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Introduction

What is Functional Data?

What are the most obvious features of these data?

quantity

frequency (resolution)

similarity

smoothness
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Introduction

What Is Functional Data?
Example: 20 replications, 1401 observations within replications, 2
dimensions

Immediate characteristics:

High-frequency
measurements

Smooth, but complex,
processes

Repeated observations

Multiple dimensions

Let’s plot ‘y’ against ‘x’
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Introduction

Handwriting Data
Measures of position of nib of a pen writing "fda". 20 replications,
measurements taken at 200 hertz.
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Introduction

What Is Functional Data?
Functional data is multivariate data with an ordering on the

dimensions. (Müller, (2006))

Key assumption is smoothness:

yij = xi (tij) + εij

with t in a continuum (usually time), and xi (t) smooth

Functional data = the functions xi (t).

Highest quality data from monitoring equipment

Optical tracking equipment (eg handwriting data, but also for
physiology, motor control,...)

Electrical measurements (EKG, EEG and others)

Spectral measurements (astronomy, materials sciences)

But, noisier and less frequent data can also be used.
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Introduction

Weather In Vancouver
Measure of climate: daily precipitation and temperature in
Vancouver, BC averaged over 40 years.

Temperature is noisy: precipitation even more so, but a smooth
9 / 181

Introduction

Canadian Weather Data
Average daily temperature and precipitation records in 35 weather
stations across Canada (classical and much over-used)

Temperature Precipitation

Interest is in variation in and relationships between smooth,
underlying processes.
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Introduction

Medfly Data
Records of number of eggs laid by Mediterranean Fruit Fly
(Ceratitis capitata) in each of 25 days (courtesy of H.-G. Müller).

Total of 50 flies

Assume eggcount
measurements relate to
smooth process governing
fertility

Also record total lifespan of
each fly.

Would like to understand
how fecundity at each part
of lifetime influences
lifespan.
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Introduction

What Are We Interested In?

Representations of distribution of functions

mean
variation
covariation

Relationships of functional data to

covariates
responses
other functions

Relationships between derivatives of functions.

Timing of events in functions.

12 / 181
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Multilevel Functional Principal Component Analysis

Introduction

SHHS: Sleep Heart Health Study
More than 3, 000 subjects, two visits per subject
Yij(t): normalized EEG δ−power series
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0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

subject 1 visit 2

subject 2 visit 1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

subject 2 visit 2

subject 3 visit 1

0 1 2 3 4 5 6 7 8

time (hours)0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

subject 3 visit 2

0 1 2 3 4 5 6 7 8

time (hours)

5 / 27

6

cdi
Rectangle

cdi
Rectangle



FDA for accelerometry data

Introduction

Accelerometry data
Activity Count Data: three dimensional time series per subject
1-minute resolution: 10080 time points in 7 days

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
10

00
20

00

P10002 day 1

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
10

00
20

00

P10002 day 2

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
10

00
20

00

P10002 day 3

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
10

00
20

00

P10002 day 4

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
10

00
20

00

P10002 day 5

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
10

00
20

00

P10002 day 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
10

00
20

00

P10002 day 7

5 / 21

7

cdi
Rectangle

cdi
Rectangle



Introduction

Weather In Vancouver
Measure of climate: daily precipitation and temperature in
Vancouver, BC averaged over 40 years.

Temperature is noisy: precipitation even more so, but a smooth
9 / 181

Introduction

Canadian Weather Data
Average daily temperature and precipitation records in 35 weather
stations across Canada (classical and much over-used)

Temperature Precipitation

Interest is in variation in and relationships between smooth,
underlying processes.

10 / 181

Introduction

Medfly Data
Records of number of eggs laid by Mediterranean Fruit Fly
(Ceratitis capitata) in each of 25 days (courtesy of H.-G. Müller).

Total of 50 flies

Assume eggcount
measurements relate to
smooth process governing
fertility

Also record total lifespan of
each fly.

