Review

We have covered so far:
» Single variant association analysis and effect size
estimation
» GXE interaction and higher order >2 interaction

» Measurement error in dietary variables (nutritional
epidemiology)
» Today’s lecture: set-based association

http://research.fhcrc.org/hsu/en/edu.htmi



Set-based association analysis

> i=1,--.n

» mvariants on a certain region

v

Genotype G,' = (G,'1, G,‘g, e, G,'m)/, g,-j =0,1,2

v

Covariates X; : intercept, age, sex, principal components
for population structure.

Model:

v

dEW)} = Xa+)_ Gib
j=1

where g(-) is a link function.

» No association for a set means g = (51,--+ ,fm) =0



Why?

In gene expression studies, a list of differentially expressed
genes fails to provide mechanistic insights into the
underlying biology to many investigators

Pathway analysis extracts meaning by grouping genes into
small sets of related genes

Function databases are curated to help with this task, e.g.,
biological processes in which genes are involved in or
interact with each other.

Analyzing high-throughput molecular measurements at the
functional or pathway level is very appealing
» Reduce complexity
» Improve explanatory power than a simple list of differentially
expressed genes



Why?

Variants in a defined set (e.g. genes, pathways) may act
concordantly on phenotypes. Combining these variants
aggregates the signals; as a result, may improve power

Power is particularly an issue when variants are rare.

The challenge is that not all variants in a set are
associated with phenotypes and those who are associated
may have either positive or negative effects



Outline

» Burden test
» Variance component test

» Mixed effects score test



Burden Test

» If mis large, multivariate test 5 = 0 is not very powerful

» Population genetics evolutionary theory suggests that most
rare missense alleles are deleterious, and the effect is
therefore generally considered one-sided (Kryukov et al.,
2007)

» Collapsing: Suppose 1 =+ =fm=n
g{E(yi)} = Xja + B
» B; =3, g; : genetic burden/score.

» With weight (adaptive burden test)

m
B,' = Z W_/Glj
j=1

» Test Hy : n =0 (d.f.=1).



Weight
» Threshold-based method

winy— |1 TMAF <t
100 i MAF > t

» Burden score B;(t) = Z/'L w;(t)gj, and the corresponding
Z-statistic is denoted by Z(t)
» Variable threshold (VT) test

Zmax = max:Z(t)

» P-value can be calculated by permutation (Price et al
2010) or numerical integration using normal approximation.
P(Zmax Z Z) — 1 - P(Zmax < Z)
=1-PZ(ty) <z, ---,2(tp) < 2)

where {Z(t1),--- , Z(tp)} follows a multivariate normal
distribution MVN(O, X).



Weight

» Variant effects can be positive or negative and the strength
can be different too.

» Fit the marginal model for each variant

IHEW)} = Xja+ Gy



Weight

» Adaptive sum test (Han & Pan, Hum Hered 2010)

e — -1 if75; < 0 and p-value < ag;
7711 otherwise

» If ag = 1, the weight is the sign of 7, but the corresponding
weighted burden test has low power because the null
distribution has heavy tails.

» g is chosen such that only when Hy likely does not hold,
the sign is changed if 7; is negative.

» The authors suggest ag = 0.1, but it is data dependent



Weight

» Estimated regression coefficient (EREC) test (Lin & Tang
Am J Hum Genet 2011)

wi=7;+c,  forc#0

» Score statistic

Terec — % SO G+ 090G — #il@))) — N(O,5)
=1 =1

» pi(@) is estimated under the null of no association

» Ifc=0, Terec = ﬁ S S 3G (i — pi(@))} is not
asymptotically normal

» ¢ =1 for binary traits, ¢ = 2 for standardized quantitative
traits

» Compute p-values using permutation.



Burden Tests

» Burden tests lose a significant amount of power if there are
variants with different association directions or a large # of
variants are neutral.

» Adaptive burdent tests have robust power, but they rely on
resampling to compute p-values.

» Computationally intensive, not suitable for genome-wide
discovery.



Variance Component Test

» Model .
IHEW)} = Xja+)_ Gyf;
j=1
» Burden tests are derived assuming 51 = -+ = Om.
» Variance component test

» Assume 3; ~ F(0, 72), where F(-) is an arbitrary
distribution, and the mean of ﬁ;s =0.

