
Today’s Outline

I Single variant association analysis.

I Single variant association analysis for genome-wide
association studies (GWAS).

I Effect size estimation and winner’s curse.



Single Variant Test

I In GWAS, single variant test is the most popular approach
to investigating associations.

I Yi : outcomes for i = 1, ... , n
I X ′i = (1, xi1, · · · , xiq) : covariates including the intercept.
I Regression model

g{E(Yi} = X ′i α + Giβ.

I If Y is continuous, g(·) is a linear link; If Y is binary, g(·) is a
logit link, log{Pr(Y = 1)/Pr(Y = 0)}.



Single Variant Test

I Gi : genotype value. Suppose the locus takes two alleles, A
and a

I Additive:
AA = 0, Aa = 1, aa = 2

I Dominant:
AA = 0, Aa = 1, aa = 1

I Recessive:
AA = 0, Aa = 0, aa = 1



Single Variant Test
I Null hypothesis H0 : β = 0

I Three asymptotically equivalent tests
I Wald test:
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I Likelihood ratio (LR) test:

2{log L(α̂, β̂)− log L(α̂0, 0)} ∼ χ2
1

I Wald test is most intuitive. LR test is directly related to
Neyman-Pearson lemma. The score test can be very fast, as it
doesn’t require fitting the model under the alternative.



Single Variant Analysis for GWAS Data
I Manhattan plot of GWAS (genome-wide association

studies) association analysis (n ≈ 40, 000).

Schumacher FR et al. (2015). GWAS of colorectal cancer identifies six
new susceptibility loci. Nat Commun DOI:10.1038



Confounding

I Population stratification is a major confounder in genetic
association studies

I It occurs in the following scenario:
I The phenotype is more common in one population
I Allele frequencies are different between populations

I The effects of stratification increase with sample size, so
that even subtle population substructure can yield grossly
inflated type I error for large GWAS



Detecting Stratification

I Quantile-Quantile (QQ) plot shows little stratification.



Detection Stratification

I QQ plot shows stratification

Wellcome Trust Case Control Consortium (2007) Genome-wide
association study of 14,000 cases of seven common diseases and 3,000
shared controls. Nature 447.7145: 661-678.



Controlling for Stratification

I Study design
I Careful sampling
I Family-based controls

I Statistical methods based on largely “null” markers.
I Genomic control
I Structured association
I Principal component analysis



Genomic Control

I Select unlinked markers (e.g., pairwise distance > 100 kb)

I Compute χ2 for each marker

I Inflation λ = Median observed χ2/0.456

I Adjust statistic by

χ2
fair = χ2

observed/λ

I λ also provides a convenient way to summarize magnitude
of stratification



Why Genomic Control?

I Simple and convenient approach.

However,

I Crude adjustment, especially when the degrees of
stratification vary substantially among the SNPs.

I Does stratification inflate the p-value to the same extent
under the alternative?

Delvin B & Roeder K. (1999) Genomic control for association studies.
Biometrics 55:997–1004.



Structured Association

I Use unlinked markers to assign individuals to
subpopulation

I Suppose Z are the latent subpopulations, P are allele
frequencies in K subpopulations, G are observed
genotypes

I Step 1: Sample P(m) from Pr(P|G, Z (m−1))
I Step 2: Sample Z (m)

i from Pr(Zi |G, P(m)) for each i
I All calculations involves Pr(G|P, Z ), which assumes

Hardy-Weinberg equilibrium

I Test for association within each population or test for
association while conditioning on subpopulation



Features

I Can be inferred with relatively few SNPs, but
computationally intractable for large # of SNPs.

I Describing subpopulation can be useful.

However,

I Difficult to correctly estimate the population substructure or
to correctly assign individuals to subpopulations, especially
when the population under study is a continuous mixture of
ancestral subpopulation.

Pritchard JK, Stephens M, Rosenberg NA & Donnelly P. (2000)
Association mapping in structured populations. Am J Hum Genet, 67(1),
170–181.



Principal Components Analysis
I Infer continuous axes of genetic variation from SNPs.



Model

Y : 1 vs 0, whether or not the subject has the disease of
interest.

G: Genotype at a candidate locus.
U: Unknown population structure.
Z : A set of SNPs, which is informative about latent U.

