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Introduction

I Many outcomes of cancer diagnosis and progression are
identified at discrete times via diagnostic examination.

I Prostate cancer progression following primary surgery identified
by rising PSA

I Breast cancer recurrence after diagnosis of in-situ disease
identified by surveillance mammography
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Surveillant-dependent outcomes

I A continuous-time failure outcome tracked by diagnostic tests
or biomarker measurements that occur at discrete times
(patient visits).

I Sensitive to frequency of patient visits

I Subject to misclassification error
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Why are surveillant-dependent outcomes problematic?

I Comparisons of studies, patient populations, or treatment
groups with different surveillance schema are confounded by
differences in visit frequencies.

I Integrating information across studies is challenging.

I Target of inference may be event that occurs in continuous
time, rather than detection of that event.
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I Gignac (2008) identified the problem in clinical trials of drugs
for preventing bone metastasis in prostate cancer, which are
detected by bone scans.

Treatment B; scans delayed by 5 days

Treatment A; reported
effect is better than B

In treatments A and B

-Median progression-free
survival is 12 weeks 

-Bone scans every 8 weeks

Figure: Simulation study from ”Assessing Outcomes in Prostate Cancer
Clinical Trials: A 21st Century Tower of Babel”, Gignac 2008
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Our focus: prostate cancer active surveillance

I AS is now the preferred approach for managing low-risk
prostate cancer.

I At diagnosis, men are assigned to series of biopsies

I referred to treatment if a biopsy detects progression.

I Progression=increase in grade (Gleason score) or tumor
volume.

I Many single institution AS studies, but no clinical trials.
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Tower of Babel problem for prostate cancer AS studies
Monitoring protocols and triggers for intervention.

Intervals of surveillance Triggers for intervention*

PSA
(mo.)

Exam
(mo.)

Mandatory
confirmatory

biopsy (≤ 1 yr.)

Subsequent
biopsies (yrs.

from previous)

Gleason
score

Positive
cores

Max %
core with

cancer
PSAV

PSADT
(yr)

Johns

Hopkins# 6 6 Yes 1 >6 >2 >50

Sunnybrook
3 (x2
yr)

then 6
Yes 3–4 Upgrade < 3†

Göteborg 3–6 3–6 No 2–3
Progression in PSA, grade, or stage (not

strictly defined)

UCSF 3 6 Yes 1–2 >6 >33% >50

Royal
Marsden

3–4
(x2 yr)
then 6

3–4 (x2
yr) then

6
No (≤ 2 yrs.) 2 ≥4+3 >50% >1

St.
Vincent’s

3 (x3
yr)

then 6

6 (x3
yr) then

12
Yes 1–2, then 3–5 >6 >20% >8 mm >0.75 < 3

PRIAS 3–6 Yes 3 >6 >2 < 3

University
of
Copenhagen

3 3 Yes Variable ≥4+3 >3 < 3

University
of Miami

3–4
(x2 yr)
then 6

3–4 (x2
yr) then

6
Yes 1 >6 >2 Increase

Figure: ”Active Surveillance for Prostate Cancer: Contemporary State of
Practice”, Tosoian 2016

I Different AS studies have different surveillance protocols.
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Active Surveillance Scientific Questions

I What is the underlying risk of progression on AS?

I Are different risks that are reported across studies artifactual
or real?

I Can we use published results to inform development of
surveillance policies?

9



Statistical Issues: How do we move beyond the ”Tower of
Babel”?

I Require that all studies standardize their followup protocols in
terms of visit frequency.

I Not practical, especially when exposure of interest is the
surveillance protocol.

I Acknowledge that clinical observations represent discrete
realizations of an underlying continuous time process.

I Use modeling methods that characterize the underlying
process, enabling comparison across populations.
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Multistate models (MSMs)

I Our approach is based on assuming that the underlying events
of interest are captured by a multistate model.

I MSMs characterize an underlying process consisting of
transitions over time through a discrete state space.

