.

Options common to several commands

level(#) specifies the confidence level, in percent, for the confidence intervals. For rocplot, it
specifies the confidence level for the confidence bands. The default is level(95) or as set by
set level; see [R] level.

graph produces graphical output of the ROC curve. For roctab, if lorenz is specified, graphical
output of a Lorenz-like curve will be produced.

summary reports the area under the ROC curve, its standard error, and its confidence interval. If
lorenz is specified with roctab, Lorenz indices are reported. This option is only needed when
also specifying graph.

norefline suppresses the plotting of the 45-degree reference line from the graphical output of the
ROC curve.

plot{plot) provides a way to add other plots to the generated graph. See [G] plot_option.
rlopts (line_options) affect the rendition of the reference line: see [G] graph twoway line.

connected_options affect the rendition of the plotted points connected by lines; see [G] graph twoway
connected.

twoway_options are any of the options documented in [G] twoway_options (excluding by () for
roctab and rocplot). These include options for titling the graph (see [G] title_options), options
for saving the graph to disk (see [G] saving_option), and the by () option (see [G] by _option).
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Remarks

Remarks are presented under the headings

Introduction

Nonparametric ROC curves

Parametric ROC curves

Lorenz-like curves

Comparing areas under the ROC curve

Introduction

Receiver Operating Characteristic (ROC) analysis is used to quantify the accuracy of diagnostic
tests or other evaluation modality used to discriminate between two states or conditions. For ease of
presentation, we will refer to these two states as normal and abnormal, and to the discriminatory test
as a diagnostic test. The discriminatory accuracy of a diagnostic test is measured by its ability to
correctly classify known normal and abnormal subjects. The analysis uses the ROC curve, a graph of
the sensitivity versus 1 — specificity of the diagnostic test. The sensitivity is the fraction of positive
cases that are correctly classified by the diagnostic test, while the specificity is the fraction of negative
cases that are correctly classified. Thus, the sensitivity is the true-positive rate, and the specificity the
true-negative rate.

The global performance of a diagnostic test is commonly summarized by the area under the ROC
curve. This area can be interpreted as the probability that the result of a diagnostic test of a randomly
selected abnormal subject will be greater than the result of the same diagnostic test from a randomly
selected normal subject. The greater the area under the ROC curve, the better the global performance
of the diagnostic test.

Both nonparametric methods and parametric (semi-parametric) methods have been suggested for
generating the ROC curve and for calculating its area. In the following sections we present these
approaches, and in the last section we present tests for comparing areas under ROC curves.

Nonparametric ROC curves

The points on the nonparametric ROC curve are generated by using each possible outcome of
the diagnostic test as a classification cut-point and computing the corresponding sensitivity and
1 — specificity. These points are then connected by straight lines, and the area under the resulting
ROC curve is computed using the trapezoidal rule.

> Example

Hanley and McNeil (1982) presented data from a study in which a reviewer was asked to classify,
using a nine point scale, a random sample of 109 tomographic images from patients with neurological
problems. The rating scale was as follows: 1—-definitely normal, 2—probably normal, 3-questionable,
4—probably abnormal, and 5-definitely abnormal. The true disease status was normal for 58 of the
patients and abnormal for the remaining 51 patients.

Here, we list 9 of the 109 observations.

(Continued on next page)
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. use http://www.stata-press.com/data/r8/hanley

. list disease rating in 1/9

disease rating
1 1 5
2 0 1
3 1 5
4. 0 4
5. 0 1
6. 0 3
7. 1 5
8. 0 5
9. 0 1

For each observation. disease identifies the true disease status of the subject (0 =normal, 1=
abnormal), and rating contains the classification value assigned by the reviewer.

We can use roctab to calculate and plot the nonparametric ROC curve by specifying both the
summary and graph options. By also specifying the table option. we obtain a contingency table
summarizing our dataset.

