Introduction to cthmm (Continuous-time hidden Markov models)
package

Abstract

A disease process refers to a patient’s traversal over time through a disease with multiple
discrete states. Multistate models are tools used to describe the dynamics of disease processes.
Clinical study settings present modeling challenges, as patients’ disease trajectories are only
partially observed, and patients’ disease statuses are only assessed at discrete clinic visit times.
Furthermore, imperfect diagnostic tests may yield misclassification error in disease observations.
Observational data, such as that available in electronic medical records, present additional chal-
lenges, since patients initiate visits based on symptoms, and these times are informative about
patients’ disease histories.

The cthmm package fits multistate models to discretely observed disease process data, allow-
ing for misclassification in disease observations and informative patient visit times. The basic
approach is to model the disease process via a latent continuous time Markov chain (CTMCs),
allowing for approximation of arbitrary sojourn time distributions with non-constant hazard
functions. Moreover, these models can be readily expanded to accomodate information obser-
vation times, by specifying the informative observation process as a Markov-modulated Poisson
process where patient-initated visit times depend on the patient’s disease status.

We illustrate the use of the cthmm package in these two discrete observation contexts

1. A panel observed reversible disease process, in which observation times are non-informative.

2. A disease process with a competing risks structure, observed at a combination patient-
initiated (informative) and scheduled (non-informative) times.

Using these examples, we describe the core functionality of the package, including
1. Specifying the structure for the data and the model components
2. Obtaining maximum likelihood estimates for model parameters
3. Estimating the variance of the parameter estimates
4

. Summarizing result by plotting estimated hazard and cumulative distribution functions
for disease state sojourn times.
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1 Background on Latent CTMCs

1.1 Latent CTMC model parameterization

Discrete observation scenarios for multistate processes present modeling challenges, as many of
the methods available for fully observed trajectories are no longer computationally tractable. For
this reason, standard CTMCs are frequently used to model discretely observed disease processes.
Standard CTMCs describe transitions in a multistate process where sojourn time distributions
are exponentially distributed and depend on the process history only via the currently occupied
state.

Despite their tractability, the assumptions of standard CTMCs are often unrealisitc. Cthmm’s
approach of using latent CTMCs allows for more flexibility. We assume that the disease process
W (t), with state space G, is based on an underlying CTMC X (t), with state space S. These
models retain the basic framework of standard CTMCs but assume that multiple latent states in
S map to each observable disease state in G, thereby allowing for non-exponentially distributed
sojourn times for W (t).

Latent CTMCs are parameterized via an intensity matrix A, describing rates of transitions
between latent states; an initial distribution 7; and an emission matrix E assigning mappings
between the latent states in S and observed state space GG. In this sense, we can view a discretely
observed latent CTMC as a hidden Markov model based on a time-inhomogeneous transition
matrix. From this perspective, we can modify the transition matrix to incorporate misclassi-
fied disease observations, by assuming that the observed states at each observation time are
probablistically, rather than deterministically, related to the underlying latent states.

Notationally, let O(t) be the observed data at time ¢, which refers to a possibly misclassified
observation of the disease process. The emission matrix {E[i, j]} describes the probability of
observing a value of O(t) given the underlying value of the latent CTMC X (¢) and has entries
has entries E[i, j] = P(O(t) = j|X (t) = i). If the process is observed without error, these entries
are either 0 or 1.

Latent CTMC models provide a means of approximating disease processes with arbitrary
sojourn time distributions. In most cases, the latent structure is not inherently meaningful.
Furthermore, certain parameterizations may yield models that may not be identifiable. To
alleviate these problems, we recommend use of Coxian phase-type structures to characterize the
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Figure 1: A. Example of latent trajectory X (), disease trajectory W (t), and observed data O(t;)
at discrete observation times for model in subfigure C, assuming possible misclassification error. B.
2-state survival model of W(t) assuming G = {1,2} and S = {{11, 12}, {2}}, where disease state
2 is absorbing. The Coxian PH structure implies X(t) starts in 1;. C. 2-state reversible model
of W(t), with state space R = {1 = Healthy,2 = Diseased} and S = {{11,12},{21,22}}). X(¢)
starts in 17 or 21.

sojourn times in the latent space (Figure ) Such models characterize limit the number of
allowable transitions in the latent space, but still provide for flexible models that approximate
arbitrary sojourn time distributions .

Figure provides an illustration of a complete, but unobserved trajectory W (t), and its
relation to the latent trajectory X (¢) and the observed data consisting of discrete observations,
O(t1),...,0(ty). The underlying structure of X (¢) allows for Coxian phasetype distributions
for the sojourn times in each of the two disease states.

1.2 Accomodating informative observation times

Patient-initiated, disease-driven observations (DDOs) are frequently present in clinical datasets.
To accomodate such times within the latent CTMC framework, we can model DDO times
according to a Markov-modulated Poisson process where rates of informative observation events
depend on the underlying disease state. Formally, the rates of DDOs are a piecewise function
q(t) = q(X(t)) that depend on the underlying disease state. In particular, rates of DDOs
corresponding to disease states {1,...,s} are denoted q = (q1,...,qs)".