Would like to understand
how fecundity at each part
of lifetime influences
lifespan.

11 / 181

Introduction

What Are We Interested In?

Representations of distribution of functions

mean
variation
covariation

Relationships of functional data to

covariates
responses
other functions

Relationships between derivatives of functions.

Timing of events in functions.

12 / 181

8

cdi
Rectangle



Introduction

What Are The Challenges?

Estimation of functional data from noisy, discrete observations.

Numerical representation of infinite-dimensional objects

Representation of variation in infinite dimensions.

Description of statistical relationships between infinite
dimensional objects.

n < p = ∞, and use of smoothness.

Measures of variation in estimates.

13 / 181

Representing Functional Data

Representing Functional Data
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Representing Functional Data

From Discrete to Functional Data

Represent data recorded at discrete times as a continuous function
in order to

Medfly record 1 Allow evaluation of record
at any time point
(especially if observation
times are not the same
across records).

Evaluate rates of change.

Reduce noise.

Allow registration onto a
common time-scale.

15 / 181

Representing Functional Data

From Discrete to Functional Data
Two problems/two methods

1 Representing non-parametric continuous-time functions.
Basis-expansion methods:

x(t) =
K∑

i=1

φi (t)ci

for pre-defined φi (t) and coefficients ci .
Several basis systems available: focus on Fourier and B-splines

2 Reducing noise in measurements
Smoothing penalties:

c = argmin
n∑

i=1

(yi − x(ti ))
2
+ λ

∫
[Lx(t)]

2
dt

Lx(t) measures “roughness” of x

λ a “smoothing parameter” that trades-off fit to the yi and
roughness; must be chosen.

16 / 181
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Representing Functional Data: Basis Expansions

1. Basis Expansions
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Representing Functional Data: Basis Expansions

Basis Expansions
Consider only one record

yi = x(ti ) + εi

represent x(t) as

x(t) =

K∑

j=1

cjφj(t) = Φ(t)c

We say Φ(t) is a basis system for x .

Terms for curvature in linear regression

yi = β0 + β1ti + β2t
2

i + β3t
3

i + · · · + εi

implies
x(t) = β0 + β1t + β2t

2 + β3t
3 + · · ·

Polynomials are unstable; Fourier bases and B-splines will be more
useful.

18 / 181

Representing Functional Data: Basis Expansions

The Fourier Basis
basis functions are sine and cosine functions of increasing
frequency:

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . .

sin(mωt), cos(mωt), . . .

constant ω = 2π/P defines the period P of oscillation of the
first sine/cosine pair.

19 / 181

Representing Functional Data: Basis Expansions

Advantages of Fourier Bases

Only alternative to polynomials until the middle of the 20th
century

Excellent computational properties, especially if the
observations are equally spaced.

Natural for describing periodic data, such as the annual
weather cycle

BUT representations are periodic; this can be a problem if the data
are not.

Fourier basis is first choice in many fields, eg signal processing.

20 / 181
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Representing Functional Data: Basis Expansions

B-spline Bases

Splines are polynomial segments joined end-to-end.

Segments are constrained to be smooth at the joins.

The points at which the segments join are called knots.

System defined by

The order m (order = degree+1) of the polynomial
the location of the knots.

Bsplines are a particularly useful means of incorporating the
constraints.

See de Boor, 2001, “A Practical Guide to Splines”, Springer.

21 / 181

Representing Functional Data: Basis Expansions

Splines
Medfly data with knots every 3 days.

Splines of order 1: piecewise constant, discontinuous.

22 / 181

Representing Functional Data: Basis Expansions

Splines
Medfly data with knots every 3 days.

Splines of order 2: piecewise linear, continuous
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Representing Functional Data: Basis Expansions

Splines
Medfly data with knots every 3 days.

