Today’s Outline

» Single variant association analysis.

» Single variant association analysis for genome-wide
association studies (GWAS).

» Effect size estimation and winner’s curse.



Single Variant Test

v

In GWAS, single variant test is the most popular approach
to investigating associations.

Y;: outcomesfori=1,...,n
X{ = (1,x1,- -, Xjq) : covariates including the intercept.
Regression model

v

v

v

g{E(Yi} = Xia + GiB.

v

If Y is continuous, g(-) is a linear link; If Y is binary, g(-) is a
logit link, log{Pr(Y =1)/Pr(Y =0)}.



Single Variant Test

» Gj: genotype value. Suppose the locus takes two alleles, A

and a
» Additive:
AA=0, Aa=1, aa=2
» Dominant:
AA=0, Aa=1, aa=1
» Recessive:

AA=0, Aa=0, aa=1



Single Variant Test
» Null hypothesis Hy : 5 =0

» Three asymptotically equivalent tests

» Wald test: N
B
— ~ N(0O, 1
s.e.(B) ©.1)
» Score test:
55100 L8,a0)]| 15 =0a0) " | logL(s,a )H 3
a3 0 5=0 0 op 0 5=0 1

I(3 = 0|ao) = {'6/3 - |aa|;l|a6}’
» Likelihood ratio (LR) test:
2{log L(@, B) — log L(@o, 0)} ~ x?

» Wald test is most intuitive. LR test is directly related to
Neyman-Pearson lemma. The score test can be very fast, as it
doesn’t require fitting the model under the alternative.

B=0,ap



Single Variant Analysis for GWAS Data

» Manhattan plot of GWAS (genome-wide association
studies) association analysis (n ~ 40, 000).
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Schumacher FR et al. (2015). GWAS of colorectal cancer identifies six
new susceptibility loci. Nat Commun DOI:10.1038



Confounding

» Population stratification is a major confounder in genetic
association studies

» It occurs in the following scenario:

» The phenotype is more common in one population
» Allele frequencies are different between populations

» The effects of stratification increase with sample size, so
that even subtle population substructure can yield grossly
inflated type | error for large GWAS



Detecting Stratification

» Quantile-Quantile (QQ) plot shows little stratification.
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Detection Stratification

» QQ plot shows stratification
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Wellcome Trust Case Control Consortium (2007) Genome-wide
association study of 14,000 cases of seven common diseases and 3,000
shared controls. Nature 447.7145: 661-678.



Controlling for Stratification

» Study design
» Careful sampling
» Family-based controls

» Statistical methods based on largely “null” markers.
» Genomic control
» Structured association
» Principal component analysis



Genomic Control

v

Select unlinked markers (e.g., pairwise distance > 100 kb)

Compute y? for each marker

v

Inflation A = Median observed x?/0.456

v

v

Adjust statistic by

2 _ .2
Xfair = Xobserved/)‘

v

A also provides a convenient way to summarize magnitude
of stratification



Why Genomic Control?

» Simple and convenient approach.

However,

» Crude adjustment, especially when the degrees of
stratification vary substantially among the SNPs.

» Does stratification inflate the p-value to the same extent
under the alternative?

Delvin B & Roeder K. (1999) Genomic control for association studies.
Biometrics 55:997-1004.



Structured Association

» Use unlinked markers to assign individuals to
subpopulation

» Suppose Z are the latent subpopulations, P are allele
frequencies in K subpopulations, G are observed
genotypes

» Step 1: Sample P(™ from Pr(P|G, Z(™1)

> Step 2: Sample Z™ from Pr(Z|G, P(™) for each i

» All calculations involves Pr(G|P, Z), which assumes
Hardy-Weinberg equilibrium

» Test for association within each population or test for
association while conditioning on subpopulation



Features

» Can be inferred with relatively few SNPs, but
computationally intractable for large # of SNPs.

» Describing subpopulation can be useful.

However,

» Difficult to correctly estimate the population substructure or
to correctly assign individuals to subpopulations, especially
when the population under study is a continuous mixture of

ancestral subpopulation.

Pritchard JK, Stephens M, Rosenberg NA & Donnelly P. (2000)
Association mapping in structured populations. Am J Hum Genet, 67(1),

170-181.



Principal Components Analysis
» Infer continuous axes of genetic variation from SNPs.

Principle Components Analysis of Ancestry
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Model

Y: 1 vs 0, whether or not the subject has the disease of
interest.

G: Genotype at a candidate locus.

U: Unknown population structure.

Z: A set of SNPs, which is informative about latent U.

» True model
logit{Pr(Y =1|G, U, 2)} = G5+ (U, 2)

» (3 is parameter of interest, but not identifiable because U is
not observed.



Statistical Framework

» Marginal model
Pr(Y=1|G,Z) Pr(Y=1,G, 2)
Pr(Y =0|G,Z) Pr(Y=0,G, 2)
~_ [Pr(Y=1,G Z u)Pr(Y=0,G,Z u)
) Pr(Y=0,G Zu) Pr(Y=0,G,2)

_ exp(Gﬁ)/exp{v*(u, 2)}P(UlY = 0, G, Z)du

au

» In order for the second term not to be a function of G
PriU=u|G,Z,Y=0)=Pr(U=u|Z, Y =0)
» Let {(Z) be an unknown function, we can rewrite

logit{Pr(Y =1|G, Z)} = GB + £(2)



Statistical Framework

logit{Pr(Y = 1|G, Z)} = GB + £(2) (1)

» A necessary and sufficient condition for (1) to hold is
PriU=u|G,Z, Y =0)=Pr(U=u|Z, Y =0)

Or equivalently
PriU=u|G,Z, Y =1)=Pr(U=u|Z, Y =1)

» This can be seen from

Pr(Z,Y=0)

Pr(U.G|Z,Y=1)=Pr(U.GIZ.Y =0) exp(3G+7(U.2)) 5 75

» Z dissolves the link between U and G such that U L. G for
each stratum of Z in the control (or case) population.



