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Introduction

What Is Functional Data?

Functional data is multivariate data with an ordering on the
dimensions. (Miiller, (2006))

Key assumption is smoothness:

yij = xi(tij) + €

with ¢ in a continuum (usually time), and x;(t) smooth

Functional data = the functions x;(t).

m Optical tracking equipment (eg handwriting data, but also for
physiology, motor control,...)

m Electrical measurements (EKG, EEG and others)
m Spectral measurements (astronomy, materials sciences)

But, noisier and less frequent data can also be used.
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Introduction

Canadian Weather Data

Average daily temperature and precipitation records in 35 weather
stations across Canada

Temperature Precipitation

value
value

T T T T T T
0 100 200 300 0 100 200 300
time time

Interest is in variation in and relationships between smooth,
underlying processes.
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Introduction

Weather In Vancouver

Measure of climate: daily precipitation and temperature in
Vancouver, BC averaged over 40 years.
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Introduction

Medfly Data

Records of number of eggs laid by Mediterranean Fruit Fly
(Ceratitis capitata) in each of 25 days (courtesy of H.-G. Miiller).

Egg Count

60 80 100
L | |

40

m Total of 50 flies

m Assume eggcount
measurements relate to
smooth process governing
fertility
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SHHS: Sleep Heart Health Study

m More than 3,000 subjects, two visits per subject
m Yji(t): normalized EEG d—power series

subject 1 visit 1 subject 1 visit 2
subject 2 visit 1 subject 2 visit 2
34
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Accelerometry data

m Activity Count Data: three dimensional time series per subject
m 1-minute resolution: 10080 time points in 7 days

S b,
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Introduction

What Are We Interested In?

m Representations of distribution of functions
H Mmean
m variation
® covariation

m Relationships of functional data to

m covariates
m responses
m other functions

m Relationships between derivatives of functions.

m Timing of events in functions.
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Introduction

What Are The Challenges?

Estimation of functional data from noisy, discrete observations.
Numerical representation of infinite-dimensional objects
Representation of variation in infinite dimensions.

Description of statistical relationships between infinite
dimensional objects.

n < p = 0o, and use of smoothness.
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Representing Functional Data

Representing Functional Data

10
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Representing Functional Data

From Discrete to Functional Data

Represent data recorded at discrete times as a continuous function

in order to

Medfly record 1

Egg Count

time
RMS residual = 10.2

11

m Allow evaluation of record
at any time point
(especially if observation
times are not the same
across records).

m Evaluate rates of change.

m Reduce noise.
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Representing Functional Data

From Discrete to Functional Data

Representing non-parametric continuous-time functions.
m Basis-expansion methods:

K
X(t) = Z(b,-(t)c,-
i=1
for pre-defined ¢;(t) and coefficients ;.

Reducing noise in measurements
m Smoothing penalties:

¢ = argmin Z (vi — x(£))* + A / [Lx(t)]? dt
i=1

m Lx(t) measures “roughness” of x
m ) a “smoothing parameter” that trades-off fit to the y; and
roughness; must be chosen.

12
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Representing Functional Data: Basis Expansions

Basis Expansions

yi = x(t;) + €

represent x(t) as

K
(1) = Goy(t) = o(t)c
j=1

We say ®(t) is a basis system for x.

Terms for curvature in linear regression

Yi = Bo+ biti + Bot? + Bstd + -+ e
implies
x(t) = o+ Bit + ot + B3t + - -
Polynomials are unstable; Fourier bases and B-splines will be more

useful.
13
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Representing Functional Data: Basis Expansions

14

The Fourier Basis

m basis functions are sine and cosine functions of increasing
frequency:

1, sin(wt), cos(wt), sin(2wt), cos(2wt), . ..
sin(mwt), cos(mwt), ...

m constant w = 27/ P defines the period P of oscillation of the
first sine/cosine pair.

|

1, sin(wt), cos(wt) sin(2wt), cos(2wt)

03 04 01 03
03 01 01 03

03 01 01 03

03 01 01 03
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Representing Functional Data: Basis Expansions

B-spline Bases

m Splines are polynomial segments joined end-to-end.

m Segments are constrained to be smooth at the joins.

m The points at which the segments join are called knots.
m System defined by

m The order m (order = degree+1) of the polynomial
m the location of the knots.

See de Boor, 2001, “A Practical Guide to Splines’, Springer.

