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Histone modifications are key components of chromatin
packaging but whether they constitute a ‘code’ has been
contested. We believe that the central issue is causality:
are histone modifications responsible for differences
between chromatin states, or are differences in modifi-
cations mostly consequences of dynamic processes,
such as transcription and nucleosome remodeling? We
find that inferences of causality are often based on
correlation and that patterns of some key histone mod-
ifications are more easily explained as consequences of
nucleosome disruption in the presence of histone modi-
fying enzymes. We suggest that the 35-year-old DNA
accessibility paradigm provides a mechanistically sound
basis for understanding the role of nucleosomes in gene
regulation and epigenetic inheritance. Based on this
view, histone modifications and variants contribute to
diversification of a chromatin landscape shaped by dy-
namic processes that are driven primarily by transcrip-
tion and nucleosome remodeling.

An embroidery of chromatin modifications
There is general agreement in the chromatin field (see
Glossary) that histone modifications play important roles
in biological regulation. For example, acetylation of histone
tails neutralizes the positive charge of lysines and pro-
foundly alters chromatin properties [1,2]. Methylation of
particular lysines on histone tails can increase the affinity
of binding modules present on a variety of proteins that are
thought to act by altering chromatin packaging [3]. Ancient
roles for these and other modifications in chromatin trans-
actions are thought to be responsible for the nearly uni-
versal amino acid sequence conservation of unstructured
histone tails [4]. In addition, there are now many examples
in which disruption of the histone modification machinery
is associated with physiological alterations and disease [5-
7], probably owing to their roles in transducing signals
from the cellular environment to the genome [8]. There-
fore, elucidating the mechanisms whereby histone modifi-
cations might be involved in cellular regulation is of central
importance in understanding eukaryotic biology and in
fighting disease. However, the complexity of chromatin,
and the incomplete understanding of dynamic processes,
mean that researchers remain mostly ignorant about how
histone modifications contribute to eukaryotic gene regu-
lation and chromosome packaging.

Over the past decade, the concept of a ‘histone code’,
whereby combinations of modifications lead to important
downstream events [4,9], has been a popular paradigm for
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trying to make sense of histone modification complexity.
This concept has resulted in the adoption of metaphors
such as ‘writers’ and ‘readers’, which are now commonplace
in publications on histone modifications [10]. Additional
terms imply causality, such as ‘activating’ or ‘repressive’
‘marks’ [11]. In our view, these terms are inaccurate and
misleading (Box 1). The question of causality is crucial both
for understanding eukaryotic biology and for therapeutic
intervention, so that the assumption of causality implicit in
these terms needs to be rigorously established. Although in
a handful of cases, histone modifications have been shown
to be involved in particular transcriptional processes [5-7],
the central premise of the histone code, that modifications
are instructive, lacks experimental support. Enzymes that
catalyze histone modifications must ultimately rely on

Glossary

Chromatin: genomic DNA in its packaged form, consisting primarily of
nucleosomes, but also including linker histones, DNA-binding proteins and
other protein complexes directly or indirectly bound to nucleosomes or linker
DNA.

Chromodomain: a protein module that has evolved to recognize a methylated
lysine on a histone tail. For example, the HP1 chromodomain preferentially
binds H3K9me with increasing affinity for mono- to di- to tri-methyl, whereas
the Polycomb chromodomain preferentially binds H3K27me.

Hidden Markov Model: a general machine-learning method that defines ‘states’
(e.g. nine chromatin states), together with probabilities of going from one state
to the same state or to a different state. Statistical methods are used to
calculate these ‘transition probabilities’ to obtain a best fit to the experimental
data.

Histone modification: a covalent post-translational change to a histone
residue, including lysine acetylation, methylation and ubiquitylation, serine
phosphorylation, arginine methylation and many others, each catalyzed by one
or more protein-modifying enzymes, many of which also have non-histone
substrates.

Histone variant: a histone that is not encoded by the canonical histone genes.
Whereas canonical histones are produced during S-phase for rapid incorpora-
tion behind the replication fork, histone variants are generally replication
independent in their assembly and so can replace canonical histones
throughout the cell cycle.

Nucleosome: the repeating subunit of chromatin that consists of an octameric
core comprising two copies each of histones H2A, H2B, H3 and H4 or their
variants, together with the approximately 147 base pairs of DNA that wrap
around the core.

Nucleosome occupancy: the frequency with which a nucleosome is found at a
given position in a population of cells. Incomplete occupancy implies that a
nucleosome is either evicted or slid away from a position to account for its
absence in some cells and presence in others.