> Ho:ﬁ1:‘-~:ﬁp:O<Z>H0:T2:0.



Derivation of Variance Component Test

» Suppose g(-) is linear and Y|X, G ~ Normal. That is,
m
yi= Xia + Z Gijﬂj +e, e~ N(O,Uz)
j=1
» Suppose Sj ~ Normal (0,72),j=1,...,m
» Marginal model:

Ynx1 ~ MVN(anpOé. TZanmG;nxn + 02|)



Derivation of Variance Component Test

» Log likelihood

(Y — Xa) (r2GG + o?1)~ (Y — Xa)
2

- % log |T2GG' + 0?1 — g log(2r)

{=—

» Let V(72) = 2GG + o2l
» Score function

o0 (Y= Xa)V(r3) GG V(r3) (Y - Xa)

72 2
tr(V ()" (GG))
2




Derivation of Variance Component Test

» Score test statistic

or
Q= ﬁ =0
= %(Y — Xa)'VIGG V(Y — Xa)

1 — /
- 5tr(V7(G@))

= %(Y— Xa)M(Y — Xa) — %tr(V%MV%)

» M=V 1GG V', V=02



Derivation of Variance Component Test
» Q is not asymptotically normal

Q= %(Y— Xa) M(Y — Xa) — %tr(V%MV%)

= %7’(V%MV%)7 - %tr(V%MV%)
where Y = V-2(Y — Xa) ~ N(0, 1)
» Let {)\;, u;,j=1,..., m} be the eigenvalues and
eigenvectors of VzMV3. Then

Q=" N(UY)P-1) =3 MZ 1)
j=1 j=1

» Qs not asy?nptotically normal
» Zhang and Lin (2003) show that

m
Y(VEMV2)Y ~ Y M,
=1



Variance Component Test

» The exact probability associated with a mixture of x?
distributions is difficult to calculate.

» Satterthwaite method to approximate the distribution by a
scaled x? distribution, xx?2, where x and v are calculated
by matching the first and second moments of the two
distributions.

» To adjust for @, replace V' by projection matrix
P=Vv1_vIX(XVIX)"' X' v,



General Form of Variance Component Test

» Linear model
yi = Xjao+ h(Gj) +¢, e~ N(O, 02)

» h(-) is a centered unknown smooth function € H generated
by a positive definite kernel function K-, -).

» K{(-,-) implicitly specifies a unique function space spanned
by a set of orthogonal basis functions {¢;(G),j =1, ..., J}
and any h(-) can be represented by linear combination of
these basis h(G) = 2}121 Cjo;(G)(the primal
representation)



General Form

» Equivalently, h(-) can also be represented using K(-, -) as
h(G;) = 27:1 w;K (G, Gj) (the dual representation)

» For a multi-dimensional G, it is more convenient to specify
h(G) using the dual representation, because explicit basis
functions might be complicated to specify, and the number
might be high



Estimation

» Penalized likelihood function (Kimeldorf and Wahba, 1970)

2
n n
1
/:_% {yi)(l.’azwj'K(G,', Gj)} —EAw’Kw
i=1 J=1

where ) is a tuning parameter which controls the tradeoff
between goodness of fit and complexity of the model

—1
a= {X’(I + A’1K)*1X} X (1+ATK) Ty

and
=211+ 2"K)"(y - X'a)

h= Ko



Connection with Linear Mixed Models

» The same estimators can be re-written as
X' V1X X'/ al [ X v-ly
v-ix v+ (rK)*1 h v-ly

where 7 = A\ '¢2 and V = &2l

» Estimators a and h are best linear unbiased predictors
under the linear mixed model

y=Xa+h+e

where his a n x 1 vector of random effects with distribution
N(0,7K) and e ~ N(0, V)



General Form of Variance Component Test

» Testing Hy : h = 0 is equivalent to testing the variance
componentras Hy: 7 =0versus H; : 7 >0

» The REML under the linear mixed model is
| =~ log V() — JIX'V ()X

.1

—5(y = X'a)V(r*) 7 (y = X'a)

» Score statistic for Hy : 7° =0 is
Q= (Y - XaYK(Y — X&) — tr(KP),

which follows a mixture of X'12 distribution.