Splines of order 3: piecewise quadratic, continuous derivatives

24 / 181
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Representing Functional Data: Basis Expansions

Splines
Medfly data with knots every 3 days.

Splines of order 4: piecewise cubic, continuous 2nd derivatives

25 / 181

Representing Functional Data: Basis Expansions

An illustration of basis expansions for B-splines

Sum of scaled basis functions results in fit.
26 / 181

Representing Functional Data: Basis Expansions

Properties of B-splines

Number of basis functions:

order + number interior knots

Order m splines: derivatives up to m − 2 are continuous.

Support on m adjacent intervals – highly sparse design matrix.

Advice

Flexibility comes from knots; derivatives from order.

Theoretical justification (later) for knots at observation times.

Frequently, fewer knots will do just as well (approximation
properties can be formalized).

27 / 181

Representing Functional Data: Basis Expansions

Other Bases in fda Library

Constant φ(t) = 1, the simplest of all.

Monomial 1, x , x2, x3, . . . , ..., mostly for legacy reasons.

Power tλ1 , tλ2 , tλ3 , . . ., powers are distinct but not
necessarily integers or positive.

Exponential eλ1t , eλ2t , eλ3t , . . .

Other possible bases to represent x(t):

Wavelets especially for sharp, local features (not in fda)

Empirical functional Principal Components (special topics)

28 / 181
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Representing Functional Data: Smoothing Penalties

2. Smoothing Penalties
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Representing Functional Data: Smoothing Penalties

Ordinary Least-Squares Estimates

Assume we have observations for a single curve

yi = x(ti ) + ε

and we want to estimate

x(t) ≈
K∑

j=1

cjφj(t)

Minimize the sum of squared errors:

SSE =

n∑

i=1

(yi − x(ti ))
2 =

n∑

i=1

(yi − Φ(ti )c)
2

This is just linear regression!

30 / 181

Representing Functional Data: Smoothing Penalties

Linear Regression on Basis Functions

If the N by K matrix Φ contains the values φj(tk), and y is
the vector (y1, . . . , yN), we can write

SSE (c) = (y − Φc)T (y − Φc)

The error sum of squares is minimized by the ordinary least

squares estimate

ĉ =
(
Φ

T
Φ

)−1

Φ
Ty

Then we have the estimate

x̂(t) = Φ(t)ĉ = Φ(t)
(
Φ

T
Φ

)−1

Φ
Ty

31 / 181

Representing Functional Data: Smoothing Penalties

Smoothing Penalties

Problem: how to choose a basis? Large affect on results.

Finesse this by specifying a very rich basis, but then imposing
smoothness.

In particular, add a penalty to the least-squares criterion:

PENSSE =

n∑

i=1

(yi − x(ti ))
2 + λJ[x ]

J[x ] measures “roughness” of x .

λ represents a continuous tuning parameter (to be chosen):

λ ↑ ∞: roughness increasingly penalized ,x(t) becomes
smooth.
λ ↓ 0: penalty reduces, x(t) fits data better.

32 / 181
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ĉ =
(
Φ

T
Φ

)−1

Φ
Ty

Then we have the estimate

x̂(t) = Φ(t)ĉ = Φ(t)
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Representing Functional Data: Smoothing Penalties

What do we mean by smoothness?
Some things are fairly clearly smooth:

constants

straight lines

What we really want to do is eliminate small “wiggles” in the data
while retaining the right shape

Too smooth Too rough Just right
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Representing Functional Data: Smoothing Penalties

The D Operator

We use the notation that for a function x(t),

Dx(t) =
d

dt
x(t)

We can also define further derivatives in terms of powers of D:

D2x(t) =
d2

dt2
x(t), . . . ,Dkx(t) =

dk

dtk
x(t), . . .

Dx(t) is the instantaneous slope of x(t); D2x(t) is its
curvature.

