
Mendelian randomization (MR)

Use inherited genetic variants to infer causal relationship of an
exposure and a disease outcome.

1 Concepts of MR and Instrumental variable (IV) methods

◮ motivation, assumptions, inference goals, merits and limitations
◮ two-stage least squares (2SLS) method from econometrics literature
◮ Sargan’s test for validity of IV
◮ Durbin-Wu-Hausman test for equality of IV and OLS

2 Development of MR methods for binary disease outcomes

◮ Various approximation methods extended from (2SLS)
◮ Potential outcomes, structural mean models, consistent estimation of

causal odds ratio
◮ Model diagnostics
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Hill’s criteria: when can observed association be

interpreted as causal?

Association 6= Causality

◮ Strength: Lung cancer death rate in smokers about 9-10 times as non-smokers

◮ Consistency: repeatedly observed

◮ Specificity: certain type of disease but not others

◮ Temporality: cause precedes consequence

◮ Biological gradient: dose response, for example, lung cancer risk rises linearly with
#cigarettes smoked daily

◮ Biological plausible

◮ Coherent with lab evidence

◮ Experimental or semi-experimental: if exposure was remove, does that prevent the
disease?

◮ Analogy with known exposure-disease causal effect

Hill AB. Proceedings of the Royal Society of Medicine. 1965
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Mendelian randomization analysis

The fundamental idea: If we cannot randomize the exposure, we can find
a randomized instrumental variable to disentangle

◮ Confounding

◮ Reverse causation
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Part I

Mendelian randomization: concepts, assumptions, 2SLS, etc
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Katan M. Lancet 1986: a one-page letter

◮ Low cholesterol levels are sometimes associated with increased
cancer risks, but it could be reverse causation.

◮ Differences in the amino acid sequence of apolipoprotein E (apo E)
are major determinants of plasma cholesterol levels: E-2, E-3, E-4
with increased cholesterol levels.

◮ “if a naturally low cholesterol favours tumour growth, then subjects
with the E-2/E-2 or E-2/E-3 phenotype should have an increased
risk of cancer.”

Reverse causation
“Unlike most other indices of lipid metabolism, apolipoprotein amino
acid sequences are not disturbed by disease, and the apo E phenotype
found in a patient will have been present since birth.”
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The reasoning behind Katan M. Lancet 1986

low cholesterol ⇐⇒ increased cancer risk

1 Apo E sequence variation ⇒ low cholesterol, this relationship is
established since inheritance of Apo E sequence variation

2 Apo E sequence variation ⇒ increase cancer risk, cancer occurs
later stage of life

Two underlying assumptions: Apo E genetic effect on cancer risk can be
unbiased assessed; Apo E genetic variation does not increase cancer risk
through other pathways.
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George Davey Smith and Shah Ebrahim 2003 IJE: first

expanded presentation of MR

Confounding
“One key point is that the distribution of such polymorphisms is largely
unrelated to the sorts of confounderssocioeconomic or behaviouralthat were
identified above as having distorted interpretations of findings from
observational epidemiological studies.”

◮ Mendel’s second law, the law of independent assortment, germline genetic
variants can be viewed as if “randomized” conditional on parental
genotypes.

◮ But it is an approximation in the population! 7/31



Conceptual analogy between MR and randomized clinical

trials (RCT)

◮ In RCT, confounding is removed by strict randomization. MR has at best “approximate
randomization”.

◮ In RCT, assignment exerts effect on disease endpoints through actually treatment
received. MR has to assume that there is no direct effect from gene to disease (no
other pathway).

Nitsch et al. Am J Epidemiol 2006
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The objectives of MR studies

Analytical goals with proper assumptions

◮ Testing causal relationship between intermediate phenotype and
disease outcome, by testing association between genotypic
instrument and disease outcome: hypothesis testing - the Katan’s
original reasoning

◮ In linear and sometimes logistic models, estimating causal effect of
intermediate on disease outcome: effect estimation after connecting
to instrumental variables approach in econ
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Three core assumptions for hypothesis testing

G: genetic variant; Y: disease outcome; X: intermediate exposure;
U: unknown confounder

Core assumptions

1 independence between G and U, (covariate adjustment)

G ⊥ U

2 established association between G and X , (strong/weak instrument)

Pr(X |G) 6= Pr(X )

3 no alternative pathway from G to Y , (exclusion restriction)

G ⊥ Y |X ,U

⇓

Testing the G − Y association is equivalent to testing causal relationship
Y − X .
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Testing causal relationship
How is this derived mathematically?

Pr(Y ,G ) = Pr(G )

∫

u

Pr(U|G )

∫

x

Pr(Y |G ,X ,U)Pr(X |G ,U)

= Pr(G )

∫

u

Pr(U)

∫

x

Pr(Y |X ,U)Pr(X |G ,U)

If Y ⊥ X |U, i.e., Pr(Y |X ,U) = Pr(Y |U),

Pr(Y ,G ) = Pr(G )

∫

u

Pr(U)Pr(Y |U)

∫

x

Pr(X |G ,U)

= Pr(G )Pr(Y )

So
Y ⊥ X |U → Y ⊥ G .