Nucleosome position: the average genomic location of the midpoint of a
nucleosome in a population of cells. Highly positioned nucleosomes show little
variation in midpoint location, whereas ‘fuzzy’ nucleosomes are more
randomly positioned.

SET domain: a protein module that catalyzes methylation of lysines on histone
tails and on other proteins, often with high specificity, both in vitro and in vivo.
For example, Set1 specifically catalyzes methylation of H3K4, and Set2 is
specific for H3K36, despite the fact that both enzymes are associated with RNA
Polymerase Il and so are in the same milieu when encountering their H3
nucleosomal substrate.
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Box 1. Histone code semantics

Whether histone modifications constitute a ‘code’ has been the
subject of seemingly endless debates [9]. Codes are central to the
field of cryptography, and the conceptual basis for the Morse code is
understood by the general public. In the Morse code, a telegraph key
converts a piece of information into another representation. For
example, ‘e’ is represented by one dot, and ‘i’ is represented by two
dots. Likewise, the genetic translation machinery converts base
triplets into single amino acids following the genetic code. For
histone modifications to constitute a bona fide code, there must be a
conversion key in which distinct combinations of histone modifica-
tions are converted into defined outputs. However, despite years of
searching, we are aware of no verified example in which this ideal
has been achieved. In addition, unlike the genetic code, where AUG
encodes methionine, there is no comparably succinct, context-
independent key that ties any particular histone modification or
combination thereof to any distinct outcome. Other popular
semantic spin-offs of the histone code also stack up poorly against
the genetic code:

e The genetic code terms ‘transcription’ and ‘translation’ are,
respectively, accurate metaphors for the action of RNA polymer-
ase and for the combined action of ribosomes, tRNAs and
aminoacyl tRNA synthases, which move in a continuous manner
over a string of nucleotide bases.

e The histone code terms ‘writers’ and ‘readers’ are poor metaphors
for what these proteins do. Writers do not write, but only modify
one amino acid residue at a time. Likewise, readers do not read,
they only bind, also one residue at a time. Calling them modifiers
and binders, respectively is accurate and avoids the overstated
metaphor.

e The terms ‘activating’ and ‘repressive’ imply causality, thus
mistaking correlation for causation. As a result of this fallacious
terminology, not-so-exceptional cases in which activating marks
are found to be associated with repression and repressive marks
with activation are thought to be remarkable.

sequence-specific transcription factors or small RNAs for
targeting their action to promoters, enhancers and other
regulatory elements [12]. In addition, although these
enzymes are sometimes required for epigenetic inheri-
tance, the histone marks that they lay down do not self-
propagate [13,14].

Here, we argue that key histone modifications are better
understood as cogs in the machinery that regulates tran-
scriptional elongation, heterochromatic silencing and oth-
er processes. We find that the considerably older DNA
accessibility paradigm [15] provides a more useful descrip-
tion of the dynamic chromatin landscape and is supported
by recent findings.

Do combinations of modifications dictate chromatin
states?

At about the same time that a histone code was proposed to
exist [4], genome-scale methods for mapping histone mod-
ifications were introduced [16,17], and there are now doz-
ens of ‘ChIP-chip’ and ‘ChIP-seq’ studies that profile
histone modifications at an increasingly greater resolution
and genome coverage [18-21]. When coupled with sophis-
ticated computational techniques, these data sets can be
used to predict sites of regulatory elements and the more
data sets that are used, the more robust the predictions
[22]. For example, a machine-learning method called a
‘Hidden Markov Model’ (HMM) was used to predict fea-
tures of the Drosophila chromatin landscape [23]. Based on
patterns of 18 histone modifications mapped genome-wide,
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the model defined nine distinct chromatin states that
segmented the genome into thousands of regions of vari-
able size. For example, transcriptional start sites were
found to be especially abundant in H3K4me2, H3K4me3
and H3K9ac, and other combinations were found to be
enriched in regions of transcriptional elongation, develop-
mental silencing and constitutive heterochromatin. Simi-
lar analyses of mammalian cell data have achieved
comparable success [24-26]. Although impressive, the abil-
ity to predict key attributes of the chromatin landscape
does not necessarily imply that the modifications, either
singly or in combination, are themselves involved in estab-
lishing or maintaining the features that they predict. To
conclude that would be to accept the classic fallacy that
correlation implies causation. However, even if histone
modifications do play functional roles in defining these
features, it is not clear which of the many modifications
that contribute to the computational models are causally
involved, and in which of the many genomic segments the
modifications play an active role. Although the application
of machine-learning algorithms to multiple histone modi-
fication data sets can provide fine distinctions in the chro-
matin landscape, model complexity can obscure
mechanistic understanding. Complex states based on such
abstract models are difficult for biologists to understand
and experimentally test, and so their practical utility
relative to simpler representations of chromatin states
[27] remains to be demonstrated.