Kernel

» Kernel function K(-, -) measures similarity for pairs of
subjects
> Linear kernel: K(Gj, Gk) = >_" 4 G;Gy

» Something about K(-, -)

» Ability to incorporate high-dimension and different types of
features (e.g., SNPs, expression, environmental factors)
» K(-,-) is a symmetric semipositive definite matrix

» Eigenvalues are interpreted as % of the variation explained
by the corresponding eigenvectors, but a negative
eigenvalue implying negative variance is not sensible.

» No guarantee that the optimization algorithms that work for
positive semidefinite kernels will work when there are
negative eigenvalues

» Mathematical foundation moves from real numbers to
complex numbers



Some Kernels

» Some kernels
> K(G,’, Gk) = 21'11 G,'ijj =< G,', Gk >
» K(Gj, Gk) = 5= Z}L IBS(Gj, Gk), where IBS is
identity-by-state
» K(Gj, Gk) = (< Gj, Gk >)P: polynomial kernel, p > 0
» Modeling higher-order interaction

m m
(< G, Gk >} = Z GiGy)’ ZZ(G// i) (G G )

j=17=1

K(G;, Gx) = exp(—|Gi — Gj||?/o?): Gaussian kernel

» Schaid DJ. (2010) Genomic similarity and kernel methods I: advancements by
building on mathematical and statistical foundations. Hum Hered 70:109-31.

» Schaid DJ. (2010) Genomic similarity and kernel methods II: methods for

genomic information. Hum Hered 70:132—140.



Choice of Kernels

» An advantage of the kernel method is its expressive power
to capture domain knowledge in a general manner.

» Generally difficult to construct a good kernel for a specific
problem

» Basic operations to create new kernels from existing
kernels:

» multiplying by a positive scalar
» adding kernels
» multiplying kernels (element-wise).



Generalized Linear Model

» Observations for the linear model apply to the generalized
linear model

» Penalized log-likelihood function

n

-y

i=1

n
yilXja + Y wiK(Gi, G)))
j=1

1

n
~log{1 +exp(Xja + > wK(Gi G} | — pw'Ke

j=1

» The logistic kernel machine estimator
X'DX X'D a| | XDy
DX D+ (7K)™' h| | Dy

where 7 = A\~102, D = diag{ E(y;)(1 — E(y;))}, and
y=Xa+ Kw+ var(y)—1(y — )



Generalized Linear Model

» The same estimators can be obtained from maximizing the
penalized quasilikelihood from a logistic mixed model

logitE(y;) = Xjo+ hy

where h = (hy, ..., hy) is a n x 1 vector of random effects
following h ~ N(0, 7K) with 7 =1 /A

» The score statistic for 7 is
Q= (y—Xa)K(y — X'a),

which follows a mixture of x? distributions



Exponential Family

» Suppose y; follows a distribution in the exponential family
with density

y/ i — (9)
)

where 0; = X/a + h(G;) is the canonical parameter, a(-)
and ¢(+) are known functions, ¢ is a dispersion parameter

p(yi; 0, ¢) = exp{ +c(yi 9)}

» u; = E(y;) = &(0;) and var(y;) = ¢a’(;)
» Gaussian: ¢ = o2, a(f;) = 62/2, and & (0;) = 6;

> Logistic: ¢ = 1, a(6;) = log(1 + exp(0))), & (0)) = 1221

» Other distributions: log-normal, Poisson, etc.



Summary

» Burden tests are more powerful when a large number of
variants are causal and all causal variants are harmful or
protective.

» Variance component test is more powerful when a small
number of variants are causal, or mixed effects exist.

» Both scenarios can happen across the genome and the
underlying biology is unknown in advance.



Combined Test

» SKAT (SNP-set/Sequence Kernel Association Test):
variance component test

» Combine the SKAT variance component and burden test
statistics (Lee et al. 2012)

Q, = (1 — p)Qskar + pQourden: 0<p<t
» p=0: SKAT
» p=1: Burden
» Instead of assuming {;} are iid from F(0, 72), assume
B 1 p... p
| ~Flo, 2| -

Bm p ... 1



SKAT-O

» Q, = (1 — p)Qskar + pQuurden, Which is asymptotically
equivalent to
(1 = p)s + alp)no,

where « follows a mixture of x2 and 7y ~ x2.
» Use the smallest P-value from different ps:

T = inf0§p§1 Pp
» In practice, evaluate Q, on a set of pre-selected grid points,



Summary

» Have robust power under a wide range of models
» Qskar and Quurden are not independent.