. roctab disease rating, table graph summary
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0.00 0.25 0.50 0.75 1.00
1 -~ Specificity
Area under ROC curve = 0.8932
rating
disease 1 2 3 4 5 Total
0 33 6 6 11 2 58
1 3 2 2 11 33 51
Total 36 8 8 22 35 109
ROC —Asymptotic Normal—
Obs Area Std. Err. [95% Conf. Interval]
109 0.8932 0.0307 0.83295 0.95339

By default, roctab reports the area under the curve, its standard error, and its confidence interval.
The graph option can be used to plot the ROC curve.
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The ROC curve is plotted by computing the sensitivity and specificity using each value of the rating
variable as a possible cut-point. A point is plotted on the graph for each of the cut-points. These
plotted poinis are joined by straight lines to form the ROC curve. and the area under the ROC curve
is computed using the trapezoidal rule.

We can tabulate the computed sensitivities and specificities for each of the possible cut-points by
specifying detail.
. roctab disease rating, detail

Detailed report of Sensitivity and Specificity

Correctly

Cut point Sensitivity  Specificity  Classified LR+ LR-

(>= 1) 100.00% 0.00% 46.79% 1.0000
(>=2) 94.12%, 56.90% 74.31% 2.1835 0.1034
(>=3) 90.20% 67 .24, 77.98% 2.7534 0.1458
(>=4) 86.27% 77.59% 81.65% 3.8492 0.1769
(>=5) 64.71% 96.55% 81.65% 18.7647 0.3655
(> 8) 0.00% 100.00% 53.21% 1.0000

ROC —Asymptotic Normal—

Obs Area Std. Err. [95% Conf. Intervall

109 0.8932 0.0307 0.83295 0.95339

Each cut-point in the table indicates the ratings used to classify tomographs as being from an abnormal
subject. For example, the first cut-point, (>= 1), indicates that all tomographs rated as 1 or greater are
classified as coming from abnormal subjects. Because all tomographs have a rating of 1 or greater, all
are considered abnormal. Consequently, all abnormal cases are correctly classified (sensitivity = 100%).
but none of the normal patients are classified correctly (specificity = 0%). For the second cut-point
(>= 2). tomographs with ratings of 1 are classified as normal and those with ratings of 2 or greater are
classified as abnormal. The resulting sensitivity and specificity are 94.12% and 56.90%, respectively.
Using this cut-point, we correctly classified 74.31% of the 109 tomographs. Similar interpretations
can be used on the remaining cut-points. As mentioned, each cut-point corresponds to a point on the
nonparametric ROC curve. The first cut-point, (>= 1), corresponds to the point at (1.1) and the last
cut-point, (> 5). to the point at (0,0).

detail also reports two likelihood ratios suggested by Choi (1998): the likelihood ratio for a
positive test result (LR+) and the likelihood ratio for a negative test result (LR-). The likelihood
ratio for a positive test result is the ratio of the probability of a positive test among the truly positive
subjects to the probability of a positive test among the truly negative subjects. The likelihood ratio for
a negative test result (LR-) is the ratio of the probability of a negative test among the truly positive
subjects to the probability of a negative test among the truly negative subjects. Choi points out that
LR+ corresponds to the slope of the line from the origin to the point on the ROC curve determined by
the cut-point. Similarly, LR~ corresponds to the slope from the point (1.1) to the point on the ROC
curve determined by the cut-point.

By default, roctab calculates the standard error for the area under the curve using an algorithm
suggested by DeLong, DeLong, and Clarke-Pearson (1988) and asymptotic normal confidence intervals.
Optionally, standard errors based on methods suggested by Bamber (1975) or Hanley and McNeil
(1982) can be computed by specifying bamber or hanley respectively, and an exact binomial
confidence interval can be obtained by specifying binomial.
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. roctab disease rating, bamber

ROC Bamber —Asymptotic Normal——
Obs Area std. Err. [95Y% Conf. Intervall
109 0.8932 0.0306 0.83317 0.95317
_ roctab disease rating, hanley binomial
ROC Hanley — Binomial Exact —
Obs Area Std. Err. [95% Conf. Intervall
109 0.8932 0.0320 0.81559 0.94180

Parametric ROC curves

Dorfman and Alf (1969) developed a generalized approach for obtaining maximum likelihood
estimates of the parameters for a smooth fitting ROC curve. The most commonly used method, and
the one implemented here, is based upon the binormal model.