Genetic strategies can potentially distinguish cause
from consequence, for example by mutation, deletion or
knockdown of genes encoding histone-modifying enzymes
or by enzyme inhibition using small molecules. However,
because these enzymes can have non-histone substrates,
and it is generally not feasible to distinguish direct from
indirect effects, such approaches are only suggestive at
best. The situation is further complicated by the fact there
are often multiple enzymes that are specific for single
modified residues, such as the MLL and Trithorax families
of SET domain proteins that specifically methylate H3K4
[7]. A more direct approach is to change the modifiable
amino acid. For example, changing the four acetylatable
lysines on the H4 tail to arginine in all possible combina-
tions resulted in gene expression changes [28], consistent
with a role for histone H4 acetylation in modulating gene
expression. However, in most cases, it did not seem to
matter which combinations of the four lysines were chan-
ged to arginine, but rather the total number of lysines
predicted differences in gene expression levels between the
mutants. This finding is consistent with the notion that
neutralization of basic lysine residues by acetylation
reduces interactions of histone tails with neighboring
nucleosomes, thus affecting the physical properties of
nucleosomes [2,29] (Box 2).

Because complex eukaryotes have many copies of each
canonical histone gene, often in multiple locations, it has
not been feasible to replace histones with mutant versions
to test whether their modifications are involved in devel-
opmental processes. Xenopus oocytes represent an excep-
tion, because they can be injected with large amounts of
histone mRNAs, a strategy used by Ng and Gurdon to
investigate the role of chromatin in epigenetic memory



Box 2. What is the relationship between histone acetylation
and gene expression?

Histone modifications do not seem to be essential for transcription,
because budding yeast lacking either the H3 or the H4 N-terminal tail
are viable [64]. Nevertheless, overall acetylation levels are thought
to be important for normal levels of expression [28,65]. Whether
these effects of histone modifications on transcriptional levels
reflect their direct action on the transcriptional machinery, as
opposed to indirect effects, is unknown. Furthermore, the relation-
ship between histone acetylation and gene expression is not clear
cut. For example, in human T-cells, there are as many genes
enriched for histone acetyltransferases (HATs) as for histone
deacetylases (HDACs) and, contrary to expectation, HDACs are not
enriched at epigenetically silenced genes [66]. The dynamic nature
of acetylation—-deacetylation cycles suggests that acetylation of
histone tails functions to permit chromatin transactions transiently
[1]. In Drosophila, acetylated nucleosomes turn over rapidly, are
enriched for ATP-dependent nucleosome remodelers and display
DNAsel hypersensitivity [23], suggesting a role for acetylation—
deacetylation cycles in maintaining accessibility of regulatory DNA.
In this way, a histone mark is neither ‘activating’ nor ‘repressive’, but
rather it facilitates nucleosome dynamics.

during early embryonic development [30]. By injecting an
excess of mRNA encoding the histone 3 replacement vari-
ant, H3.3, carrying a lysine-4 to glutamic acid mutation,
they found that memory was all but lost in mutant embry-
os. Recent advances in genetic engineering technologies
[31] promise to overcome the technical challenge of repla-
cing multiple histone genes, and to enable rigorous testing
of roles of histone modifications and variants in develop-
mental processes.