1.3 Incorporating covariates into the latent CTMC models

To incorporate baseline subject-level covariates w*) in the disease model, we relate log-rates to

a linear predictor, log()\gf)) = CZ;-Wk , where k denotes the individual. In latent CTMCs, differ-

ent constraints on covariate effects provide different interpretations. Adding the same covariate



parameter to all latent transitions originating from disease state p, i.e. {)\i]‘ cie{p1,... ,psp}},
implies a multiplicative effect on the sojourn time in state p. To represent covariate effects on
cause-specific hazard functions, one can add a separate covariate parameter for each transition
out of disease state p to disease state r, i.e. {)\ij vie{p1y. . Ds,,J €411, 77’ST}}. This speci-
fication does not, however, represent a proportional hazards parameterization without additional
non-linear constraints.

One can also add covariates to DDO, emission, and initial distribution parameterizations.
This is achieved by relating log rates of DDOs to a linear predictor; i.e. log(qfk)) = VZTW(k).
Initial distributions and emission distributions are multinomial. Assuming S has s total states,
the initial distribution 7 has natural parameters {rn; = log (7;/71)) : i = 2, ..., s}, and the emis-
sion distribution e; has natural parameters {n;; = log (E[i,j]/E[i,1]):j =2,...,g}. Subject-
level covariates w(®) are added to the multinomial models via a linear predictor, e.g., specifying

k .
772(]') = ’Yz‘jW(k)-

2 Specifying the data and model structure: panel data
example

2.1 Data-generating model

First, we illustrate cthmm’s use for panel data with non-informative observation times. The dis-
ease model used to generate the disease process has two states {A, B} and reversible transitions
between these states (Figure. The sojourn times in states A and B are generated, respectively,
according to Weibull(shape=1.5 and scale=1) and Weibull(shape=.75, scale=10) distributions,
which correspond to sojourn time distributions with increasing and discresing hazard functions,
respectively. There are 200 independent individuals in the sample, each observed at fixed times
0,1,2,...,10 years. Disease states A and B are observed with misclassification error.

2.1.1 Covariate effects

For each individual, there are two baseline covariates: a binary variable X (half of the sample
have X=0, and half have X=1) and a continous variable Y (generated independently from a
Normal(0,1) distribution). The covariate X affects occupancy times, such that for those with
X=1 (versus X=0), sojourns in state A are multiplied by 1.5 and in state, B, by .75.

The covariate X also affects the misclassification probabilites. The probability of observing
B given A is .028 in those with X=0, and the odds of missification increase by a factor of 3.7
in individuals with X=1. The probability of observing A given B is .05, and this probability is
not affected by covariates.

The state initially occupied by an individual is governed by an initial probability distribution
that is related to the covariate Y. Those with Y=0 occupy state B with probability .094. An
increase in Y by one unit increases the odds of occupying state B by 2.55.

2.2 Data structure

Data are stored in a list, with an entry for every subject. The list elements include the en-
tries “obs.data” and “obs.times” correpsponding to the observed data at each of the discrete
observation times. Observations of state A are coded by 1 and B, by 2.

> the.data[[1]]$obs.data
[11 22222122222
> the.datal[[1]]$obs.times

[1] 0.000000 1.488500 2.112423 2.969151 3.860416 4.960169 5.622864 7.234300
[9] 8.186855 9.080619 9.672877
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Figure 2: Data-generating model for the two-state reversible disease process. Sojourn times in state
A have a Weibull(1.5,1) distribution and in state B, a Weibull(.75,10) distribution.

2.2.1 Accomodating known times of absorption

Note: this model has no absorbing states. In situations where the disease has an absorbing
state, indivduals may have a final observations correpond to a known time of absorption, such
as a known time of death. In this situation, we need to specify which observation corresponds
to the the exact time. If there are 10 observations for person 1, and the last time corresponds
to a known absorbtion time, then we would also include the item

> the.datal[[1]]$exact.times.ranks=10.

2.2.2 Baseline covariate data

The baseline covariate data is in a data frame called cov.data. Each subject is identified by an
id in the same order as the.data list.

> cov.data[1:10,]

id X Y
-0.5982105
.5467532
.7701050
.2851026
.2890916
.6181584
.3472898
.2726347
.4469496
.1877430
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2.3 Model specification: transition intensity matrix
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Figure 3: Latent continuous time model for two state disease process. Latent states {1,2} map to
disease state A and {3,4} to disease state 2. The transitions between latent states in each disease
state have Coxian phase type structure, in at each transition, it is only possible to go forward or
exit to the other disease state.