» The underlying model for SKAT-O is not natural.



Mixed Effects Model

» Model

HEW)} = Xia+ ) Gjb; (1)
j=1

» Burden: 8y =--- =

» SKAT: g; ~ F(0, 7?) independently

» SKAT-O: 3; ~ F(0, 72) with pairwise correlation p
» Hierarchical model of 3

Bj = wimn + 9; (2)

» w;: known features for the jth variant (e.g., w; = 1 for all j’s)
» 8~ F(0,72)



Mixed Effects Model

> Plug (2) into (1)

m m
HEW)} = Xia+(O_wGyn+ ) _ Gjs;
j=1 j=1

» Some examples:
» If w =0, J; = 3;, the model becomes

HEW)} =Xa+> G, B~ F(0,7%)
j=1

» If w =1 and §; = 0, the model becomes

HEW)} = X{a+ (> Gy)n
j=1



Mixed Effects Model

» Some examples:
» w; = (W), W) where

wiy=1forj=1,..-.m

1 if jth variant is a missense
Wjo = .

0 otherwise

> 2121 w;Gj = (Z,’L Gij, Z/’L w2 Gjj)
» 1 : average effect of m variants

72 : effect of missense variants relative to the average
» §;: residual variant specific effect ~ F(0, 72)



Mixed Effects Model-based Test

Mixed effects model

v

m m
g{E(i)} = Xja+ (3 wiGin+ D Gy
j=1 j=1
Null hypothesis is Hy : 7 = 0 and 72 = 0
» 1 fixed effects; 72: variance component
The score test statistic for 72 and 7 is

v

v

S, = (Y — X&) (GW)(GW)'(Y — X&),

and )

S = (Y - Xaz) GG’(Y - Xa),
where « is MLE of o under Hj.
However, S.> and S,, are not independent.

v



Independence of score test statistics

» We made a minor (but important) modification
!/
S = (Y - Xa - GWq) GG (Y - Xa - GW7),

where (a',77) are obtained under 72 = 0.
» We can show that S*, and S, are independent.

E{(GW)(Y — X&)((Y — Xa — GWﬁ)'G
= oPE{(GW)'(I- Py)(I - P2)G}
= 0’

where P; is the projection onto X and P; is the projection
onto (X, (GW)).



Combining independent statistics

MiST (Mixed effects Score Test)

» P-value combination

» Fisher’s combination: reject Hy at significance level « if
—2l0g(P,2) - 210g(P,) > \3.,

» Tippitt’s combination: reject Hy at significance level « if
min(P2, P,) <1—(1—a)'/?

» Other combinations, e.g., linear combination
S=pS,+(1-p)S-

» Jianping Sun, Yingye Zheng, and Li Hsu (2013). A Unified
Mixed-Effects Model for Rare-Variant Association in
Sequencing Studies. Genetic Epidemiology, 37: 334-44.



Power Comparison

» m=10 variants, n=1000 subjects, a« = 0.01

Burden SKAT SKAT-O MiSTg MiSTy

Bi=c/{p(1—p)}'/2 j=1,..10
0866 0435 0.818 0780 0.811

B3 =1.5¢, B4 = —1.5¢, Bs = C, B = —C;,
0.014  0.507 0.397 0.417 0.455

0.283 0.578  0.551 0.652 0.515

B1 =c¢, Bs=0.5¢c, g7 =0.25¢c
0.288 0.415 0.427 0.583  0.429




Dallas Heart Study

» Dallas Heart Study (Victor et al. 2004). n=3409 subjects, 3
genes (ANGPTL3, ANGPTL4 and ANGPTL5) were sequencied.

» We analyzed these genes in association with log(triglyceride).

ANGPTL3 ANGPTL4 ANGPTL5

Burden 0.83 0.76 0.001
SKAT 0.40 0.31 0.38
SKAT-O 0.57 0.47 0.35
EREC 0.36 0.38 0.09
MiSTg 0.36 0.06 0.05
MiSTT 0.40 0.06 0.06
MiSTE(Z)  0.25 0.77 0.00005
MiSTT(Z)  0.27 0.32 0.0001

» The component p-values of ANGPTL5: p, = 5x107° and p,- =
0.53. Furthermore, p = 0.004 for nonsense variants and p=0.24
for frame shift variants.