I True model

logit{Pr(Y = 1|G, U, Z )} = Gβ + γ(U, Z )

I β is parameter of interest, but not identifiable because U is
not observed.



Statistical Framework

I Marginal model

Pr(Y = 1|G, Z )

Pr(Y = 0|G, Z )
=

Pr(Y = 1, G, Z )

Pr(Y = 0, G, Z )

=

∫
Pr(Y = 1, G, Z , u)

Pr(Y = 0, G, Z , u)

Pr(Y = 0, G, Z , u)

Pr(Y = 0, G, Z )
du

= exp(Gβ)

∫
exp{γ∗(u, z)}P(u|Y = 0, G, Z )du

I In order for the second term not to be a function of G

Pr(U = u|G, Z , Y = 0) = Pr(U = u|Z , Y = 0)

I Let ξ(Z ) be an unknown function, we can rewrite

logit{Pr(Y = 1|G, Z )} = Gβ + ξ(Z )



Statistical Framework

logit{Pr(Y = 1|G, Z )} = Gβ + ξ(Z ) (1)

I A necessary and sufficient condition for (1) to hold is

Pr(U = u|G, Z , Y = 0) = Pr(U = u|Z , Y = 0)

Or equivalently

Pr(U = u|G, Z , Y = 1) = Pr(U = u|Z , Y = 1)

I This can be seen from

Pr(U,G|Z ,Y =1)=Pr(U,G|Z ,Y =0) exp(βG+γ(U,Z ))
Pr(Z ,Y =0)

Pr(Z ,Y =1)

I Z dissolves the link between U and G such that U ⊥ G for
each stratum of Z in the control (or case) population.



Modeling ξ(Z )

I Reduce potentially high dimension Z → Ψ(Z )

I If Pr(G =g|Z = z, Y = 0) = Pr(G =g|Ψ(Z ) = Ψ(z), Y = 0)
then

logit{Pr(Y = 1|G = g, Ψ(Z ) = x)} = βg + ξ(x)

I Sketch of proof:

Pr(Y = 1, G = g, Ψ(Z ) = x)

Pr(Y = 0, G = g, Ψ(Z ) = x)

=

∫
u,z:ψ(z)=x Pr(Y = 1, G = g, Z , u)dZdu

Pr(Y = 0, G = g, Ψ(Z ) = x)

=

∫
u,z:ψ(z)=x exp(Gβ + γ(u, Z ))Pr(Y = 0, G = g, Z )dZdu

Pr(G = g|Y = 0, Ψ(Z ) = x)Pr(Y = 0, Ψ(Z ) = x)

= exp(Gβ)

∫
u,z:ψ(z)=x exp(γ(u, Z ))Pr(Y = 0, Z )dZdu

Pr(Y = 0, Ψ(Z ) = x)



Modeling ξ(Z )

I Choose lower-dimension Ψ(Z ) = Pr(G = g|Z = z, D = 0)
by machine learning or linear combination approaches.

I ξ is an unknown function and a nonparametric function
may be desired (e.g., B-splines)

I Theoretical justification for β̂ in the presence of
nonparametric function ξ(·) with estimated Ψ(Z )

Lin DY & Zeng D (2011) Correcting for Population Stratification in
Genomewide Association Studies. J Am Stat Assoc 106:997–1008.



Practice

I In practice, Ψ(Z ) are the leading principal components and
ξ(·) is a linear function.

I Potential pitfalls in the principal components analysis
I SNPs are correlated
I Individuals may be related

I Including individuals of known geographic origin can help
interpretation.

I Outliers distort (smaller) eigenvectors. Analysis should be
performed twice: once to detect outliers and a second time
to infer structure in the remaining samples.



Summary

I Principal components can be used to visualize population
substructure and as covariates in association analysis.

I Even if the interest is in the single variant association
looking at all of the variants can help identify potential
confounding issues (e.g., batch effect, population
substructure).



Effect Size Estimation

I Model
g{E(Yi} = X ′i α + Giβ.

I If y is a continuous trait: linear regression model

Yi = X ′i α + Giβ + εi , εi ∼ N(0,σ2).

I Xi = (1, xi1, · · · , xiq): covariates including the intercept.

I Gi : Genotype value.