We will fit the data with latent CTMC model that has a total of 4 latent states, 2 per each
disease state. The latent state space is S = {1, 2, 3,4} where states {1,2} correspond to disease
state A and states {3,4} to disease state B. The latent CTMC has transition intensity matrix
A. The model is characterized by Coxian phase type sojourn distributions for times spent in
the disease states, and the latent structure has transitions implied by Figure [3] The A matrix
that corresponds to this structure is

—(A12 +A13) A2 A13 0
A31 0 —(A31 + A34)  Aza
/\41 0 0 */\41

We incorporate covariates in the transition matrix model as follows. Since the covariate X scales
multiplicatively the sojourn time distributions in A and B, we can assume that the covariate
effect of X is the same for A2, A\13, A23 and likewise for A3y, A31, A41. The model is specified in
terms of log-rates and has parameters {r,...,rg} as follows:

We specify the design matrix for the rate intensity matrix via a list called rates.setup. The
list as several elements, which need to be set by the user before fitting the EM. We specify the
number of latent states in the model

> rates.setup$num.states
1] 4

We specify the non-zero transitions between the latent states with a matrix

> rates.setup$transition.codes

o0 WN e
B W wWwN R e
[N NI IV I SR

We specify the design matrix for the model with the matrix

> rates.setup$design.matrix

rl r2 r3 r4 r5 r6 r7 r8

1 1 NA NA NA NANA X
2 NA 1 NA NANANA X
3 NANA 1 NANANA X
4 NA NA NA 1 NA NA X
5 NA NA NA NA 1 NA X
6 NA NA NA NA NA 1 X

Each row in the design matrix corresponds to a single ¢ — j transition in the order specified by
the rates.setup$transition.codes. Intercepts are represented by 1 entries. Named covariates



are specified with the name of the covariate (here, X). The setup allows us to easily specify that
parameters are common across multiple transitions, e.g. 77 and rg. We also need to specify for
each parameter whether it is fixed or will be estimated. if it is fixed, its value is that designated
in rates.setup$param.values. If we set param.types=0, then we are going to estimate it, if
1, it is fixed. In this example we will be estimating all parameters.

> rates.setup$param.types
[1] 00000000

We specify intial values for 71, ...rg (for the EM) with

> rates.setup$param.values

[1] 0.21905279 -1.54918429 0.51695069 -2.33470966 -1.78216158 -3.73949033
[7] -0.39584792 0.03575836

In the case we are not estimating a parameter, the value is fixed at the initial value.

2.3.1 Fixed transition intensity matrix

For certain models, we may want to specify a fixed transition intensity matrix, with no unknown
entries. In this case, we have the option to specify by setting the list item

> rates.setup$fixed.rates

to be equal to the fixed rate matrix for all individuals. This option may be most useful in the
debugging stage. Note that all of the entries in the fixed rate matrix are on the intensity, not
log-intensity, scale.

2.4 Model specification: initial distribution

The model for the initial distribution of the latent CTMC is a multinomial logit model. In
the example, the initial distribution is (71,..m4). According to the Coxian specification, an
individual allows starts in the first latent state of the corresponding disease state. So, for our
model, an individual either starts in latent state 1 or latent state 3. The probability of the initial
state occupancy is related to the covariate Y. With state 1 as the reference state, the model is

log T _p + b2Y.
1

To specify the initial distribution model, we have an init.setup list. We have an entry for the
number of states in the model.
> init.setup$num.states
[1] 4
We identify the reference state via
> init.setup$ref
[1] 1

We then specify all of the states, other than the reference state, that can be occupied at the
initial time point. States that cannot be initially occupied are not listed. Therefore, we do not
list states 2 and 4, just 3.

> init.setup$states
[1] 3

We then specify the design matrix for the initial distribution. Each row corresponds to the state
listed in init.setup$states.



> init.setup$design.matrix

bl b2
1 1Y

We specify which of the parameters are fixed versus unknown. The code is 0 for unknown, 1 for
fixed.

> init.setup$param.types

(11 00

We specify the initial values of the parameters—or their fixed value if will not be estimating them
in the model.

> init.setup$param.values

[1] -2.3604716 0.8488266

2.4.1 Fixed initial distribution

Alternatively, we can specify the initial distiribution as a fixed value for everyone. For example,
assume that we knew that the individual started in latent state 1. Then we would specify

> init.setup$fixed.dist=c(1,0,0,0)

We note that we use the probability scale for specifying a fixed initial distribution.

2.5 Model specification: Emission matrix

In this example the latent CTMC model we are fitting has state space {1,2,3,4}, and the
observed data state space is {A, B}. Thus, the emission matrix has four rows, one for latent
state and 3 columns, one for each observable state.

The emission setup object emission.setup contains the information about the emission
matrix parameterization and is analogous to rates.setup and init.setup.

2.5.1 Covariate-parameterized emission matrix

The emission distribution model, and relationship to covariates, are specified according to sep-
arate multinomial logistic regression models, one for each latent state. In our model we will
assume that E[1,2] = E[2,2] and that E[3,1] = E[4,1], and that only E[1,2] = E[2,2] are
related to the covariate X. The multinomial logistic regression models conveying the covariate
effects can be written as [

&=

1,

o

log(E[L 1]) = g1+ g2 X
log(gg: ﬂ) = g1+ g2 X
loa(Giy-31) = 1
log(%) = g3

To specify the model in emission.setup, first we designate the reference categories in multino-
mial models via a matrix. In this example, our reference categories are E[1,1], E[2,1], E[3, 2],
and E[4,2].