ALIVE DEAD
Survival Model

Reversible disease model

HEALTHY ADENOMA CARCINOMA
Series model

DISEASE                              REMISSION
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Observed data

I Example: multistate model with 3 states, discrete
observations, and misclassification error.

I Note that multiple transitions can occur between successive
observations (not the same as interval censored data).

1

2

3

Sample trajectory
Observed data
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Methodology for discretely observed MSMs

I Fully observed transitions present multiple options for MSMs,
both parametric and non-parametric.

I Discretely observed MSMs pose more challenges for
estimation, particularly those with reversible transitions.

I We’ve developed a stochastic modeling approach that is both
tractable and flexible.

13



Underlying disease process model

I Typical assumption: the disease process is a
time-homogeneous continuous time Markov chain (CTMC)

I Rates of transitions between states are constant with respect
to the time spent in the state.

I This constant hazard assumption is rarely realistic.
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Our approach: latent CTMC model

Healthy Diseased

Healthy Healthy Diseased Diseased

Disease process W(t)

Latent Continuous time Markov chain process  X(t)

1 2 1 2

I Disease process W (t) is the trajectory through the states in
the model.

I Underlying W (t) is a time-homogeneous CTMC X (t).

I Latent CTMCs permit flexible hazard functions.

I Structured, Coxian transitions prevent over-parameterization.
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Incorporating misclassification error: Hidden Markov
Models

X1 X2

O1 O2

X3 X4

O3 O4

. . .

Underlying cancer
status at biopsy

Observed biopsy
outcome

I x1, . . . ,xk are states in underlying process at observation times.

I o1 . . .ok are observed data

I Given conditional independence, observed and underlying data
at time t are related via emission probabilities E = {e(i , j)}

e(i , j) = Pr(Ot = j |Xt = i)

.
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Observed data likelihood

I S is state space for X (t).

I x0 is initial underlying state at entry.

I x1, . . . ,xn are states in underlying hidden process at
observation times t1, . . . , tn.

I o1 . . .on are corresponding observed data.

I P(X0 = i) is initial state probability.

I P[ti ,ti+1](xi ,xi+1) is probability of transitioning between states
xi and xi+1 between ti and ti+1.

The observed data likelihood marginalizes the joint probability of
x0,x1, . . . ,xn and the observed data at t1, . . . , tn over x1, . . . ,xn.

P(o1 . . .on) = ∑
x0∈S

∑
x1∈S

... ∑
xn∈S

Pr(X0 = i)
n

∏
i=0

P[ti ,ti+1](xi ,xi+1)
n

∏
i=1

e(xi ,oi ).
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Estimation

Model parameters

I ΛΛΛ, the transition intensity matrix governing the latent CTMC
transition probabilties.

I The vector of initial state probabilities

I The matrix with misclassification probabilities
e(i , j) = Pr(Ot = j |Xt = i)

I All components may be parameterized with covariates.

I In prior work (Lange 2013), I developed an EM algorithm for
parameter estimation.

I Implemented in R package, cthmm (on Rforge)
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Prostate Cancer Active Surveillance Application

I PROMISS (Prostate Modeling to Identify Surveillance
Strategies)–Fred Hutch R01 (PIs Etzioni, Lin, and Penson)

I Objective is to determine best practices for AS.

I Project integrates data from multiple AS cohorts.

I Models downstream outcomes given different AS protocols.

I Provides recommendations for policy makers.
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Four active surveillance cohorts

Surveillance Grade Volume 

Cohort Years Enrollement criteria* PSA
Confirmatory 

biopsy
Subsequent 

biopsy intervals Gleason score Positive cores
Max % core 
with cancer

PASS 2008-2013 Low risk 4 mo. Yes 2yr >6 >33%

Toronto 1995-2015 Low risk + select intermediate risk 3 mo. Yes 4yr >6

JHU 1994-2014 Very low risk and low risk (older men) 6 mo. Yes 1yr >6 >16% >50%

UCSF 1990-2015 Low risk  + select intermediate risk 3 mo. Yes 2yr >6 >33% >50%
*Risk based on Gleason score, clinical stage, tumor volume, PSA; JHU also included low PSA density criterion.