The model assumes the existence of an unobserved continuous latent variable that is normally
distributed (perhaps after a monotonic transformation) in both the normal and abnormal populations
with means p, and fl,, and variances o2 and o2, respectively. The model further assumes that the
K categories of the rating variable result from partitioning the unobserved latent variable by K — 1
fixed boundaries. The method fits a straight line to the empirical ROC points plotted using normal
probability scales on both axes. Maximum likelihood estimates of the line’s slope and intercept and
the K — 1 boundaries are obtained simultaneously. See Methods and Formulas for details.

The intercept from the fitted line is a measurement of (itq — fin)/0a, and the slope measures
On/0q-

Thus, the intercept is the standardized difference between the two latent population means, and the
slope is the ratio of the two standard deviations. The null hypothesis of no difference between the
two population means is evaluated by testing if the intercept=0, and the null hypothesis that the
variances in the two populations are equal is evaluated by testing if the slope=1.

> Example

We use Hanley and McNeil’s (1982) dataset, described in the previous example, to fit a smooth
ROC curve assuming a binormal model.

(Continued on next page)
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. rocfit disease rating

Fitting binormal model:

Iteration O:
Iteration 1:
Iteration 2:
Iteration 3:

log likelihood = -123.68069
log likelihood
log likelihood
log likelihood = -123.64855

Binormal model of disease on rating

-123.64867
-123.64855

Number of obs

109

Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -~123.64855
Coef. Std. Err. z P>lz]| [95% Conf. Intervall
intercept 1.656782  0.310456 5.3¢ 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 ~-1.33 0.092 0.289881 1.136123
_cutl 0.169768 0.165307 1.03 0.152 0.154227 0.493764
_cut2 0.463215 0.167235 2.77 0.003 0.135441 0.79098390
_cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
_cutéd 1.797938 0.299581 6.00 0.000 1.210770 2.385106
Indices from binormal fit
Index Estimate Std. Err. {95% Conf. Intervall
ROC area 0.911331 0.0295086 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298
d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==

rocfit outputs the MLE for the intercept and slope of the fitted regression line along with, in this
case, 4 boundaries (because there are 5 ratings) labeled —cut1 through _cut4. In addition, rocfit
also computes and reports 4 indices based on the fitted ROC curve: the area under the curve (labeled
ROC area), 6(m) (labeled delta(m)), d. (labeled d(e)), and d, (labeled d(a)). More information
about these indices can be found in the Methods and Formulas section and in Erdreich and Lee

(1981).

Note that in the output table we are testing whether or not the variances of the two latent populations
are equal by testing if the slope = 1.

We plot the fitted ROC curve.

(Continued on next page)
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. rocplot, confband

5
|

Sensitivity

10
N

1]
o

0 25 5
1 - Specificity
Area under curve = 0.9113 se(area) = 0.0285

Lorenz-like curves

For applications where it is known that the risk status increases or decreases monotonically with
increasing values of the diagnostic test, the ROC curve and associated indices are useful in assessing
the overall performance of a diagnostic test. When the risk status does not vary monotonically with
increasing values of the diagnostic test, however, the resulting ROC curve can be nonconvex and its
indices unreliable. For these situations, Lee (1999) proposed an alternative to the ROC analysis based
on Lorenz-like curves and the associated Pietra and Gini indices.

Lee (1999) mentions at least three specific situations where results from Lorenz curves are superior
to those obtained from ROC curves: (1) a diagnostic test with similar means but very different standard
deviations in the abnormal and normal populations, (2) a diagnostic test with bimodal distributions
in either the normal or abnormal population. and (3) a diagnostic test distributed symmetrically in
the normal population and skewed in the abnormal.