> emission.setup$ref.states



S W N -
OV SR
NN PO

Then we specify all other categories with non-zero emission probabilities that are not reference
states.

> emission.setup$emission.states

W N -
D W N e
=R N NS

The design.matrix encodes the parameterization of the model, with each row corresponding
to a row in the emission.states matrix.

> emission.setup$design.matrix

gl g2 g3
1 1 X NA
2 1 X NA
3 NA 1
4 NA 1

We specify which of the parameters will be estimated (0) and which are fixed (1).

> emission.setup$param.types

[1] 00O

We set the initial values of the parameters, or the values of the parameters if they are fixed.
> emission.setup$param.values

[1] -4.224486 1.802472 -3.179071

2.5.2 Emission distribution when some states are observed without error

In some models, some of the states may be observed with error and others observed without
error. In this situation, we have the option of specifying this directly. For example, if E[1,1] =1
we set

> emission.setup$exact.states=matrix(c(1,1),nrow=1,dimnames=1ist(1,c("i","j")))
> emission.setup$exact.states

i3]
111
This means that we will not estimate parameters for E[1,2], E[1, 3], etc, since all other entries

in row 1 of the emission matrix will be 0. This does not prevent us from estimating covariates
related to other emission probabilities.



2.5.3 Fixed emission matrix

In situations where there is no misclassification error or the misclassification probabilities are
known, we specify an emission matrix that is common across indivduals.

For instance, if we assumed that the latent CTMC model we are fitting was observed without
misclassification error, the emission matrix would be a 4 x 2 matrix

OO ==
— -0 O

indicating the mapping of the latent states onto observed disease states.

Suppose we have a 5% misclassification error probability. In this case, the emission distri-
bution is

95 .05
95 .05
B= 05 .95
05 .95

In general, to specify a fixed emission distribution, we set
> emission.setup$fixed.dist=matrix(c(1,0,1,0,0,1,0,1),byrow=T,nrow=4)

> emission.setup$fixed.dist

[,11 [,2]
[1,] 1 0
[2,] 1 0
[3,] 0 1
[4,] 0 1

10



Figure 4: A.Disease model with competing risks structure. State H is a healthy state and states
I and C are diseased states. B. Latent CTMC structure for the disease model. States Hy and Hs
map to the healthy state. The two latent healthy state enable non-constant hazard functions for
sojourn times in the disease states. The transition intensities (for covariate X=0) are shown next
to the arrows for each transition in the latent model.

3 Specifying the data and model structure: informative
sampling time example

3.1 Data-generating model

Our next example will involve a discretely observed disease process with a competing risks
structure and a combination of patient-initated (informative) and non-informative observation
times. In this example, we assume that the data-generating model is a latent CTMC with a
competing risks structure (Figure . States Hi and Hy map to two healthy states, and I, and
C, to separate disease states. States I and C' are absorbing, and cannot be exited once the
invidual enters them.

The simulated dataset consists of 500 indivuals. For each individual, there is one baseline
covariate, X, generated as a random draw from a Normal(0,1) distribution, that affects the
transition intensities in the model. Specifically a unit change in X increases the rates of H; — I
and Ho — [ transitions by 4.5 and the H; — C and Hy — C transitions by 2.0. There is no
covariate effect on the H; — Hs transition.

We assume that all individuals start in state H;. All individuals have fixed observations at
times ¢ = 0 years and ¢ = 8 years, and at random patient-initiated times in that time frame.
The informative observation times occur according to a Markov-modulated Poisson process,
with rates that depend on the underlying disease state. In the healthy states H; and Hs,
informative, disease-driven observation times occur .25 times/year. In the diseased states, they
occur 2 times/year.

We assume that the disease process is observed with misclassification error. When an indi-
vidual is in either of the healthy states, one observes that they are healthy 98% of the time. In
contrast, individuals in states I or C' are only correctly identified as diseased 70% of the time.

3.2 Data structure

The structure for the data is similar to the panel data structure. All of the data is represented
as a list, with one sublist per indivdual. Individual entries specify the discrete obervation times
and the observed data at those times. In addition, the sublist specifies which of the times are
informative observation times versus panel times.

Given there are 3 observable states in the model (H,I,C), the observed data is coded,
correspondingly, by values 1,2, and 3. The type of each observation time (informative versus
non-informative) is coded by a vector h. When the observation time is informative, the entry is
1, otherwise it is 0. For these data, all individuals have fixed times at ¢ = 0 and t = 8. Let’s

11



look at the entry for individual 1.

> DDO_data[[1]]$obs.data

(1] 1111

> DDO_data[[1]]$obs. times

[1] 0.000000 5.391065 7.095911 8.000000
> DDO_datal[[1]]$h

[1J o110

As we the previous example, the baseline covariate data is in a data frame called cov.data.
Each subject is identified by an id in the same order as the DD0O_data list.