Summary

» MiST (Mixed effects Score Test) is based on hierarchical
models for a set of variants

» The model includes the usual appealing features for
regression models such as adjusting for confounders and
being able to accommodate different types of outcomes by
using appropriate link functions.

» It models the variant effects as a function of (known)
variant characteristics to leverage information across loci
while still allowing for individual variant effects.



Combining K studies

We have discussed for single variant analysis:

» Pooling the data from K studies. Since all score statistics
are derived from regression models, it is easy to account
for the differences between studies by adjusting for study
and/or study x covariates

» Pooling the data ensures consistency in data QC and
model fitting

» Pooling can be logistically difficult and time consuming

» Sometimes protection of human subjects prohibit sharing

the data

» Meta-analysis of combining summary statistics from K
studies is still a viable alternative



Revisit Score Statistics

» Weighted burden test

U; : Score of single variant model

» Uy =1, Gj(Y; — Xia) is a score function of a single
variant model.

Yi=Xia+ Gyfj+e, e~ N0 0°



Variance Component test

» Qskar is a weighted sum of squared score statistics of the
single SNP marginal model.

Qskar = (Y — Xa)' GGy p(Y — X@) 1

=2_{>_Gi(Yi - Xia))*



Key Elements

» A vector of single variant score statistics, U’ = (Uy, ..., Un)
with covariance V = cov(U)

» Burden score statistic
Uburden = WU, var(Upyrgen) = W' VW
» Variance component score statistic
Qskar = U'U,

which follows a mixture of chi® distribution with weights
being the eigenvalues of V



Fixed effects model

» Fork=1,--- K, let Uy and V| denote the score statistics
and covariance for the kth study.
» Score statistic over K studies is

k

K
U= U V=> Vi
k=1

k=1
» Burden test

Uburden = w'u Val’( Uburden) = Wvw

! -1 2
Uburdenvar( Uburden) Uburden ~ Xp



Fixed effects model

» Variance component test
m
2
Qskar = U'U ~ E XS
j=1

where ), is the jth eigenvalue of V = S5, Vi
» Combination of burden and score statistics

Qp = (1 - P)QSKAT + pQburden

where p is adaptively chosen and the p-value can be
obtained by one-dimensional numerical integration



Fixed effects model

» Summary of single variant score statistic may not enough
for MiST score statistics

S, = (Y — XaY(GW)(GW)(Y — Xa),
S = (v - xa- GWﬁ)'GG’(Y— Xa - GW),

where (a',77) are obtained under 72 = 0.



Random Effects Model

» Fork=1,--- K, B) =Bkt -, Bxm) is the effect of m
variants for the kth study.

» Random effects model

Bk = Bo + &k

where 5y = (Bo1, - -+ , Bom) represents the average effect
among the studies, & is a set of random effects
representing the deviation of the kth study from the
average effect ¢ ~ N(0, X)



Heterogeneity

» Assume X = ¢2B, where B is a pre-specified matrix to
constrain the potential many parameters in ¥.

» A choice of B is

b12 b1 bgr s b1 bmr
B_ bzf.31 r ;
Bmbil oo b2,

» (b1, --- bm) controls the relative degrees of heterogeneity
for the m variates (e.g., MAF), and r specifies the
correlation of heterogeneity.

» Choice of B has no effect on the type | error but may affect
the power.



New Random Effects Burden Test

» The null hypothesis Hy : 3o = 0,02 =0

» Fork=1,....K, Bk ~ N(Bo, % = V' + 02B). The
log-likelihood function is

K
Zﬂk—ﬁo )" (B — Bo) —fZIog\Qk\
2

> Let Ek ~ V. ' Ux, the random effects (RE) test for fixed effects

/ 1 U2
Uburden =UV7U+ VU

where U, = 1 S5, U,BUx — tr(VB), V, = 1tr(X K, ViBViB)
» For burden test, replace U by WU, and V by W/ VW/.