The chromatin landscape is dynamic

Revolutionary technological advances in genomics over
the past several years have begun to define the chromatin
landscape at single nucleosome resolution, sometimes
with single base-pair precision [18,32]. The picture that
is emerging from these studies is that the chromatin
landscape is more complex than the simple traditional
concept of ‘open’ and ‘closed’ chromatin implies. In addi-
tion, progress in understanding the action of enzymes that
act on chromatin, including ATP-dependent nucleosome
remodelers and RNA polymerases, underscores the im-
portance of dynamic processes in shaping the chromatin
landscape. Much of this progress comes from studies of
budding yeast, where genetic manipulability and a simple
small genome has made it a favorite model system for
asking mechanistic questions about the relationship be-
tween chromatin and transcription, and similar advan-
tages of fission yeast have led the way in understanding
silencing mechanisms [33]. Although yeast chromatin
is gene rich, and might not be an ideal model for higher-
order chromatin structure, these findings in yeast have
been generalized to multicellular eukaryotes, including
humans. Similar to patterns of ‘active’ histone modifica-
tion, distinct patterns of nucleosome occupancy and posi-
tioning are characteristic of transcriptional activity and
provide highly detailed landscapes that can be used to
predict regulatory elements [34-36] (Figure 1). Therefore,
post-translational modifications are superimposed upon a
complex nucleosomal landscape, so that a full understand-
ing of how histone modification patterns are generated
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Figure 1. Histone modifications superimposed on a complex and dynamic
nucleosome landscape. Cartoon depiction of nucleosome occupancy (a) and
positioning (b), where parallel lines represent ten precisely aligned genomes and
nucleosomes are shown as grey balls. Reduced occupancy implies nucleosome
turnover in a homogeneous population of cells [61], whereas differential
positioning implies regulated nucleosome mobility [62]. (¢) Examples of histone
modifications that are enriched over transcription units, showing gradients for
H3K4me, which is enriched near transcriptional start sites, and for H3K36me,
which becomes enriched farther from the 5 ends of genes [37]. H3K79me is
relatively uniform over gene bodies. The cartoon below shows average patterns of
occupancy and positioning of the type seen in genic regions, where occupancy and
positioning are typically high around 5 ends of genes and positioning drops off
farther downstream of the transcriptional start site (TSS). Adapted from [34].

will require knowing the availability of the target amino
acid at the time that it is being acted upon by a modifying
enzyme. Although knowledge of these states is far from
complete, recent high-resolution nucleosome mapping
studies have uncovered some general principles.

One principle that has emerged from mapping nucleo-
somes is that their positioning in and around transcription
units varies depending on their distances from 5 and 3’
ends of genes (Figure 1). There is an ongoing debate as to
the extent to which positioning is determined directly by
sequence or by the action of ATP-dependent remodelers
and RNA polymerase [34], with profound implications for
the generation of histone modification patterns. For his-
tone modifications that change with alterations in gene
activity, correlations between their patterns and the extent
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of nucleosome positioning might simply be consequences of
nucleosome disruption during transcription and remodel-
ing. For example, patterns of mono-, di- and tri-methyla-
tion of H3K4 are most easily understood as resulting from
tethering of the COMPASS histone methyltransferase
complex to RNA polymerase during active transcription
[37,38] (Box 3). In this way, the positioning of a nucleosome
over a site represents the degree to which it resists being
mobilized, either passively by sequence or actively by
transcriptional or remodeling processes. Another principle
is that nucleosome occupancy at a site can differ over the
entire range, from sites that are so depleted of nucleosomes
that common mapping methods cannot detect them to sites
that appear to be fully occupied (Figure 1). In a homoge-
neous population of cells, partial occupancy implies that
nucleosomes are evicted and reassembled, because a posi-
tion that is partially occupied by a nucleosome must be
occupied in some genomes in a population and unoccupied
in others. Thus, the degree of occupancy at a position can be
interpreted in terms of nucleosome stability, where stable
nucleosomes show full occupancy and highly unstable

Box 3. Transcription-coupled generation of histone modification
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nucleosomes showing depletion. In support of this inter-
pretation, recent studies indicate that many so-called ‘nu-
cleosome-free’ regions are probably partially or transiently
occupied in vivo, but the histone cores are lost during
standard chromatin preparation procedures [39,40]. Thus,
nucleosome positioning and occupancy are measures of
nucleosome mobility and stability, respectively.

DNA accessibility as a paradigm for chromatin
regulation

Nucleosomes block access of many DNA-binding proteins
to their sites of action, and accessible regions are those that
regulate gene expression, initiation of DNA replication
origins and other DNA transactions. This concept was
put forward by Weintraub and Groudine 35 years ago in
their introduction of DNasel hypersensitivity mapping
[15], which is still a widely used method for determining
sites of heightened steady-state accessibility of DNA to
strand cleavage [41,42]. More recent high resolution nu-
cleosome mapping studies provide unequivocal verification
of this seminal concept. For example, the yeast PHO5

patterns

In organisms as diverse as yeast and humans, gene activity is
associated with gradients of histone modifications that show a 5'-to-3’
polarity [37]. For example, all three levels of H3K4 methylation
gradually decrease over gene bodies, with the trimethylation gradient
closest to the promoter, followed by dimethylation enrichment,
followed by the monomethylation enrichment. An opposite gradient
of enrichment is seen for H3K36 methylation. These successive

g ¢ ¢ &

patterns and gradients can be explained by the association of the Set1
histone lysine methyltransferase with the Ser-5 phosphorylated
initiation form of the RNA Pol Il C-terminal domain [38] (Figure 1).
Likewise, the Set2 protein associates with the Ser-2 phosphorylated
elongating form of the RNA Pol Il CTD. H3K4me and H3K36me are
examples of conserved modifications that are highly correlated with
active transcription, but they are not necessarily ‘activating’.