> cov.data[1:10,]

id X
1 1 0.8951574
2 2 -1.3936490
3 3 0.2752159
4 4 -1.8418686
5 5 1.1064556
6 6 -0.4110485
7 7 -0.1435747
8 8 -0.5545592
9 9 0.4188015
10 10 0.7665758

3.3 Model specification: transition intensity matrix

We will fit the data with an appropriately specified latent CTMC disease model (Figure [4B.)
The latent state space is S = {1, 2, 3,4} where states {1,2} correspond to states H; and H and
states {3,4} to disease states I and C, respectively. The latent CTMC has transition intensity
matrix A. As in our previous example, the model is characterized by Coxian phase type sojourn
distributions for times spent in the disease states, and the latent structure has transitions implied
by Figure 4l The A matrix that corresponds to this structure is

— (M2 + M3 + Aa) A12 Az Auig

A= 0 —(A2z +A21) A2z Am
0 0 0 0
0 0 0 0

According to the data-generating model we incorporate covariates in the transition matrix model
as follows:

log(M\2) =1

log(A\13) = ro + 16X
log(Ma) =r3 + 16X
log(Aa3) =rg + 17X

As with the panel data example, the transition intensity design matrix information is stored in
a list called rates.setup. We specify the number of latent states in the model

> rates.setup$num.states

[1] 4

12



We specify the non-zero transitions between the latent states via the matrix

> rates.setup$transition.codes

O W N
N NP P -
B Wb WY

We specify the design matrix for the model via

> rates.setup$design.matrix

rl r2 r3 r4d r5 r6 r7

1 1 NA NA NA NA

2 NA 1 NANANA X
3 NANA 1 NANA X
4 NA NANA 1 NA X
5 NA NA NA NA 1 X

Each row in the design matrix corresponds to a single i — j transition in the order specified
by rates.setup$transition.codes. Intercepts are represented by 1 entries. Named covariates
are specified with the name of the covariate (here, X). The setup allows us to easily specify that
parameters are common across multiple transitions, e.g. rg and 77.

We specify intial values for the coefficients r1,...,r7 with

> rates.setup$param.values

[1] 0.405465100 -1.391402000 -1.953979000 -4.527186000 -2.865628000
[6] 0.005176596 1.778063566

We also need to specify for each parameter whether it is fixed or will be estimated. If it is fixed,
its value is designated in rates.setup$param.values. If we set param.types=0, then we are
going to estimate it, if 1, it is fixed. In this example we will estimate all parameters.

> rates.setup$param.types

[1] 0000000

3.4 Model specification: initial distribution

In this example, we assume that all individuals start in state Hi, so we will not be estimating
the initial distribution. Thus we specify

> init.setup$fixed.dist=c(1,0,0,0)

which implies that all individuals start in latent state Hi.

3.5 Model specification: emission distribution

The emission distribution in our model has 4 columns, corresponding to each of the latent states,
and 3 rows, corresponding to the possible observable states. The data-generating emission matrix
is

98 .01 .01
98 .01 .01
i
3 0 7
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We can specify the model using multinomial regression via only intercept terms. In our model we
will assume that E[1,2] = E[1,3] = E[2,2] = E[2,3], E[3,1] = E[4,1], and E[3,3] = E[4,3] = 0.
Assuming that the reference categories are E[1,1], E[2,1], E[3,2], and E[4, 3], he multinomial

logistic regression models can be written as

log(gﬁ:ﬂ) =b
oo EE3)
log(gg:ﬂ) = by
log(gg:ﬂ) =b
log(gg:%) = by
log(gi‘;’b — b
log(ﬂi:g) = by
o E82)

To specify the emission distribution model, we create a list object emission.setup.
First we designate the reference categories in multinomial models via a matrix.
example.

> emission.setup$ref.states

i
[1,] 11
[2,] 21
3,1 32
(4,1 43

In this

Then we specify all other categories with non-zero emission probabilities that are not reference

states.

> emission.setup$emission.states

O ~NO Ok WN -
DWW NN R e
N = W WNWN <.

The design.matrix encodes the parameterization of the model, with each row corresponding

to a row in the emission.states matrix.

> emission.setup$design.matrix

bl b2 b3
1 1 NA NA
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1 NA NA
1 NA NA
1 NA NA
NA 1 NA
NA NA 1
NA 1 NA
NA NA 1

0 ~N O Ol W N

We specify which of the parameters will be estimated (0) and which are fixed (1).

> emission.setup$param.types
(11 oo01

Here, we will not estimate b3, but rather set it to -50, yielding 0 probabilities for F[3,3] and
E[4,3].
We set the initial values of the parameters, or the values of the parameters if they are fixed.

> emission.setup$param.values

[1] -4.50 -0.84 -50.00

3.6 Model specification: informative sampling time model

The informative sampling time model in this example has no covariates, and the rates in H;
and H, are set to be equal, as are the rates in latent states I and C. The DDO model can be
expressed as

where Hy =1, Hy =2, =3 and C = 4.