When the risk status increases or decreases monotonically with increasing values of the diagnostic
test, the ROC and Lorenz curves yield interchangeable results.
» Example

To illustrate the use of the lorenz option we construcied a fictitious dataset that yields results
similar to those presented in Table III of Lee (1999). The data assume that a 12 point rating scale
was used to classify 442 diseased and 442 healthy subjects. We list a few of the observations.

(Continued on next page)
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. use http://stata—press.com/data/rS/lorenz
. list in 1/7, noobs sep(0)

disease class  pop

66
17
85
19
19

7
16

b

-0 o0 OO
[
DO Wo U

The data consist of 24 observations, 12 observations from diseased individuals and 12 from nondiseased
individuals. Each observation corresponds to one of the 12 classification values of the rating scale
variable, class. The number of subjects represented by each observation is given by the pop variable,
making this a frequency-weighted dataset. The data were generated assuming a binormal distribution
of the latent variable with similar means for the normal and abnormal populations, but with the
standard deviation for the abnormal population 5 times greater than that of the normal population.

. roctab disease class [fweight=popl, graph summary

1.00

0.50 0.75

Sensitivity

0.25

[
S g
Els ; 7 7 7
0.00 0.25 0.50 0.75 1.00
1 - Specificity
Area under ROC curve = 0.5774
ROC —Asymptotic Normal-——
Obs Area std. Err. [95% Conf. Intervall
884 0.5774 0.0215 0.53517 0.61959

The resulting ROC curve is nonconvex or, as termed by Lee, “wiggly”. Lee argues that for this
and similar situations, the Lorenz curve and indices are preferred.

(Continued on next page)
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. roctab disease class [fweight=pop], lorenz graph summary

Lorenz curve

1

cumulative % of disease

0 1 2 3 4 5 & 7 8 8 1
cumulative % of disease=0

Lorenz curve

Pietra index

0.6493
Gini index 44

0.7441

Like ROC curves, a more bowed Lorenz curve suggests a better diagnostic test. This “bowedness”
is quantified by the Pietra index, which is geometrically equivalent to twice the largest triangle that
can be inscribed in the area between the curve and the diagonal line, and the Gini index, which is
equivalent to twice the area between the Lorenz curve and the diagonal. Lee (1999) provides several
additional interpretations for the Pietra and Gini indices. If interested, consult the reference for more

information.
q

Comparing areas under the ROC curve

The area under multiple ROC curves can be compared using roccomp. The command syntax is
slightly different if the ROC curves are correlated (i.e., different diagnostic tests applied to the same
sample) or independent (i.e., diagnostic tests applied to different samples).

Correlated data

> Example

Hanley and McNeil (1983) presented data from an evaluation of two computer algorithms designed
to reconstruct CT images from phantoms. We will call these two algorithms’ modalities 1 and 2. A
sample of 112 phantoms was selected; 58 phantoms were considered normal and the remaining 54
were abnormal. Each of the two modalities was applied to each phantom and the resulting images rated
by a reviewer using a six point scale: 1-definitely normal, 2—probably normal, 3—possibly normal,
4-possibly abnormal, 5-probably abnormal, and 6—definitely abnormal. Because each modality was
applied to the same sample of phantoms, the two sets of outcomes are correlated.

We list the first seven observations:



roc — Receiver-Operating-Characteristic (ROC) analysis 413

. use http://www.stata-press.com/data/r8/ct
. list in 1/7, sep(0)

modl mod2 status
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Note that the data are in wide form. This is required when dealing with correlated data. Each
observation corresponds to one phantom. The variable mod1 identifies the rating assigned for the
first modality, and mod2 identifies the rating assigned for the second modality. The true status of the
phantoms is given by status=0 if normal and status=1 if abnormal. The observations with at least
one missing rating were dropped from the analysis.

We plot the two ROC curves and compare their areas.