Likelihood: Estimation of β

I Likelihood

L(β,α,σ2) = (2πσ2)−n/2 exp

{
−(Y − X̃γ)′(Y − X̃γ)

2σ2

}

I γ = (α,β)
I X̃ = [X , G]



Estimation of β

I Score functions

S(γ) =
∂ log L
∂γ

=
1
σ2 X̃ ′(Y − X̃γ)

S(σ2) =
∂ log L
∂σ2 = − n

σ2 +
1
σ4 (Y − X̃γ)′(Y − X̃γ)

I Fisher information

I(γ,σ2) =
1
σ2

(
X̃ ′X̃ 0

0 n
2σ2

)



Estimation of β

I MLE of γ̂ = (α̂, β̂) = (X̃ ′X̃ )−1X̃ ′Y

γ̃ ∼ N(γ,σ2(X̃ ′X̃ )−1)

I Unbiased estimators of σ2

σ̂2 = (Y − X̃ γ̂)′(Y − X̃ γ̂)/(n − q − 1)



Estimation of β

I If Y is a binary trait, logistic regression model

log
{

Pr(Y = 1)

Pr(Y = 0)

}
= X ′i α + Giβ

Or

Pr(Y = 1) =
exp(X ′i α + Giβ)

1 + exp(X ′i α + Giβ)

I MLE of (α,β) by maximizing

L =
n∏

i=1

{Pr(Yi = 1)}Yi{Pr(Yi = 0)}1−Yi

=
n∏

i=1

exp{(X ′i α + Giβ)Yi}
1 + exp(X ′i α + Giβ)



Winner’s Curse

I ‘Winner’s Curse’ = the phenomenon whereby winners at
competitive auctions are likely to pay in excess of the
item’s worth

I In genetic association studies the winner’s curse is the
phenomenon that the disease risk of a newly identified
genetic association is overestimated

I It occurs particularly when the statistical power of original
study is not sufficient, which is common in GWAS because
they are often underpowered to detect small genetic
effects at a stringent genome-wide significant level.

I The consequence is that the sample size required for
confirmatory study will be underestimated, resulting failure
of replication study to corroborate the association.



Bias

I Asymptotic distribution for β̂ after selection |β̂/σ̂| > c,
where c is a cutpoint selected to control the family wise
error rate

f
β̂|{|β̂|>cσ̂}(x) =

1
σφ(x−β

σ )

Φ(βσ − c) + Φ(−β
σ − c)

I
(
|x
σ
| ≥ c

)
.

I φ: standard normal density.
I Φ: standard cumulant density function

I The expectation of β̂ for the selected SNP is

E(β̂) = β + σ
φ(βσ − c) + φ(−β

σ − c)

Φ(βσ − c) + Φ(−β
σ − c)



Bias



Solution

I Large GWAS (or a meta-analysis).

I An independent replication study.

I Statistical methods to correct the bias of estimators and
confidence intervals.



Resampling Technique

I Bootstrap method
I Randomly draw samples with replacement, mimic the

original procedure to identify markers, and estimate, β̂D

I The ’validation’ sample consists of subjects that are not
selected in the bootstrap sample, estimate, β̂E

I B̂ias = β̂D − β̂E

I A more refined resampling-based estimator that accounts
for negative covariance between training and validation
samples and the difference in allele frequency can be
found in Faye et al. (2011, Stat in Med, 30:1898–1912)

Sun L, & Bull SB. (2005) Reduction of selection bias in genomewide studies by
resampling. Gen Epidem 28(4):352–367.



Bias Correction Method

I The maximum likelihood estimator

β̂MLE = argmax
β

f
β̂|{|β̂|>cσ̂}(β̂;β)



Adjusted Confidence Interval (CI)

I The likelihood ratio test

T = 2{log L(β̂MLE)− log L(β0)}

I A 95% CI for β̂MLE consists of those values of β for which
the test is non-significant at significance level 0.05.



Adjusted Confidence Interval (CI)
I T ≤ 3.84 = χ2

1,0.95
I Henc, the CI consists of the β0 values for which

log L(β0) ≥ log L(β̂MLE)− 3.84/2

= log L(β̂ MLE)− 1.92



Practice

I β̂ has upward bias; however, β̂MLE tends to overcorrect and
to underestimate β.