H3K36me

Tri- Di-
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Figure I. A model for the transcription-coupled generation of histone modification patterns. In the cartoon, the H3 tail (squiggly line) is methylated by either Set1/
COMPASS (magenta flags) at lysine-4 or by Set2 at lysine-36 (cyan flags). In this way, the association of a modifying enzyme with a transiting RNA polymerase exposes
histone tails to the enzyme while it disrupts each nucleosome (grey ball) that it encounters. This process results in distinct modification patterns that decrease with

distance from the 5’ end of an actively transcribed gene [37].
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promoter is occupied by nucleosomes in the off state, and
these nucleosomes are evicted upon induction by phos-
phate [43,44]. Blocking of promoters by nucleosomes is
also a hallmark of gene silencing in cancer. For instance,
the promoter of the MLHI mismatch repair gene is occu-
pied by nucleosomes when silenced in various cancers, but
becomes reactivated and unblocked following treatment

Trends in Genetics October 2011, Vol. 27, No. 10

with a drug that causes loss of DNA methylation [45]. It
does not appear that loss of DNA methylation by itself is
sufficient to reactivate gene expression, but rather it is the
resulting eviction of nucleosomes that enables transcrip-
tion factors to access the MLH1 promoter for it to function.
In this way, DNA methylation is thought to help stabilize
nucleosomes and thus maintain low accessibility of pro-
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Figure 2. Histone tail modifications do not recruit chromodomain proteins, but instead are needed for them to bridge neighboring nucleosomes. (a) Closely related
Drosophila heterochromatin-associated protein 1 (HP1) paralogs display different localization patterns. HP1a localizes to the heterochromatic chromocenter of the giant
salivary gland polytene nucleus [67], whereas HP1b is found at both heterochromatin and euchromatin and HP1c is found at transcriptionally active sites within
euchromatin [51,68]. Swap experiments showed that the ‘hinge’ region and the chromoshadow domain impart targeting specificity, whereas swapping only the
chromodomain had no effect. (b) Drosophila HP1 is targeted by protein—protein interactions. Platero et al. [52] replaced the chromodomain of HP1 with that of Polycomb
protein, and used polytene chromosome immunolocalizations to assay the localization of both the chimeric HP1/Polycomb protein and both endogenous proteins. The
chimera localized to both the chromocenter and Polycomb binding sites (red bars on euchromatic arms). Remarkably, both HP1 and Polycomb endogenous proteins also
became localized to both classes of sites, despite the fact that HP1 sites are marked by H3K9me and Polycomb sites by H3K27me, which were later shown to be the specific
moieties bound by their chromodomains. (¢) In vitro studies of Schizosaccharomyces pombe HP1 (Swi6) indicate that it forms dimers that bridge pairs of methylated H3K9
residues on nearby nucleosomes. Adapted from [53].
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Figure 3. Complex histone modification patterns correspond to simple measurements of nucleosome dynamics and occupancy. A Hidden Markov Model (HMM) was used
to define nine chromatin states based on 18 histone modifications [23]. For example, state 1 (red bar) was most frequently found over promoters of active genes, state 2
over exons and state 3 over introns. States 1 and 3 were also enriched for ATP-dependent nucleosome remodeling proteins (ISWI, NURF301 and dMi-2), for transcriptional
elongation factors (MRG15 and SPT16), and for nucleosome turnover, both as measured by H3.3 histone variant patterns and by CATCH-IT, a direct measure of nucleosome
turnover kinetics [14]. States 1 and 3 were also enriched for discrete sites of DNasel hypersensitivity [42]. By contrast, Cohesin and ASH1, which are more generally
associated with transcriptionally active chromatin, displayed a much broader distribution. Reproduced, with permission, from [23].

moters and other functional elements. DNA methylation
can change the physical properties of nucleosomes [46],
although the molecular basis for enhanced stability is
unknown.