Triggers for intervention

I Cohorts differ in terms of

I surveillance frequency

I inclusion criteria

I definition of progression (trigger for intervention)
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Description of cohorts

I We standardized inclusion criteria (Gleason ≤ 6, age at
enrollment < 80, entry 1995+) and the definition of
progression on AS to mean an increase in tumor grade (Low
grade=Gleason ≤ 6; high grade=Gleason > 6).

Description of cohorts with common inclusion criteria

JHU (N=699) PASS (N=613) Toronto	(N=421) UCSF	(N=843)

4.3 [2.4, 6.5] 2.7[1.5,4.4] 4.8	[2.4,7.7] 3.0	[1.4,5.3]

6 [4,10] 9 [5,14] 12	[7,18] 9	[5,15]

4 [3,6] 1 [1,2] 1	[1,1] 1	[1,2]

1.1 [.93, 1.3] .55 [.35,.83] .26	[.16,.50] .60	[.35,.91]

1.7 [1.3, 1.8] 3.5 [2.9, 4.1] 2.6	[2.0,3.5] 3.3	[2.4,	4.1]

66 [62,69] 63 [58,67] 65[60,70] 62	[57,66]Age at diagnosis

Duration of follow-up (years), median (IQR)

Number of PSA measumrents, median (IQR)

Number of biopsies, median (IQR)

Mean number of biopsies/year, median (IQR)

Mean number of PSA measurements/year, median(IQR)
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Model for prostate cancer upgrading

I Treatment prior to upgrade is a competing event that
prevents us from observing the natural history of the disease.

I Thus we use a competing risks model framework to
characterize the natural history of grade progression during
AS.

Low
grade PC

Upgraded
PC

Low
grade PC

Upgraded
PC

Low
grade PC

Upgraded
PC

Low
grade PC

Competing 
Treatment

Upgraded
PC
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Risk of biopsy upgrading over time and risk of competing
treatment
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A. Biopsy upgrade B. Competing treatment
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Capturing correlation between upgrade times and times of
competing treatment

Low
grade PC

Upgraded
PC

Low
grade PC

Upgraded
PC

Low
grade PC

Upgraded
PC

Low
grade PC

Competing 
Treatment

Upgraded
PC

PSA intercept
and slope
Age

PSA intercept
and slope
Age

I Times of underlying upgrade and times of competing
treatment may be correlated.

I We assume this correlation is fully captured by baseline age,
PSA at entry and PSA velocity, and include these as
covariates in the transition model.

I Of interest is the distribution of upgrade time in absence of
competing treatment–obtained by setting treatment rates to
zero.
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Latent structures

Low
grade PC

Upgraded
PC

Low
grade PC

Upgraded
PC

Low
grade PC

Upgraded
PC

Low
grade PC

Competing 
Treatment

Upgraded
PC

Low
grade PC

Upgraded
PC

Low
grade PC

Upgraded
PC

Low
grade PC

Upgraded
PC

Low
grade PC

1

Upgraded
PC

Low
grade PC
Low
grade PC
Low
grade PC

Low
grade PC

2

Standard CTMC                                              Latent CTMC 

Competing
Treatment

I Additional latent states in CTMC model add flexibility to the
sojourn time distribution.

I Considered models with 1 and 2 additional latent states for
each cohort.

I Selected best fitting model for each cohort via Bayesian
information criterion.
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Misclassification component

I Biopsies may misclassify tumor grade (have false negatives or
false positives)

I For these analyses, we assume 100% specificity (low grade
cancers do not yield positive (high grade) biopsies).

I We considered models with imperfect sensitivity (biopsies may
not detect high grade disease).

I Empirical tests with models fit with varying sensitivity
suggested these data are not able to estimate it reliably.