The informative sampling time model is specified via a DDO. setup list object, which is similar
in form to the rates.setup objects. That is, we specify the design for the DDO rates as if we
were specifying the design of matrix with diagnonal entries {qi, ..., g4}, denoted Q.

We first identify the number of latent states in the model

> DDO.setup$num.states
(1] 4

We then specify that we are modeling the diagonal entries of @ via

> DD0.setup$transition.codes

ni nj
1 1 1
2 2 2
3 3 3
4 4 4

Finally, the design matrix is given by

> DDO.setup$design.matrix
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where each row specifies the model for the corresponding entry of DDO. setup$transition.codes,
or corresponding rate parameters.
We assign which values of parameters will be fixed (1) and which will be estimated (0).

> DDO.setup$param. types
[1] 0O

And we set the intial values for the parameters, or their fixed value if it will be estimated.

> DDO.setup$param.values

[1] 0.3556693 -0.2655589

4 Obtaining maximum likelihood estimates via the EM
algorithm

Cthmm uses an EM algorithm to obtain maximum likelihood estimates using starting values
from the model setup objects. As is typical for EM optimization, global convergence is not
guaranteed, and we recommend using a number of randomly selected starting values before
assumng that the MLEs have been obtained.

Depending on the model complexity, and convergence tolerance, the EM algorithm may take
several minutes to complete. Generally, the latent structure of the models leads to slow rates
of convergence. Simplifications to the model, such as fixing certain parameters or reducing the
complexity of the latent structure may be necessary in the debugging stages.

4.1 EM for panel data example

Arguments to the EM function include the setup objects for the rate matrix, initial distribution,
and emission distribution. We also need to specify the the number of sujbects, the number
of latent states, number of observed states, the tolerance for convergence, and the maximum
number of EM iterations, and which if any of the latent states are absorbing.

fit.4state=EM(rates.setup=rates.setup,
init.setup=init.setup,
emission.setup=emission.setup,
the.data=the.data,
num.subjects=length(the.data),
num.states=4,
num.obs.states=2,
tol=1e-7,
absorb.state=NULL,
maxiter=500)

The object returned by the EM algorithm is a list that contains the parameter estimates, the
final log-likelihood, the run-time, and other information, including the values of the parameter
estimates at each iteration. Estimates of rate parameters are listed first, followed by emission
parameters, followed by initial distribution parameters, followed by informative observation
parameters. The order in which the parameters appear is the same order of the columns of the
design matrix in the rate, emission, and initial distribution setup objects. Note that if parameter
was specified as fixed in the setup, it will still appear in the vector of estimates, and will be the
same as its specified starting value.

> fit.4state$LL
[1] -927.9087

> fit.4state$param
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r r r r r r
0.7554409 -1.6249891 0.8439478 -2.9315493 -1.6741693 -16.0000000
r T e e e i
-0.3557577 -0.2533592 -4.1987910 1.7829274 -3.1790904 -2.3723878
i
0.7381510

> fit.4state$time

user system elapsed
363.406  1.543 368.321

In some cases, the MLEs for log-rate parameters may in fact be —oo. In this case, the EM
algorithm cuts off estimation at -16. We see that this is the case for one of the estimates.

4.2 EM for informative sampling time example
The EM algorithm call for the informative sampling model is

DDO_EM=EM(rates.setup=rates.setup,
init.setup=init.setup,
emission.setup=emission.setup,
the.data=DD0_data,
num.subjects=500,
num.states=4,
num.obs.states=3,
tol = 1e-07,
absorb.state=c(3,4),
maxiter = 500,

DDO.setup = DDO.setup)

The argument absorb.state=c(3,4) refers to the fact that latent states 3 and 4 are absorbing
states in the model.
The output conveying the results of fitting the EM for this example are

> DDO_EM$LL
[1] -5418.382

> DDO_EM$param

r r r r r r
0.7466216 -1.0087643 -1.8307406 -4.4153603 -3.0527381 1.2191924
r e e e d d

0.7881650 -4.6833853 -0.8288690 -50.0000000 -1.3725479 0.7249369
> DDO_EM$time

user system elapsed
79.997 0.421 80.403

5 Fitted intensity matrices, initial distributions, and emis-
sion matrices
After fitting the model, it may be desirable to obtain individual-specific estimates for transition

intensity matrice, initial distributions and emission matrices. This may be useful for individual
level predictions or simply to interpret model parameters/covariate effects on an intuitive scale.
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We will use the panel data example as an illustration of the functions used for getting fitted
values.
First we obtain a list of fitted rate matrices, via the function call

> fit.4state$param[1:8]

r r r r r r
0.7554409 -1.6249891  0.8439478 -2.9315493 -1.6741693 -16.0000000
r r

-0.3557577 -0.2533592

> rates.list=get.rate.matrix.list(current.params=fit.4state$param[1:8],
+ rate.setup=rates.setup, do.list=T)
> rates.list[[1]]

[,1] [,2] [,3] [,4]
[1,] -1.629318e+00 1.491352 0.1379662 0.000000e+00
[2,] 0.000000e+00 -1.629365 1.6293645 0.000000e+00
[3,] 1.455074e-01 0.000000 -0.1868894 4.138203e-02
[4,] 8.734857e-08 0.000000 0.0000000 -8.734857e-08

The current.params argument is set to the MLEs for the rate parameters obtained from
fitting the model. The first entry corresponds to the estimated rate matrix for the first individual
in the sample.