DNA methylation is maintained epigenetically by semi-
conservative replication, which results in long-term stabi-
lization of nucleosomes and the consequent inaccessibility
of regulatory elements, an important mechanism for si-
lencing genomic parasites, such as transposable elements
[47]. It is likely that the so-called ‘repressive’ modifications
also stabilize nucleosomes, although the mechanisms
whereby these marks act and how they are maintained
through development is unclear. Constitutively repressive
chromatin is mediated by the heterochromatin-associated
protein 1 (HP1), a dimer with ‘chromodomains’, each of
which binds H3K9me3 with micromolar affinity [48]. It is
often asserted that modification of a histone recruits pro-
teins that contain binding modules, such as chromodo-
mains, but given the weak binding affinities of modules
for modified residues, it is likely that modifications only
help to stabilize assembled complexes [48-50]. In fact,
targeting of chromodomain-containing proteins was found
not to depend on chromodomain specificity. For example,
only HPla (=HP1), not its two closely related paralogs
within the Drosophila genome, localizes to heterochroma-
tin [51] (Figure 2a). HP1b localizes throughout the genome,
whereas HP1c localizes to regions of active chromatin, with
localization specificity residing outside of the chromodo-
main. Furthermore, targeting of both HP1 and the Poly-
comb chromodomain-containing protein depend on
protein—protein interactions, rather than on specific his-
tone modifications [52] (Figure 2b). An attractive model for
HP1 action in the cell is that it helps to stabilize nucleo-
somes and so favor heterochromatin formation by bridging
nearby H3 tails that carry this modification [53]
(Figure 2c). Nucleosome stabilization might also explain
the presence of HP1 in bodies of active genes [54,55], where
it would help prevent the loss of nucleosomes that are
disrupted during RNA polymerase transit. HP1 binds in
vivo with a residence time of a few minutes [56,57], which
might be long enough to reduce nucleosome eviction and
maintain silent heterochromatin in a compacted state.
Compaction is also thought to underlie developmental
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silencing [58,59], perhaps by preventing nucleosome evic-
tion [14]. There might be analogous examples in which
active chromatin is maintained by the binding of modifica-
tion-specific modules, and indeed there are many examples
of such modules on proteins associated with active chro-
matin, including bromodomains, PhD fingers, Tudor
domains and others [60]. It seems probable that the affinity
of a binding module for a modification is a factor in the
modulation of nucleosome dynamics. However, the molec-
ular mechanisms whereby binding of these modules to
modifications can affect gene expression are not clear.

Because there are so many different modules on various
key chromatin regulators, it is difficult to decide which
modifications and which interactions might be responsible
for any downstream effect. It might be that each such
interaction has a partial effect on the stability or mobility
of a nucleosome, and much of the complexity of the system
is the cumulative result of many such interactions, involv-
ing nucleosome remodelers, RNA polymerase, histone cha-
perones, histone modifying enzymes and chromatin-
associated proteins [61].

Whether histone modification patterns primarily reflect
the action of dynamic processes that alter DNA accessibili-
ty is unknown. Nevertheless, it is intriguing that ‘active’
modification patterns revealed by applying an HMM to
data from 18 histone modifications corresponded closely to
patterns obtained by mapping of ATP-dependent nucleo-
some remodelers, DNAsel hypersensitivity sites and his-
tone turnover [23] (Figure 3). It is unclear to us whether
such a complex model based on combinations of modifica-
tions is better able to predict regulatory elements than
what could be obtained simply by using DNA accessibility
or turnover data. Although we are excited by the promise of
improved epigenomic mapping technologies for under-
standing biological regulation, it remains to be determined
which chromatin features will be the most informative.

Concluding remarks

Describing histone modifications in terms of information or
language suggests overwhelming complexity and leaves
mechanistic questions unaddressed. By contrast, DNA
accessibility provides a simple testable paradigm for un-
derstanding the role of nucleosomes in gene regulatory



processes. The view that emerges is that dynamic process-
es affecting nucleosomes result in patterns of histone
modifications, which in turn affect the physical properties
of nucleosomes and help to maintain the active or silent
state of chromatin [61,62]. Such dynamic processes include
not only transcription factor binding, RNA polymerase
elongation and nucleosome remodeling, but also the tar-
geting action of long non-coding RNAs [63]. A fuller under-
standing of how these dynamic processes result in histone
modification patterns will be needed to evaluate the func-
tional significance of histone modifications in gene expres-
sion and other chromatin-associated processes.
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