I Therefore we fixed biopsy sensitivity at 75%, 90%, and 60%,
100% and estimated disease progression parameters.
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Specific analysis goals

I Study differences in times of underlying progression in absence
of competing treatment

I by cohort

I under different assumptions about biopsy sensitivity
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Results: model selection for each cohort

Table: Model selection using Bayesian information criterion assuming
100% biopsy sensitivity

PASS
Model Log likelihood N params N sample BIC
CTMC -688.1 8 613 1398.5
Latent-2 -677.1 11 613 1384.9
Latent-3 -674.8 14 613 1388.6

JHU
Model Log likelihood N params N sample BIC
CTMC -1086.4 8 699 2195.6
Latent-2 -1069.6 11 699 2170.5
Latent-3 -1055.8 14 699 2151.4
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Results: model selection for each cohort

Table: Model selection using Bayesian information criterion assuming
100% biopsy sensitivity

Toronto
Model Log likelihood N params N sample BIC
CTMC -495.3 8 421 1011.6
Latent-2 -480.4 11 421 989.7
Latent-3 -479.2 14 421 995.1

UCSF
Model Log likelihood N params N sample BIC
CTMC -1149.4 8 764 2321.8
Latent-2 -1122.0 11 764 2275.7
Latent-3 -1122.0 14 764 2284.4
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Results: Predicted distributions of times of upgrading
absence of treatment across cohorts
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I All cohorts have distributions of underlying upgrade shifted
left of diagnosis time curves, but the degree varies depending
on biopsy frequency.

I PASS and TORONTO may be pretty similar in terms of risk
(p=.31 for difference in combined analysis)

I JHU has considerably lower risk.

I UCSF has somewhat higher risk.
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Results: effects of biopsy sensitivity on predicted
distributions of times of upgrading in absence of treatment

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

years since dx

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

Kaplan Meier of biopsy upgrade
100% sens UGC
90% sens UGC
75% sens UGC
60% sens UGC

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

years since dx

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

Kaplan Meier of biopsy upgrade
100% sens UGC
90% sens UGC
75% sens UGC
60% sens UGC

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

years since dx

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

Kaplan Meier of biopsy upgrade
100% sens UGC
90% sens UGC
75% sens UGC
60% sens UGC

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

years since dx

c
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

Kaplan Meier of biopsy upgrade
100% sens UGC
90% sens UGC
75% sens UGC
60% sens UGC

A. PASS B. Toronto

C. UCSF D. JHU

32



Clinical implications of AS study
I On the underlying upgrade scale, we conclude PASS, Toronto,

and UCSF may be reasonably comparable in risk of grade
progression, but JHU is still considerably lower risk.

I Partial explanation: JHU has stricter PSA density criterion.

I Using any one cohort to make absolute risk predictions
regarding grade change may be problematic.

I Biopsy sensitivity affects the projections of distribution
upgrade times; lower biopsy sensitivity suggests that many
enter the cohort with higher grade disease rather than
progressing over time.

I Assumptions about sensitivity may suggest different biopsy
screening strategies.

I We plan to use these models to simulate downstream
outcomes with different surveillance schedules.
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Overall summary

I The latent CTMC approach avoids the “Tower of Babel”
problem of comparing surveillant dependent outcomes by
treating such data as discrete observations of an underlying
continuous time process.

I The latent parameterizations enables flexible sojourn time
distributions, but retains analytic tractability of standard
CTMCs.

I The models enable dynamic prediction of a patient’s
underlying status based on his prior history of testing results.

I While there are other methods for interval censored data and
panel data, this methods applies flexibly to a variety of
scenarios.
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Limitations
I Models still make parametric assumptions about upgrading

distribution, although latent structure provide added flexibility.

I It is not always possible to simultaneously estimate
misclassification probabilities.

I Latent parameters not always fully identifiable (but are not
themselves target of inference).

I Complexity of latent structure is constrained by the frequency
of observations.

I This method conditions on visit times, and assumes they are
non-informative. Lange (2015) considered an extension to
informative visit times, useful when patient initiate visits
based on symptoms. 35



Questions?
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Initial parameter estimation with latent and standard
CTMC

A. PASS B. Toronto
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