15
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Representing Functional Data: Basis Expansions

16

Splines
Medfly data with knots every 3 days.

Splines of order 2: piecewise linear, continuous
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Representing Functional Data: Basis Expansions

Splines
Medfly data with knots every 3 days.

Splines of order 3: piecewise quadratic, continuous derivatives
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Representing Functional Data: Basis Expansions

18

Splines
Medfly data with knots every 3 days.

Splines of order 4: piecewise cubic, continuous 2nd derivatives
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Representing Functional Data: Basis Expansions

An illustration of basis expansions for B-splines

40
Il

Egg Count

20
1

10

time

Sum of scaled basis functions results in fit.
19
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Representing Functional Data: Smoothing Penalties

Ordinary Least-Squares Estimates

Assume we have observations for a single curve

yi =x(t;))+e
and we want to estimate
K
x(t) ~ Z cjo;(t)
j=1

Minimize the sum of squared errors:

SSE =Y (vi —x(t:))* = _(vi — ®(t))c)?
i=1 i=1
This is just linear regression!

20
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Representing Functional Data: Smoothing Penalties

21

Linear Regression on Basis Functions

m If the N by K matrix ® contains the values ¢;(ts), and y is
the vector (yi,...,yn), we can write

SSE(c) = (y — ¥c)’ (y — @c)

m The error sum of squares is minimized by the ordinary least
squares estimate

—1
¢ = (chcb) o7y
m Then we have the estimate

(t) = d(t)e = o(t) (¢T¢)_l o7y
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Representing Functional Data: Smoothing Penalties

Smoothing Penalties

m Problem: how to choose a basis? Large affect on results.

m Finesse this by specifying a very rich basis, but then imposing
smoothness.

m In particular, add a penalty to the least-squares criterion:

PENSSE = (yi — x(;))* + AJ[x]
i=1
m J[x] measures “roughness” of x.

m )\ represents a continuous tuning parameter (to be chosen):

m )\ | oo: roughness increasingly penalized ,x(t) becomes
smooth.
m )\ | 0: penalty reduces, x(t) fits data better.

22
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Representing Functional Data: Smoothing Penalties

23

What do we mean by smoothness?
Some things are fairly clearly smooth:

m constants
m straight lines

What we really want to do is eliminate small “wiggles” in the data
while retaining the right shape

Too smooth Too rough Just right
8 8 8
e N e
€ € €
§e §° §e
2 B _ 2
o s o
.
e - e
.
. .
o 5 10 15 20 25 0 5 10 1‘5 20 25 0 5 10 15 20 25
time. time time

S sl =6 RS residl = 102
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Representing Functional Data: Smoothing Penalties

The D Operator

We use the notation that for a function x(t),

Dx(t) = jtx(t)

We can also define further derivatives in terms of powers of D:

2 d? k d*
Dx(t) = ﬁx(t), ..., D"x(t) = Wx(t), e

m Dx(t) is the instantaneous slope of x(t); D?x(t) is its

curvature.

m We measure the size of the curvature for all of x by
J ] = / [D2x(1))? dt

24
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Representing Functional Data: Smoothing Penalties

Calculating the Penalized Fit

When x(t) = ®(t)c, we have that

/ [Dx(t)]? dt = /cT [D0(t)] [D?®(t)] " cdt = ¢ Roc

[Ro]j = [[D?6()][D?¢«(t)]dt is the penalty matrix.

The penalized least squares estimate for c is n

= [¢T¢ + ARQ] ToTy

This is still a linear smoother:

-1
g=0 |®T®+AR|  ®Ty=S(\)y

25
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Representing Functional Data: Smoothing Penalties

26

Linear Smooths and Degrees of Freedom

m In least squares fitting, the degrees of freedom used to smooth
the data is exactly K, the number of basis functions

m The smoothing penalty reduces the flexibility of the smooth

m The degrees of freedom are controlled by A. A natural
measure turns out to be

dF() = trace [S(V)]. S(N) = ® [®7® 1 AR,| @

m Medfly data fit with 25 basis functions, A = e* resulting in
df = 4.37.
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Representing Functional Data: Smoothing Penalties

Choosing Smoothing Parameters: Cross Validation

There are a number of data-driven methods for choosing smoothing
parameters.

m Ordinary Cross Validation: leave one point out and see how
well you can predict it:

OCV(\) = %Z (Yi —Xx_i(tf)>2 - %Z m

m Generalized Cross Validation tends to smooth more:

cov(y) = =i —x ()
[trace(I — S(\))]?

will be used here.
m Other possibilities: AIC, BIC,...