. roccomp status modl mod2, graph summary

1.00

0.75

0.50

Sensitivity
0.25
ez === 4

=
L

© | =

(=]
4
S T T 7 T
0.00 025 0.50 075 1.00
1-Specificity
~——g—- modi ROC area: 0.8828  — - — mod2 ROC area: 0.9302
Reference
ROC —Asymptotic Normal—
Obs Area Std. Err. [95% Conf. Intervall
modl 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.8302 0.0256 0.88005 0.98042
Ho: area(modl) = area(mod2)
chi2(1) = 2.31 Prob>chi2 = 0.1282

By default, roccomp, with the graph option specified, plots the ROC curves on the same graph.
Optionally, the curves can be plotted side by side, each on its own graph, by also specifying separate.

For each curve, roccomp reports summary statistics and provides a test for the equality of the
area under the curves using an algorithm suggested by DeLong, Del.ong, and Clarke-Pearson (1988).

Although the area under the ROC curve for modality 2 is larger than that of modality 1, the
chi-squared test yielded a significance probability of 0.1282, suggesting that there is no significant
difference between these two areas.
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The roccomp command can also be used to compare more than two ROC areas. To illustrate this,
we modified the previous dataset by including a fictitious third modality.

. use http://www.stata-press.com/data/r8/ct2
. roccomp status modl mod2 mod3, graph summary
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0.00 0.25 0.50 0.75 1.00
1-Specificity
——@— modt ROC area: 0.8828  ~~4- -~ mod2 ROC area: 0.9302
e G Mod3 ROC area: 0.924 Reierence
ROC —Asymptotic Normal—
Obs Area Std. Err. [95% Conf. Intervall
mod1 112 0.8828 0.0317 0.82067 0.94498
mod?2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132
Ho: area(modl) = area(mod2) = area(mod3)
chi2(2) = 6.54 Prob>chi2 =  0.0381

By default, roccomp tests whether the areas under the ROC curves are all equal. Other comparisons
can be tested by creating a contrast matrix and specifying test (matname), where matname is the
name of the contrast matrix.

For example, assume that we are interested in testing whether the area under the ROC for mod1 is
equal to that of mod3. To do this, we can first create an appropriate contrast matrix and then specify
its name with the test () option.

Of course, this is a trivial example because we could have just specified
. roccomp status modl mod3
without including mod2 to obtain the same test results. However, for illustration we will continue
with this example.

The contrast matrix must have its number of columns equal to the number of classvars (i.e., the
total number of ROC curves), a number of rows less than or equal to the number of classvars, and
the elements of each row must add to zero.

(Continued on next page)
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. matrixz €=(1,0,-1)
. roccomp status modl mod2 mod3, test(C)

ROC —Asymptotic Normal——

Obs Area Std. Err. [95% Conf. Intervall

mod1 112 0.8828 0.0317 0.82067 0.94498
mod?2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

Ho: Comparison as defined by contrast matrix: C
chi2(1) = 5.25 Prob>chi2 =  0.0220

Note that although all three areas are reported, the comparison is made using the specified contrast
matrix.

Perhaps more interesting would be a comparison of the area from mod1 and the average area of
mod2 and mod3.

. matrix C=(i,-.5,-.5)
. roccomp status modl mod2 mod3, test (C)

ROC ~Asymptotic Normal-—

Obs Area Std. Err. [95% Conf. Intervall

modl 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

Ho: Comparison as defined by contrast matrix: C
chi2(1) = 3.43 Prob>chi2 =  0.0642

Other contrasts could be made. For example, we could test if mod3 is different from at least one
of the other two by first creating the following contrast matrix:

. matrix C=(-1, 0, 1 \ 0, -1, 1)
. matrix list C
cl2,3]

cl c¢2 «c3

rl -1 0 1
r2 0o -1 1

Independent data

> Example

In the previous example, we noted that because each test modality was applied to the same sample
of phantoms, the classification outcomes were correlated. Now assume that we have collected the
same data as presented by Hanley and McNeil (1983), except that we applied the first test modality
to one sample of phantoms and the second test modality to a different sample of phantoms. The
resulting measurements are now considered independent.