New Random Effects Variance Component Test

> Bo ~ N(0, 2W), where W is a pre-specified matrix, e.g.,

2

Wy WiWop
W= | wawip
W
where (wq, - - -, wy) controls the relative magnitude of the d

average genetic effects, and p indicates the correlation.
» The null hypothesis Hy : 72 = 0,02 = 0
» Let B = (B, ..., Bx), then

B~ MVN (o, 72(Jk ® W) + 0®(I @ B) +diag(V;", -+, v,;1))

where ® denotes Kronecker product

> {Bk ~ V" Uk}, the score statistic is a function of Uy, Vi,
k=1,.. K.



Summary

» Pooled- vs meta-analysis

» For meta-analysis rare variant association tests can be
constructed from multivariate summary statistics, i.e., the
score vector U and information matrix V

» Fixed vs random effects model



Set-based gene-environment interaction

v

mvariants, G; = (Gjy, -+ -, Gim)’
E;: environmental covariate

X;: covariates
Gene-environment interaction (GxE) model

v

v

v

m m
HEW)} =X/a+EBF+>_ GiBf +> (EiGj)B*
J=1 J=1

v

No interaction means g = (88, ..., 8GF) =0



Hierarchical model for 5%

» Model the interaction effect
B/'GE = wn+ 5]
» w;: a vector of known features
> 5] ~ F(O, 7'2)
» The interaction effect term

m

m m
Z(EiGij)/BjGE = (Z E,‘G,'/'Wj)n + Z E,'G,']'(Sj

=1 =1 j=1
m m

= E()_ Gjw)n Z (EiGj)o;
i=1 j=1

» No interaction means Hy : n = 0,72 =0



Challenges

» Main effects {3@, -, 3G} may not be estimated reliably if
m is large or variants are rare.

» Assume the main effects {B/-G} are random effects such
that
B7 ~ F(0,1%)
» Need to derive score statistics for the mixed GxE effects
(n, 72) in the presence of another random effects ﬂjG.



Estimation

» € can be estimated by maximum posterior approach (or
best linear unbiased prediction, in the linear mixed effects
model), but the computation is intensive under a
generalized linear model due to m-dimensional integration
with no closed form.

> BJ.G minimizes ridge regression

. m
Bridge = argmin Z(yi — )(;04 — EIﬂE _ GIBG)Q + )\Zﬁf
i=1 /=

where \ = 02 /12



Some nice properties about ridge

» Knight and Fu (2000) states that if A = o(1/n) then 3> is a v/n
consistent estimator of 3y

» Score statistics for the fixed effects under Hy : 7 = 0,72 =0
m m
~ / ~
uy = (D - i) (EQQ_ Gw)) V(E(Y_ G- w)) (D~ fi)
j=1 j=1

where i = E(D|G, E) under n = 0,72 = 0
» Score statistic for the variance component under Hy : 72 = 0
Uz = (D~ U)(GE)(GE) (D - 1)

where U = E(D|G, E) under 72 = 0



Combination of score statistics
» P-value based, Z, = —2log P,, and Z,- = —2log P,»
Tr=2Z)+Z2 ~ X}
» Grid-search based optimal linear combination
To= p@[g}1<](pUn +(1=p)Up)
where p is restricted on a set of pre-specified grid points

{0=1p0.p1,....pg =1}
» Adaptive-weighted linear combination

Ta= 22+ 2%

» Give more weight to either burden or variance component if
the evidence comes mainly from one

» Su YR, Di C and Hsu L (2015). A unified powerful set-based test
for sequencing data analysis of GXE interactions. Submitted.



Power comparison

» m = 25 variants

To Ta T; Burden Var Comp

H, : 30% variants 8 = ¢
0.541 0.620 0.672 0.473 0.533

H, : Half 8 = ¢, other half 5 = —c¢
0.544 0.542 0.516 0.021 0.632

H,:All 3 =c
0.768 0.770 0.740 0.848  0.050




Weight

» Choices of weight
» Functioncal characteristics (e.g., missense, nonsense)

» Screening statistics, M; and C; are the Z statistics from
marginal association screening and correlation of G and E
screening

W,{ M if M| > |G|
771 G otherwise
Since the screening statistics are independent of GxE test,

no need to use permutation to calculate the p-values
» Jiao S, Hsu L, et al. (2013, 2015)



Summary

» Set-based association testing

» Mixed effects model that accounts for both burden genetic
risk score and variance component

» Meta-analysis

» GXE interaction between a set of variants and
environmental factor
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