27
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Representing Functional Data: Smoothing Penalties

28

Generalized Cross Validation

Use a grid search, best to do this for log(\)

Egg Count
0 2 30 40 50

Egg Count
0 20 30 40 50

0

0

Smooth

Egg Count
10 20 30 40 50

Iean GCV

400

0

600

500

300

Rough

rough right smooth

1e-04 1e-01 1e+02 1e+05 1e+08
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Representing Functional Data: Smoothing Penalties

Alternatives: Smoothing and Mixed Models

Connection between the smoothing criterion for c:

PENSSE(A) = (i — ¢" ®(t))> + Ac Re
i=1

and negative log likelihood if c ~ N(0,72R™1):

1
log L(cly) = 592 Z 24 ?cTRc

(note that R is singular — must use generalized inverse).

Suggests using ReML estimates for o2 and 72 in place of .

29
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Representing Functional Data: Smoothing Penalties

Summary

Basis Expansions

m Good basis systems approximate any (sufficiently smooth)
function arbitrarily well.
m Fourier bases useful for periodic data.
m B-splines make efficient, flexible generic choice.
Smoothing Penalties used to penalize roughness of result
m [x(t) = 0 defines what is “smooth”.
m Commonly Lx = D?x = straight lines are smooth.

m Departures from smoothness traded off against fit to data.
m GCV used to decide on trade off; other possibilities available.

These tools will be used throughout the rest of FDA.

Once estimated, we will treat smooths as fixed, observed data
(but see comments at end).

30
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Exploratory Data Analysis

31

Exploratory Data Analysis
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Exploratory Data Analysis

Mean and Variance
Summary statistics:

m mean X(t) = %Zx,-(t)
m covariance

o(s, t) = cov(x(s), x(t)) =

Medfly Data:

Egg Count

time

25
N

20
L

15
L

10
L

32
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Exploratory Data Analysis

33

Correlation

time
time

From multivariate to functional data: turn subscripts j, k into
arguments s, t.
[m] = = =
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Exploratory Data Analysis

Functional PCA

m Instead of covariance matrix X, we have a surface o(s, t).
m Would like a low-dimensional summary/interpretation.

m Multivariate PCA, use Eigen-decomposition:

p
y=U"DU= Z djuj-uJ-T
j=1

and uu; = I(i = ).

m For functions: use Karhunen-Loéve decomposition:

os,t) =) digi(s)(t)

Jj=1

for [&i(t)&;(t)dt = 1(i = J)

34
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Exploratory Data Analysis

PCA and Karhunen-Loéve

t) =Y di&i(s)&i(t)
i—1

The &(t) maximize Var [ [ &i(t)xj(t)dt].

di = Var [ [ &(t)x;(t)dt]

di/> diis proportlon of variance explained
Principal component scores are

fi= [ &(0)b(e) - %(0))ee

Reconstruction of x;(t):

xi(t) = x(t) + Z fi&i(t)

35
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Exploratory Data Analysis

functional Principal Components Analysis

fPCA of Medfly data

Scree Plot

Components
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Usual multivariate methods: choose # components based on
percent variance explained, screeplot, or information criterion.

36



cdi
Rectangle


Exploratory Data Analysis

functional Principal Components Analysis
Interpretation often aided by plotting X(t) 4= 2v/d;&;(t)

PCA function 1 (Percentage of variability 60.8 ) PCA function 2 (Percentage of variability 29.2)

Harmonic 2

Harmonic 1
20 30 40 50 60

PCA function 3 (Percentage of variability 6.5 )

Harmonic 4

Harmonic 3
20 30 40 50

37
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Exploratory Data Analysis

Derivatives

38

D Egg Count

Harmonic 1

Derivatives

PCs

time

Component 1

PCA function 1 (Percentage of variabilty 66.6)

Harmonics
02 01 00 01 02 03 04

time

Component 2

PCA function 2 (Percentage of variabilty 19.9)

‘%\"‘1

Harmonic 2

m Often useful to

examine a rate
of change.

Examine first
derivative of
medfly data.

Variation
divides into fast
or slow either
early or late.
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