Here are a few of the observations.
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. use http://www.stata-press.com/data/r8/ct3
. list in 1/7, sep(0)

pop status rating mod
1. 12 0 1 1
2. 31 0 1 2
3. 1 1 1 1
4. 3 1 1 2
5. 28 0 2 1
6. 19 0 2 2
7. 3 1 2 1

Note that the data are in long form. This is required when dealing with independent data. The
data consist of 24 observations, 6 observations corresponding to abnormal phantoms and 6 to normal
phantoms evaluated using the first modality, and similarly 6 observations corresponding to abnormal
phantoms and 6 to normal phantoms evaluated using the second modality. The number of phantoms
corresponding to each observation is given by the pop variable. Once again we have frequency-weighted
data. The variable mod identifies the modality and rating is the assigned classification.

We can better view our data by using the table command.

. table status rating [fw=pop], by(mod) row col

mod and rating
status 1 2 3 4 5 6 Total
1
12 28 8 6 4 58
1 1 3 6 13 22 9 54
Total 13 31 14 19 26 9 112
2
0 31 19 5 3 58
1 3 2 5 19 15 10 54
Total 34 21 10 22 15 10 112

The status variable indicates the true status of the phantoms, status=0 if normal and status=1
if abnormal.

We now compare the areas under the two ROC curves.

(Continued on next page)
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roccomp status rating [fw=pop], by(mod) graph summary
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@ !
gl
sy
¢
8 & ;
5 ; T ; ;
0.00 025 0.50 0.75 1.00
1-Specificity
—-@— 1 ROC area: 0.8828 -~ — - 2 ROC area: 0.9302
Reference
ROC -Asymptotic Normal—
mod Obs Area Std. Err. [95% Conf. Intervall
1 112 0.8828 0.0317 0.82067 0.94498
2 112 0.9302 0.0256 0.88005 0.98042
Ho: area(l) = area(2)
chi2(1) = 1.35 Prob>chi2 = 0.2447

Comparing areas with a gold standard
The area under multiple ROC curves can be compared with a gold standard using rocgold. The
command syntax is similar to that of roccomp. The tests are corrected for the effect of multiple

comparisons.

L Example

modalities are compared.
We want to plot and compare both the areas of the ROC curves of mod2 and mod3 with mod1.

Since mod1 is what we are considering to be the gold standard, it is listed first after the reference

variable in the rocgold command line.

(Continued on next page)

We will use the same data (presented by Hanley and McNeil (1983)) as in the roccomp examples.
Let’s assume the first modality is considered to be the standard with which both the second and third
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- use http://www.stata-press.com/data/r8/ct2
. rocgold status modl mod2 mod3, graph summary

1.00

0.75

Sensitivity
0.50

b=
Qo
SHES: ' " : T
0.00 025 0.50 0.75 1.00
1-Specificity
~@— mod1 ROC area: 0.8828  ~ -z~ mod2 ROC area: 0.9302 1
—-E— mod3 ROC area: 0.924 Reterence |
ROC Bonferroni
Area Std. Err. chi?2 df Pr>chi2 Pr>chi2
modl (standard) 0.8828 0.0317
mod?2 0.9302 0.0256 2.3146 1 0.1282 0.2563
mod3 0.9240 0.0241 5.2480 1 0.0220 0.0439

Equivalently, we could have done this in two steps by using the roccomp command.