We measure the size of the curvature for all of x by

J2[x ] =

∫ [
D2x(t)

]2
dt
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Representing Functional Data: Smoothing Penalties

The Smoothing Spline Theorem

Consider the “usual” penalized squared error:

PENSSEλ(x) =
∑

(yi − x(ti ))
2 + λ

∫ [
D2x(t)

]2
dt

The function x(t) that minimizes PENSSEλ(x) is

a spline function of order 4 (piecewise cubic)
with a knot at each sample point ti

Cubic B-splines are exact; other systems will approximate solution
as close as desired.
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Representing Functional Data: Smoothing Penalties

Calculating the Penalized Fit

When x(t) = Φ(t)c, we have that

∫ [
D2x(t)

]2
dt =

∫
cT

[
D2Φ(t)

] [
D2Φ(t)

]T
cdt = cTR2c

[R2]jk =
∫

[D2φj(t)][D
2φk(t)]dt is the penalty matrix.

The penalized least squares estimate for c is n

ĉ =
[
Φ

T
Φ + λR2

]−1

Φ
Ty

This is still a linear smoother:

ŷ = Φ

[
Φ

T
Φ + λR2

]−1

Φ
Ty = S(λ)y
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Representing Functional Data: Smoothing Penalties

More General Smoothing Penalties

D2x(t) is only one way to measure the roughness of x .

If we were interested in D2x(t), we might penalize D4x(t).

What about the weather data? We know temperature is
periodic, and not very different from a sinusoid.

The Harmonic acceleration of x is

Lx = ω2Dx + D3x

and L cos(ωt) = 0 = L sin(ωt).

We can measure departures from a sinusoid by

JL[x ] =

∫
[Lx(t)]2 dt

37 / 181

Representing Functional Data: Smoothing Penalties

A Very General Notion

We can be even more general and allow roughness penalties to use
any linear differential operator

Lx(t) =

m∑

k=1

αk(t)Dkx(t)

Then x is “smooth” if Lx(t) = 0.

We will see later on that we can even ask the data to tell us what
should be smooth.

However, we will rarely need to use anything so sophisticated.

38 / 181

Representing Functional Data: Smoothing Penalties

Linear Smooths and Degrees of Freedom

In least squares fitting, the degrees of freedom used to smooth
the data is exactly K , the number of basis functions

In penalized smoothing, we can have K > n.

The smoothing penalty reduces the flexibility of the smooth

The degrees of freedom are controlled by λ. A natural
measure turns out to be

df (λ) = trace [S(λ)] , S(λ) = Φ

[
Φ

T
Φ + λRL

]−1

Φ
T

Medfly data fit with 25 basis functions, λ = e4 resulting in
df = 4.37.
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Representing Functional Data: Smoothing Penalties

Choosing Smoothing Parameters: Cross Validation
There are a number of data-driven methods for choosing smoothing
parameters.

Ordinary Cross Validation: leave one point out and see how
well you can predict it:

OCV(λ) =
1

n

∑ (
yi − x−i

λ (ti )
)2

=
1

n

∑ (yi − xλ(ti ))
2

(1 − S(λ)ii )2

Generalized Cross Validation tends to smooth more:

GCV(λ) =

∑
(yi − xλ(ti ))

2

[trace(I − S(λ))]2

will be used here.

Other possibilities: AIC, BIC,...

40 / 181
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Representing Functional Data: Smoothing Penalties

Generalized Cross Validation
Use a grid search, best to do this for log(λ)

Smooth Rough

Right GCV

41 / 181

Representing Functional Data: Smoothing Penalties

Alternatives: Smoothing and Mixed Models

Connection between the smoothing criterion for c:

PENSSE(λ) =

n∑

i=1

(yi − cTΦ(ti ))
2 + λcTRc

and negative log likelihood if c ∼ N(0, τ2R−1):

log L(c|y) =
1

2σ2

n∑

i=1

(yi − cTΦ(ti ))
2 +

1

2τ2
cTRc

(note that R is singular – must use generalized inverse).