Similarly, for the emission matrix,

> emission.list=get.emission.matrix.list(current.params=fit.4state$param[9:11],
+ emission.setup=emission.setup, num.states=4,

+ num.obs.states=2,

+ num. subjects=200, do.list = T)

> emission.list[[1]]

[,1] [,2]
[1,] 0.91802902 0.08197098
[2,] 0.91802902 0.08197098
[3,] 0.03996021 0.96003979
[4,] 0.03996021 0.96003979

Finally, to get fitted initial distributions

> init.list=get.init.matrix.list(current.params =fit.4state$param[12:13],
+ init.setup=init.setup, do.list = T)
> init.list[[1]]

[1] 0.94342542 0.00000000 0.05657458 0.00000000

Again, the param.values argument is set to the MLEs for the intial distribution obtained from
fitting the model.

6 Variance of parameter estimates

Running the EM only provides maximum likelihood estimates for model parameters. For infer-
ence, we will also need the estimated variance of the parameter estimates. We use a numeric
estimation of the hessian of the observed data log-likelihood to estimate the variance.

The function call to get the variance for the panel data example is

covariance_4state=get_covariance(par=fit.4state$paranm,
the.data=the.data,
num.subjects=length(the.data),
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num.states=4,
num.obs.states=2,
rates.setup=rates.setup,
emission.setup=emission.setup,
init.setup=init.setup,
DDO.setup=NULL,

do.DDO=F)

The estimated standard error for the parameters (rates, emission, and initial distribution, in
order) is

> round(sqrt (diag(covariance_4state$covariance)),digits=3)

[1] 0.684 3.324 0.510 0.870 0.361 2816.621 0.161 0.371
(9] 3.191 3.006 0.427 0.570 0.369

The very high variance of the sixth parameter estimates corresponds to the log-rate parameter
whose MLE was essentially —oo.
For the informative sampling time example, the function call to get the variance is

covariance_DDO=get_covariance (par=DDO_EM$param,
the.data=DD0_data,
num.subjects=500,
num.states=4,
num.obs.states=3,
rates.setup=rates.setup,
emission.setup=emission.setup,
init.setup=init.setup,
DDO.setup=DDO0.setup,
do .DDO=T)

The estimated standard errors for the parameters (rates, emission, and initial distribution, DDO,
in order) is

> round (sqrt(diag(covariance_DDO$covariance)),digits=3)

[1] 0.308 0.281 0.294 0.258 0.112 0.133 0.107 0.223 0.038 0.000 0.042 0.019

We note that when parameters are fixed in the model (as was the case for one of the emission
parameters) the estimated standard error will be zero.

7 Estimating CDF's and Hazard functions for sojourn time
distributions

It will often be the case that functions of the latent parameters, such as hazard or cumulative
distribution functions for sojourn times are of scientific interest. Cthmm provides functions for
estimating these quantities and their point wise standard errors.

7.1 Estimating CDF's: panel data example

In our panel data example, the disease process can be described in terms of the distribution
of sojourn times in states A and B. Our objective here will be to estimate the cumulative
distribution functions for sojourn times for the covariate levels X=0 and X=1 and to plot the
point estimates along with pointwise standard errors.
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7.1.1 Transition intensity matrices for first passage times

The sojourn time in state A has the same distribution as time to absorption in a process that
starts in A and treats B as an absorbing state. Thus in order to calculate the CDF of interest,
we first need to construct the rate matrix for the process that treats B as an absorbing state.

To do so, we set the rows of the original matrix to zero for those states correspond to the
latent states of B. In this case, these are states (and rows) 3 and 4. We will transform the
estimated rate matrices for an individual with covariate value X=1, and one for X=0. In the
dataset these correspond to, for example, individuals 1 and 200.

> HARHARH AR HRR AR AR R AR A RR AR AR AR R ARG AR AR R BB R RR AR AR R BB A RR AR AR R AR AR
>  #covariate X=0

> rate.firstpassage.AB_O=rates.list[[200]]

> rate.firstpassage.AB_0[3:4,]=0

> rate.firstpassage.AB_0

[,1] [,2] [,3] [,4]
[1,] -2.325464 2.12855 0.1969138 0
[2,] 0.000000 -2.32553 2.3255296 0
[3,] 0.000000 0.00000 0.0000000 0
[4,] 0.000000 0.00000 0.0000000 0

#covariate X=1
rate.firstpassage.AB_l=rates.list[[1]]
rate.firstpassage.AB_1[3:4,]1=0
rate.firstpassage.AB_1

vV VvV Vv Vv

[,1] [,2] (.31 [,4]
[1,] -1.629318 1.491352 0.1379662 0
[2,] 0.000000 -1.629365 1.6293645 0
[3,] 0.000000 0.000000 0.0000000 0
[4,] 0.000000 0.000000 0.0000000 0

>

To obtain estimates of the CDF at different time points, we use the function sub_dist_times.
The start and end arguments refer to the starting and ending times over which we will calculate
the CDF. The alpha argument refers to the initial distribution (here we assume the individual
starts in latent state 1). The states argument refers to the destination state (or states) we are
tracking.