I Combine these two estimators with a weight

β̂w = ω̂β̂ + (1− ω̂)β̂MLE

ω̂ =
σ̂2

σ̂2 + (β̂ − β̂MLE)2

I The lower bound of CI

β̂ω;α/2 = ω̂α/2β̂α/2 + (1− ω̂α/2)β̂MLE;α/2

I The upper bound of CI

β̂ω;1−α/2 = ω̂1−α/2β̂1−α/2 + (1− ω̂1−α/2)β̂MLE;1−α/2



Example: Colorectal Cancer
I The discovery set includes 4,878 cases and 4,914 controls, and

the replication set includes 13,114 cases and 14,304 controls.Table 3
Summary odds ratios and p-values for the SNPs showing association with Colorectal Cancer

aMajor/minor allele;
bFrom NCBI build 139;
csignificance level (p-value) for testing equality of bias-adjusted and replication odds ratios.

rsID Gene Allelea Chr Positionb

Trend p-value

Unadjusted

Per Allele OR (95% CI)

CombinedStages 1&2 Replication Adjusted Replication Pc
het

rs10411210 RHPN2 C/T 19 38224140 2.0 × 10−7 6.9 × 10−4 0.79
(0.72-0.86)

0.81
(0.72-0.95)

0.90
(0.85-0.96)

0.24 0.89
(0.84-0.94)

rs961253 C/A 20 6352281 7.8 × 10−7 3.4 × 10−5 1.13
(1.08-1.19)

1.10
(1.00-1.18)

1.11
(1.06-1.17)

0.87 1.11
(1.06-1.15)

rs355527 G/A 20 6336068 7.8 × 10−7 3.4 × 10−5 1.13
(1.08-1.19)

1.10
(1.00-1.18)

1.11
(1.06-1.17)

0.87 1.11
(1.06-1.15)

rs9929218 CDH1 G/A 16 67378447 1.1 × 10−6 1.5 × 10−4 0.88
(0.84-0.93)

0.91
(0.84-1.00)

0.93
(0.90-0.97)

0.71 0.93
(0.90-0.96)

rs4444235 BMP4 T/C 14 53480669 5.6 × 10−6 1.8 × 10−4 1.12
(1.07-1.18)

1.03
(0.99-1.17)

1.10
(1.05-1.16)

0.42 1.09
(1.04-1.14)

rs1862748 CDH1 C/T 16 67390444 8.5 × 10−7 1.5 × 10−4 0.88
(0.84-0.93)

0.91
(0.84-1.00)

0.93
(0.90-0.97)

0.64 0.93
(0.90-0.96)

rs4951291 G/A 1 202273161 6.6 × 10−6 5.7 × 10−1 0.85
(0.79-0.91)

0.97
(0.80-1.01)

1.02
(0.95-1.09)

0.35 0.99
(0.95-1.01)

rs7259371 RHPN2 G/A 19 38226481 3.4 × 10−6 2.1 × 10−3 0.86
(0.81-0.92)

0.93
(0.81-1.01)

0.91
(0.86-0.97)

0.84 0.91
(0.86-0.97)

rs4951039 A/G 1 202273220 6.6 × 10−6 5.2 × 10−2 0.85
(0.79-0.91)

0.97
(0.80-1.01)

1.09
(1.00-1.19)

0.03 0.99
(0.96-1.01)

9/25/2015file:///M:/BIOSTAT/Hsu/Presentations/2015/UW%20Course/Figure7.html



Other Likelihood-based Estimator

I MLE β̂MLE provides no guarantee of unbiasedness or
efficiency, because large-sample assumptions are already
applied to β̂ when constructing the conditional likelihood.

I An alternative estimator

β̃ =

∫
βf ∗
β̂|{|β̂|>cσ̂}(β̂;β)dβ

I β̃ is a posterior mean with a flat prior on β and has
favorable MSE properties

I Averaging β̃ and β̂MLE to balance out the strengths of the
two estimators

Ghosh et al. (2008) Estimating Odds Ratios in Genome Scans: An Approximate
Conditional Likelihood Approach. AJHG 82: 1064–1074



Summary

I Single variant association

I Use genome-wide SNPs to account for confounding
(population substructure)

I Estimation of effect size and winner’s curse
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