Suggests using ReML estimates for σ2 and τ2 in place of λ.

This can be carried further in FDA; see references.
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Representing Functional Data: Smoothing Penalties

Alternatives: Local Polynomial Regression

Alternative to basis expansions.

Perform polynomial regression, but only near point of interest

(β̂0(t), β̂1(t)) = argmin
β0,β1

N∑

i=1

(yi − β0 − β1(t − ti ))
2 K

(
t − ti

λ

)

Weights (yi , ti ) by distance from t

Estimate x̂(t) = β̂0(t), D̂x(t) = β̂1(t).

λ is bandwidth: how far away can (yi , ti ) have influence?

43 / 181

Representing Functional Data: Smoothing Penalties

Summary

1 Basis Expansions
xi (t) = Φ(t)ci

Good basis systems approximate any (sufficiently smooth)
function arbitrarily well.
Fourier bases useful for periodic data.
B-splines make efficient, flexible generic choice.

2 Smoothing Penalties used to penalize roughness of result
Lx(t) = 0 defines what is “smooth”.
Commonly Lx = D2x ⇒ straight lines are smooth.
Alternative: Lx = D3x + wDx ⇒ sinusoids are smooth.
Departures from smoothness traded off against fit to data.
GCV used to decide on trade off; other possibilities available.

These tools will be used throughout the rest of FDA.

Once estimated, we will treat smooths as fixed, observed data
(but see comments at end).
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Representing Functional Data: Smoothing Penalties
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Exploratory Data Analysis

Exploratory Data Analysis

45 / 181

Exploratory Data Analysis

Mean and Variance
Summary statistics:

mean x̄(t) = 1

n

∑
xi (t)

covariance
σ(s, t) = cov(x(s), x(t)) = 1

n

∑
(xi (s) − x̄(s))(xi (t) − x̄(t))

Medfly Data:

46 / 181

Exploratory Data Analysis

Correlation

ρ(s, t) =
σ(s, t)√

σ(s, s)
√

σ(t, t)

From multivariate to functional data: turn subscripts j , k into
arguments s, t.

47 / 181

Exploratory Data Analysis

Functional PCA

Instead of covariance matrix Σ, we have a surface σ(s, t).

Would like a low-dimensional summary/interpretation.

Multivariate PCA, use Eigen-decomposition:

Σ = UTDU =

p∑

j=1

djuju
T
j

and uT
i uj = I (i = j).

For functions: use Karhunen-Loève decomposition:

σ(s, t) =
∞∑

j=1

djξj(s)ξj(t)

for
∫

ξi (t)ξj(t)dt = I (i = j)

48 / 181

31

cdi
Rectangle



Exploratory Data Analysis

Exploratory Data Analysis

45 / 181

Exploratory Data Analysis

Mean and Variance
Summary statistics:

mean x̄(t) = 1

n

∑
xi (t)

covariance
σ(s, t) = cov(x(s), x(t)) = 1

n

∑
(xi (s) − x̄(s))(xi (t) − x̄(t))

Medfly Data:

46 / 181

Exploratory Data Analysis

Correlation

ρ(s, t) =
σ(s, t)√

σ(s, s)
√

σ(t, t)

From multivariate to functional data: turn subscripts j , k into
arguments s, t.

47 / 181

Exploratory Data Analysis

Functional PCA

Instead of covariance matrix Σ, we have a surface σ(s, t).

Would like a low-dimensional summary/interpretation.

Multivariate PCA, use Eigen-decomposition:

Σ = UTDU =

p∑

j=1

djuju
T
j

and uT
i uj = I (i = j).