- roccomp status modl mod2, graph summary
- roccomp status modl mod3, graph summary msymbol(0 S)

q
Saved Resulis
roctab saves in r():
Scalars
r(N)  number of observations r(area) area under the ROC curve
r(se) standard error for the area under the ROC curve r(pietra) Pietra index
r(1b) lower bound of CI for the area under the ROC curve r{gini) Gini index

r(ub) upper bound of CI for the area under the ROC curve

(Continued on next page)
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rocfit saves in e():

Scalars
e () number of observations
e(k) number of parameters
e(k_eq) number of equations
e(k-dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(rc) return code
e(ic) number of iterations
e(rank) rank of e (V)

e(chi2. gf) goodness-of-fit x*

Macros
e(cmd) rocfit

e(depvar) names of dependent variables
e(title) title in estimation output

e(wtype) weight type

Matrices
e(b) coefficient vector
e(ilog) jteration log (up to 20 iterations)

Functions

e(sample) marks estimation sample

roccomp saves in r():

Scalars

r(li_g) number of groups
r(p) significance probability

Matrices

(V) variance—covariance matrix

rocgold saves in r():

Scalars
r(N_-g) number of groups
Matrices

(V) variance—covariance matrix

r(chi2) ? vector

r(df) y? degrees-of-freedom vector

Methods and Formulas

e(dfgf)
e(p-gf)
e(area)

e(se_area)

e(deltam)
e(se_delm)
e(de)

goodness-of-fit degrees of freedom

+2 goodness-of-fit significance probability

area under the ROC curve

standard error for the area under the
ROC curve

d(m)

standard area for d({m)

d, index

e(se.de) standard error for d,. index
e(da) ds index
e(se_da) standard error for d, index
e (wexp) weight expression
e{user) name of likelihood-evaluator program
e(opt) type of optimization
e(chi2type) GOF: type of model \* test
e(V) variance—covariance matrix of the
estimators
r(df) 2 degrees of freedom
r(chi2) *
r(p) significance probability vector
r(p-adj) adjusted significance probability vector

roctab, rocfit, rocplot, roccomp, and rocgold are implemented as ado-files.

Assume that we applied a diagnostic test to each of N, normal and NN

. abnormal subjects.

Further assume that the higher the outcome value of the diagnostic test, the higher the risk of the

subject being abnormal. Let ¢ be the estimated area under the curve, and let X;.7 = 1.2,.... Ng
and Y;.j = 1.2,.... N, be the values of the diagnostic test for the abnormal and normal subjects,

respectively.
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Nonparametric ROC

The points on the nonparametric ROC curve are generated by using each possible outcome of
the diagnostic test as a classification cut-point and computing the corresponding sensitivity and
1 — specificity. These points are then connected by straight lines, and the area under the resulting
ROC curve is computed using the trapezoidal rule.

The default standard error for the area under the ROC curve is computed using the algorithm
described by DeLong, DeLong, and Clarke-Pearson (1988). For each abnormal subject, ¢, define

/‘\r'
Vio(Xe) = =~ Z (X, Y))
=1
and for each normal subject, j, define
N,

L 1 e s
Vou(Yj) = N Z'w(‘xi:yj)

where
1 Y<X
(X Y):{% Y =X
0 Y>X
Define
1 .
510 = N, —1 '—I{Vm(xg-) -6}
and
1 N
17 7’ M2
So1 = N, —1¢ 1{‘/01(31') — 0}
J:

N, N,

The hanley standard error for the area under the ROC curve is computed using the algorithm
described by Hanley and McNeil (1982). It requires the calculation of two quantities, (J; and Qa,
where @1 is Pr(two randomly selected abnormal subjects will both have a higher score than a randomly
selected normal subject), and (J2 is Pr(one randomly selected abnormal subject will have a higher
score than any two randomly selected normal subjects). The Hanley and McNeil variance of the
estimated area under the ROC curve is

] ) P o N M
() B0 0% 1@ =)+ (10— 102 =)

The bamber standard error for the area under the ROC curve is computed using the algorithm
described by Bamber (1975). For any two Y values, Y; and Yy, and any X; value, define

byyr = (Y5, Y < X;) +p(X; < Y3, Vi) — 2p(Y; < Xi < Yi)
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and similarly, for any two X values, X; and X, and any Y; value, define
boey = p(Xi, X < Y5) +p(Y; < X3, X)) — 2p(X; < Y < X))

Then Bamber’s unbiased estimate of the variance for the area under the ROC curve is

-~

1, .. . : - - - . -~
var(f) = 1(./\’a~1)(./\’n~—1){p(X # Y)+(./\/a—1)bz~ry+(*/\’n—l)byy1—~4(,/\/a+./\/”-—1)(9—0.5)2}

Asymptotic confidence intervals are constructed and reported by default, assuming a normal
distribution for the area under the ROC curve.