Didelez & Sheehan. SMMR 2007
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Estimating causal effect in linear models

Two more assumptions required for estimation:

◮ the effect of X on Y is linear,

◮ no interaction between X and U,

◮ Suppose the data generating models are

X = α0 + α1G + α2U + ε1,

Y = θ0 + θ1X + θ2U + ε2.

◮ we can fit the following reduced models

E [X |G ] = α0 + α1G ,

E [Y |G ] = β0 + β1G ,
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IV estimators are essentially ratio estimators

◮ Observe that

β1 = E [Y |G = g + 1]− E [Y |G = g ]

= θ1(E [X |g + 1]− E [X |g ]) + θ2(E [U|g + 1]− E [U|g ])
= θ1α1.

Therefore θ1 = β1/α1.

◮ When there is one causal effect, one instrument, the IV estimator
can be written as the ratio of two OLS estimator

β̂IV =
β̂1
α̂1

◮ The variance of α̂1 is important; highly variable in small samples!

Didelez & Sheehan. SMMR 2007;16:309−330

13/31



Instrumental Variable estimation in linear models
This is well developed in Econometrics literature:

◮ Suppose G and X have same dimension (both may contain
intercept), and confounder U is absorbed in the error ǫ

Y = Xβ + ǫ

◮ The usual OLS does not give unbiased estimation for unconfounded
effect, because X and ǫ are correlated.

X
T
Y = X

T
Xβ + X

T ǫ

◮ If the instrument G is independent of error ǫ

G
T
Y = G

T
Xβ + G

T ǫ

β̂IV = (GT
X)−1

G
T
Y

√
n(β̂IV − β) ∼ N

(
0, σ2Q−1

GXQGGQ
−1
XG

)

where QGX = plim(GTX/n), QGG = plim(GTG/n)
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This is the same as the ratio estimator in the simple case

Suppose X = (1,X ), G = (1, g)

β̂IV = (GT
X)−1

G
T
Y

= (GT
X)−1(GT

G)(GT
G)−1

G
T
Y

= {(GT
G)−1(GT

X)}−1{(GT
G)−1

G
T
Y}

It can be verified that

β̂IV =
β̂1
α̂1

where β1 is the slope of regressing Y on g , α1 is the slope of regressing
X on g .
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Generalized methods of moment
What if G has more dimension (l) than X (p)? More equations than the
number of parameters.....

ḡn(β) =
1

n
G

T (Y − Xβ)

◮ If l == p, setting ḡn(β) = 0 gives methods of moment estimator.

◮ More generally, for some l × l matrix Wn >0, let

Jn(β) = nḡn(β)
TWnḡn(β)

◮ the goal is to set Jn(β) ”close” to zero

◮

β̂GMM = argminJn(β)

= {(XT
G)Wn(G

T
X)}−1(XT

G)Wn(G
T
Y)

◮ The scale of Wn does not change β̂GMM
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What is the optimal Wn?

◮ Suppose √
nḡn(β) →d N (0,Ω)

where Ω = E (GT
i Giσ

2).

◮ Suppose Wn →p W0, 1/nX
TG →p Q, The asymptotic distribution

√
n(β̂GMM − β) →d N (0,Vβ)

where Vβ = (QTW0Q)−1(QTW0ΩW0Q)(QTW0Q)−1)

◮ In IID cases, the optimal Wn →p W0 = Ω−1. Wn = ( 1
n
GTGσ̂2)−1,

and so the optimal estimator is

{(XT
G)(GT

G)−1(GT
X)}−1(XT

G)(GT
G)−1(GT

Y)
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Two-stage least squares (2SLS) estimator

◮

β̂IV =
(
X

T
G(GT

G)−1
G

T
X

)−1 (
X

T
G(GT

G)−1
G
T
Y

)
,

√
n(β̂IV − β) ∼ N

(
0, σ2(QGXQ

−1
GGQXG )

−1
)

◮ This is a 2SLS estimator, computationally simple and stable, first
compute X̂

X̂ = G(GT
G)−1

G
T
X

◮ then regress Y on X̂

β̂IV = (X̂T
X̂)−1

X̂
T
Y

= [XT
G(GT

G)−1
G

T
X]−1

X
T
G(GT

G)−1
G

T
Y

◮ any regression software can be used to get 2SLS estimator, just
compute the variance
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The fundamental idea observed from 2SLS

Use instrumental variables to extract that variation in intermediate
phenotype (exposure) that is independent of confounding variables, and
use this part of variation to estimate the causal effect

◮ The assumptions except the correlation between X and G are not
directly testable, because of the presence of unmeasured
confounding U.

◮ There is less appreciation in evaluating and testing these
assumptions

◮ The binary disease outcomes are difficult to work with the concept
of IV (Lecture 2).
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Caution about assumptions

1 Randomization is approximation at best (untestable)

◮ Deviation from “a natural RCT” can be introduced by population
stratification, unknown demographic/behavioural/confounders.....