For functions: use Karhunen-Loève decomposition:

σ(s, t) =
∞∑

j=1

djξj(s)ξj(t)

for
∫

ξi (t)ξj(t)dt = I (i = j)

48 / 181

32

cdi
Rectangle



Exploratory Data Analysis

Exploratory Data Analysis

45 / 181

Exploratory Data Analysis

Mean and Variance
Summary statistics:

mean x̄(t) = 1

n

∑
xi (t)

covariance
σ(s, t) = cov(x(s), x(t)) = 1

n

∑
(xi (s) − x̄(s))(xi (t) − x̄(t))

Medfly Data:

46 / 181

Exploratory Data Analysis

Correlation

ρ(s, t) =
σ(s, t)√

σ(s, s)
√

σ(t, t)

From multivariate to functional data: turn subscripts j , k into
arguments s, t.

47 / 181

Exploratory Data Analysis

Functional PCA

Instead of covariance matrix Σ, we have a surface σ(s, t).

Would like a low-dimensional summary/interpretation.

Multivariate PCA, use Eigen-decomposition:

Σ = UTDU =

p∑

j=1

djuju
T
j

and uT
i uj = I (i = j).

For functions: use Karhunen-Loève decomposition:

σ(s, t) =
∞∑

j=1

djξj(s)ξj(t)

for
∫

ξi (t)ξj(t)dt = I (i = j)

48 / 181

33

cdi
Rectangle



Exploratory Data Analysis

Exploratory Data Analysis

45 / 181

Exploratory Data Analysis

Mean and Variance
Summary statistics:

mean x̄(t) = 1

n

∑
xi (t)

covariance
σ(s, t) = cov(x(s), x(t)) = 1

n

∑
(xi (s) − x̄(s))(xi (t) − x̄(t))

Medfly Data:

46 / 181

Exploratory Data Analysis

Correlation

ρ(s, t) =
σ(s, t)√

σ(s, s)
√

σ(t, t)

From multivariate to functional data: turn subscripts j , k into
arguments s, t.

47 / 181

Exploratory Data Analysis

Functional PCA

Instead of covariance matrix Σ, we have a surface σ(s, t).

Would like a low-dimensional summary/interpretation.

Multivariate PCA, use Eigen-decomposition:

Σ = UTDU =

p∑

j=1

djuju
T
j

and uT
i uj = I (i = j).

For functions: use Karhunen-Loève decomposition:

σ(s, t) =
∞∑

j=1

djξj(s)ξj(t)

for
∫

ξi (t)ξj(t)dt = I (i = j)

48 / 181

34

cdi
Rectangle



Exploratory Data Analysis

PCA and Karhunen-Loève

σ(s, t) =
∞∑

i=1

diξi (s)ξi (t)

The ξi (t) maximize Var
[∫

ξi (t)xj(t)dt
]
.

di = Var
[∫

ξi (t)xj(t)dt
]

di/
∑

di is proportion of variance explained

Principal component scores are

fij =

∫
ξj(t)[xi (t) − x̄(t)]dt

Reconstruction of xi (t):

xi (t) = x̄(t) +

∞∑

j=1

fijξj(t)

49 / 181

Exploratory Data Analysis

functional Principal Components Analysis

fPCA of Medfly data

Scree Plot Components

Usual multivariate methods: choose # components based on
percent variance explained, screeplot, or information criterion.

50 / 181

Exploratory Data Analysis

functional Principal Components Analysis
Interpretation often aided by plotting x̄(t) ± 2

√
diξi (t)

PC1 = overall fecundity
PC2 = beginning versus end
PC3 = middle versus ends

51 / 181

Exploratory Data Analysis

Derivatives

Derivatives

Component 1

PCs

Component 2

Often useful to
examine a rate
of change.

Examine first
derivative of
medfly data.

Variation
divides into fast
or slow either
early or late.
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Exploratory Data Analysis
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Exploratory Data Analysis

PCA and Karhunen-Loève

σ(s, t) =
∞∑

i=1

diξi (s)ξi (t)

The ξi (t) maximize Var
[∫

ξi (t)xj(t)dt
]
.
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di/
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