> cdfA.B_O=sub_dist_times(start=.01,end=10,states=3,
alpha=c(1,0,0,0),rate.firstpassage.AB_0)

cdfA.B_1=sub_dist_times(start=.01,end=10,states=3,
alpha=c(1,0,0,0),rate.firstpassage.AB_1)

+ Vv o+

7.1.2 Standard errors of CDF's

We can obtain pointwise delta-method based standard errors using the covariance matrix for
the parameters.

covar=covariance_4state$covariance[1:8,1:8]

num.transitions=dim(rates.setup$transition.codes) [1]

num.params=8

transitions=rates.setup$transition.codes

num.states=4

param.deriv=rates.setup$deriv.arrayl[,,1]
se_AB_0O=se.dist.times(start=.01,end=10,covar[1:8,1:8],rate.firstpassage.AB_0,

V V.V V.V VYV
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+ + + VvV o+ + 4+

vV Vv Vv Vv

states=3,alpha=c(1,0,0,0), param.deriv,num.transitions,

num.params, transitions,

num. states,length.out=1000)
se_AB_l=se.dist.times(start=.01,end=10,covar[1:8,1:8],rate.firstpassage.AB_1,

states=3,alpha=c(1,0,0,0), param.deriv,num.transitions,

num.params, transitions,

num.states, length.out=1000)

se_AB_1_high=se_AB_1+cdfA.B_1$dist
se_AB_1_low=-se_AB_1+cdfA.B_1%$dist
se_AB_0_high=se_AB_0+cdfA.B_0%dist
se_AB_0_low=-se_AB_0+cdfA.B_0%$dist
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plot(cdfA.B_1$times,cdfA.B_1$dist,type="1",
xlab="sojourn time", ylab='"probablility",col="blue",lty=1,lwd=2,
ylim=c(0,1),x1im=c(0,5), main="A to B")
lines(cdfA.B_1$times,se_AB_1_low,type="1",1lwd=2,col="1ightblue",1ty=2)
lines(cdfA.B_1$times,se_AB_1_high,type="1",61wd=2,col="1ightblue",1ty=2)
lines(cdfA.B_O$times,cdfA.B_0$dist,type="1",col="maroon",lty=1,1wd=2,
ylim=c(0,1),x1im=c(0,5))
lines(cdfA.B_0O$times,se_AB_0_low,type="1",1lwd=2,col="pink",1ty=2)
lines(cdfA.B_O$times,se_AB_O_high,type="1",1lwd=2,col="pink",1ty=2)
legend ("bottomright",legend=c ("X=0","X=1"),col=c("maroon", "blue"), lty=1, lwd=2)
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Figure 5: Estimated cumulative distribution function for sojourn times in state A for covariate
levels X=0 and X=1, with standard errors (dotted lines)
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7.2 Estimating hazard functions: informative sampling time example

Finally, we will estimate hazard functions for the informative sample time example for a selected
individual.

> #get estimated rate matrices for each individual
> rates.list=get.rate.matrix.list(current.params=DD0_EM$param[1:7],
+ rate.setup=rates.setup, do.list=T)

23



VVVVYV 4+ 4+ ++4+++++++V +VVVY

HARBRUBRAURRUR AR AR UR BB BB R AR BB RR AR UERR BB RRR BB HH

#plot hazard estimates for individual

HARRRUHRARRRUERRURRRRRRRR R RRUERRRH

hazard=hazard_times(start = 0, end=10, state_of_interest=c(3), at_risk_states=c(1,2),

alpha=c(1,0,0,0), rate=rates.list[[1]], length.out = 1000)

se=se.haz.times(start=0, end=10,
covar=covariance_DDO$covariance([1:7,1:7],
rate=rates.list[[1]],
at_risk_states=c(1,2),
state_of_interest=3,
alpha=c(1,0,0,0),
param.deriv=rates.setup$deriv.arrayl,,1],
num.transitions=dim(rates.setup$transition.codes) [1],
num.params=7,
transitions=rates.setup$transition.codes,
num.states=4,
length.out = 1000)

se.high=hazard$hazard+1.96*se

se.low=hazard$hazard-1.96*se

plot(hazard$times, hazard$haz,type="1",col="red")

lines(hazard$times,se.high,lty=2,col="pink")

lines (hazard$times, se.low, lty=2,col="pink")

hazard$haz
0.15 0.20 0.25 0.30 0.35
| | | |

0.10
l

0.05
l

I I I I I I
0 2 4 6 8 10

hazard$times
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