2 Known association between G and X (testable, but genetic
associations are weak)

◮ Weak genetic instrument and so poor estimation of causal effect, low
power

3 No other pathway from G to Y other than through X (exclusion
restriction, untestable)

◮ Pleiotropy, linkage disequalibrium with other variants that are also
related to Y
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Relaxed assumptions: adjust for known confounders

Suppose there is a set of known confounders W (population
stratification, demographic/behavioral/socioeconomical factor), denote
U to be unknown confounders.

1 G ⊥ U|W
2 G correlate with X |W
3 G ⊥ Y |X ,U,W

◮ Testing Y ⊥ X |W ,U is equivalent to testing Y ⊥ G |W .

◮ In linear models, θ1 = β1/α1 still holds

E [Y |X ,W ,U] = θ1X + θ2W + θ3U

E [X |G ,W ] = α1G + α2W

E [Y |G ,W ] = β1G + β2W

all the previous math works!
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Overidentifying restrictions and Sargan’s test

We can detect pleiotropy and the validity of IV if

◮ The number of IVs (l) is more than the number of causal effects (p)
to be estimated; not all l equations can be exactly zero

◮ The null hypothesis is G ⊥ (Y − Xβ)
◮ instrument is orthogonal to the error term
◮ there is no direct effect left once conditional on X

◮ Sargan’s test for 2SLS for l instrumental variables and 1 causal
effect

{G(Y − θ̂2SLSX)}T {σ̂2(G)TG)}−1{G(Y − θ̂2SLSX)} → χ2(l − 1)

under the null that all instruments are valid.

Sargan (1958); Small (2007) JASA
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J-statistic

◮ Hansen (1982) gave general results

Jn(β̂) = nḡn(β̂)
TŴnḡn(β̂) → χ2(l − p)

as long as Ŵn converges to the optimal W0 and β̂ is efficient GMM
estimator

◮ Large J-statistic will reject null hypothesis so that at least one
instrument might be invalid.

◮ report this J-statistic whenever there are overidentifying conditions
for IV.

Hansen (1982)
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Test the equality of IV estimator and OLS estimator

The null hypothesis is OLS is consistent and fully efficient

◮ If there is no unmeasured confounding, OLS estimator will be
consistent and efficient; IV is consistent under null or alternative

◮ Large discrepancy between β̂OLS and β̂IV suggests that there is
confounding and OLS can not be trusted.

◮ Durbin-Wu-Hausman test

(β̂IV − β̂OLS)
TD−1(β̂IV − β̂OLS ) →d χ2(p)

where D = Var(β̂IV )− Var(β̂OLS)

◮ The derivation of the variance comes from the zero correlation
between β̂OLS and β̂IV − β̂OLS under the null.

Hausman 1978 Econometrika
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Examples of MR

From Jan 2003 to Dec 2013, 179 MR studies were found in PubMed, Medline,
Embase and Web of Science (Boef et al (2015) IJE).

◮ PCSK9 genetic variation related to low LDL cholesterol and decrease
coronary heart disease

◮ MR analysis suggests causality in Cohen et al 2006 NEJM;354:1264-72

◮ Two large RCTs confirmed in 2015 (Sabatine et al NEJM;Robinson et al NEJM)

◮ Observational studies suggest Lp-PLA2 levels predict CHD

◮ MR analysis against causality (Wang et al 2010 Thrombosis Research)
◮ Subsequent large RCTs failed to find the benefit (STABILITY investigators

NEJM 2014;Nicholls et al 2014 JAMA)

◮ CRP did not show causal effect on a number of cardiometabolic outcomes;
therapies toward CRP are discouraged.

◮ More examples can be found in Davey Smith 2015 doi: http://dx.doi.org/10.1101/021386.
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A MR example

Circulating CRP levels are associated with a range of metabolic and
cardiovascular diseases (all continuous outcomes in the paper), but not
necessarily causal

◮ CRP haplotype (most likely ones) was used as instrumental
variables (likely no other pathway other than circulating CRP)

◮ CRP haplotype is not associated with potential confounding
variables, such as smoking, alcohol, physical activity etc
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A MR example

◮ Strong association between CRP haplotypes and plasma CRP
(F-statistic >10), it is not weak instrument

◮ It would be nice to perform a Sargan’s test for validity of
instruments.
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Difference between MR and observed association

◮ IV estimators are computed by 2SLS

◮ Durbin-Wu-Hausman test for equality of IV and OLS

◮ These results suggest that there is no causal association between
CRP and the metabolic syndrome phenotypes.
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Scientific merit of MR studies

Smith & Ebrahim 2003 IJE:

Concluding remark

“For the present, however, it is probably fair to say that the method
offers a more robust approach to understanding the effect of some
modifiable exposures on health outcomes than does much conventional
observational epidemiology. Where possible randomized controlled trials
remain the final arbiter of the effects of interventions intended to
influence health, however.”
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Softwares for IV analysis

◮ Stata has extensive commands for IV regression: ivregress,
ivreg2 implementing 2SLS, Sargan’s test or J-statistic,
Durbin-Wu-Hausman test

◮ R package AER has ivreg function; very powerful gmm package
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