Exact binomial confidence intervals are calculated as described in [R] ¢i, with p equal to the area
under the ROC curve.

Parametric ROC curves

Dorfman and Alf (1969) developed a general procedure for obtaining maximum likelihood estimates
of the parameters of a smooth fitting ROC curve. The most common method, and the one implemented
in Stata, is based upon the binormal model.

The model assumes that there is an unobserved continuous latent variable that is normally distributed
in both the normal and abnormal populations. The idea is better explained with the following illustration:

Normal Abnormal

It is assumed that the latent variable is normally distributed for both the normal and abnormal
subjects, perhaps after a monotonic transformation, with means y, and p,, and variances 0,21 and
o2, respectively.

This latent variable is assumed to be partitioned into the k categories of the rating variable by
k — 1 fixed boundaries. In the above figure, the & = 5 categories of the rating variable identified on
the bottom result from the partition of the four boundaries Z; through Z;.

Let R; for j = 1,2,...,k indicate the categories of the rating variable, let 7 = 1 if the subject
belongs to the normal group, and let i = 2 if the subject belongs to the abnormal group.

Then
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where Z;, = (x} — ftn)/on. F is the cumulative normal distribution. F'(Zp) = 0 and F(Zy) = 1.
Also.

])(Rjil' = 2) = F(bZ) — (l:) — F(ij_l - (I)
where b =0, /0, and a = (jty — ttn)/0q.

The parameters a. b and the k — [ fixed boundaries Z; are simultaneously estimated by maximizing
the log likelihood function

2k
“ . .
lOgL = E E r,-»,-log{p(]?jiz)}
i=1 j=1
where 75 is the number of R;’s in group ¢.

The area under the fitted ROC curve is computed as

()
1+ 02

where ® is the standard normal cumulative distribution function.
Point estimates for the ROC curve indices are as follows:
a 2a av'?2

6(m) = [“ d. = b1 dy = _‘1""'_[)"
b + + b2

Variances for these indices are computed using the delta method.

The §(m) estimates (o, — pn)/0n. do estimates 2(p, — pt,)/(04 — 7,). and d, estimates
\/5(.“(1 - l‘n)/(gg - 0121)2

Simultaneous confidence bands for the entire curve are obtained as suggested by Ma and Hall

(1993) by first obtaining Working—Hotelling (1929) confidence bands for the fitted straight line in
normal probability coordinates, and then transforming them back to ROC coordinates.

Comparing areas under the ROC curve

Areas under ROC curves are compared using an algorithm suggested by Delong, DelLong, and

Clarke-Pearson (1988). Let 6 = (9/\19/\2 ....0%) be a vector representing the areas under & ROC
curves. For the rth area. define

\7
e s 1 & R
Vio(Xi) = > (XY
='n _]:1
and for each normal subject. j. define
1 "\“(l
Vi(¥)) = = ) e(X[.Y))
“va i==1
where o .
1 Yr< X"
(XY = % Yr=X"
0 Y">X"
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Define the £ x k matrix S;¢ such that the (7, s)th element is

N
" 1 . T e A‘ k1 ra —~
[ = o o V) - V() - 57}

i=1

and Sg; such that the (7, s)th element is

L i vy Fovrirs o A
Sof = ¥ Z;{V01Oi) — T HVa(Y) - 6°)
]:

Then the covariance matrix is . .
S =8+ —=—85 1
e

Let L be a contrast matrix defining the comparison, so that
(6 - 6)L/(LSL)) "'L(@ - 0)

has a chi-squared distribution with degrees of freedom equal to the rank of LSL/.
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