Modeling £(Z)

» Reduce potentially high dimension Z — V(2)
» fPr(G=g|Z =z, Y =0) = Pr(G=9|V¥(Z) = ¥(2), Y = 0)
then

logit{Pr(Y = 1|G = g, ¥(2) = x)} = 8g + £(X)
» Sketch of proof:
Pr(Y=1,G=g,V(Z) =x)
Pr(Y=0,G=g.V(Z) =x)
Jozworx PH(Y =1,G = g, Z, u)dZdu
Pr(Y=0G=g V() =x)
Jozeozrx ©XP(GB + (U, 2))Pr(Y = 0, G = g, Z)dZdu
Pr(G glY =0,¥(2) = x)Pr(Y =0,¥(Z) = x)
Jozwer—x ©P(1(U, 2))Pr(Y = 0, Z)dZdu
= ep(Gp) e Pr(Y = 0, ¥(Z) = X)




Modeling £(2)

» Choose lower-dimension ¥(Z) = Pr(G=g|Z =z, D =0)
by machine learning or linear combination approaches.

» ¢ is an unknown function and a nonparametric function
may be desired (e.g., B-splines)

» Theoretical justification for B in the presence of
nonparametric function £(-) with estimated V(Z)

Lin DY & Zeng D (2011) Correcting for Population Stratification in
Genomewide Association Studies. J Am Stat Assoc 106:997—-1008.



Practice

» In practice, W(Z) are the leading principal components and
&(+) is a linear function.

» Potential pitfalls in the principal components analysis

» SNPs are correlated
» Individuals may be related

» Including individuals of known geographic origin can help
interpretation.

» Outliers distort (smaller) eigenvectors. Analysis should be
performed twice: once to detect outliers and a second time
to infer structure in the remaining samples.



Summary

» Principal components can be used to visualize population
substructure and as covariates in association analysis.

» Even if the interest is in the single variant association
looking at all of the variants can help identify potential
confounding issues (e.g., batch effect, population
substructure).



Effect Size Estimation

Model

v

g{E(Yi} = Xia + GiB.

If y is a continuous trait: linear regression model

v

Yi=Xoa+GB+e, &~ NQO, o).

v

Xi = (1,x1,---, Xig): covariates including the intercept.

v

Gj: Genotype value.



Likelihood: Estimation of /3

» Likelihood

>y =(af)
> X=[X.G



Estimation of

» Score functions

_OlogLl 13, <
S(v) = o o X(Y = X9)
Odlog L n 1 < ~

2
S(o7) = 902 o2 ' o4

» Fisher information

1 /X'X 0
6.8 = (%5 2)



Estimation of

» MLE of 5 = (&, B) = (X'X)~'X'Y
F ~ N(v, o3(X'X)")
» Unbiased estimators of o2

7% = (Y = X3)(Y = X3)/(n—q 1)



Estimation of

» If Y is a binary trait, logistic regression model
Pr(Y=1)1 ., ’
|Og {FW:O)} = )(,'Of + G,ﬁ

Or
exp(Xi’a -+ G,ﬁ)
1+ exp(X/a + Gif)

» MLE of («, 8) by maximizing

Pr(Y =1) =

L = JJ{Pr(Y;=1)}"{Pr(Y;=0)}'""
i—1
_ H exp{(X/a + Gi8)Y;}
N 1 +exp(X'a+ Gip)




Winner’s Curse

» ‘Winner’s Curse’ = the phenomenon whereby winners at
competitive auctions are likely to pay in excess of the
item’s worth

» In genetic association studies the winner’s curse is the
phenomenon that the disease risk of a newly identified
genetic association is overestimated

» It occurs particularly when the statistical power of original
study is not sufficient, which is common in GWAS because
they are often underpowered to detect small genetic
effects at a stringent genome-wide significant level.

» The consequence is that the sample size required for
confirmatory study will be underestimated, resulting failure
of replication study to corroborate the association.



Bias

» Asymptotic distribution for 3 after selection |§/8| > C,
where c is a cutpoint selected to control the family wise
error rate

2003 x
118507 (X) = o2 —c)+o(-L - C)/ ('E' = C) '

» ¢: standard normal density.
» &: standard cumulant density function

» The expectation of Efor the selected SNP is

5 gy lle=0Fel=5-0)
EB) =5+ “o(f_c)+ (-2 —¢)

o2




Bias
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Solution

» Large GWAS (or a meta-analysis).
» An independent replication study.

» Statistical methods to correct the bias of estimators and
confidence intervals.



Resampling Technique

» Bootstrap method
> Randomly draw samples with replacement, mimic the
original procedure to identify markers, and estimate, 5p

» The 'validation’ sample consists of subjects that are not
selected in the bootstrap sample, estimate, 5¢

> Bias = BD - BE
» A more refined resampling-based estimator that accounts
for negative covariance between training and validation
samples and the difference in allele frequency can be
found in Faye et al. (2011, Stat in Med, 30:1898-1912)

Sun L, & Bull SB. (2005) Reduction of selection bias in genomewide studies by
resampling. Gen Epidem 28(4):352-367.



Bias Correction Method

» The maximum likelihood estimator

//B\MLE = argr;ax 5‘{|5|>C(,}(5 B)



Adjusted Confidence Interval (Cl)

» The likelihood ratio test

T = 2{log L(BuLe) — log L(fo)}

» A 95% Cl for EMLE consists of those values of 3 for which
the test is non-significant at significance level 0.05.



Adjusted Confidence Interval (Cl)
> T<384=xipes
» Henc, the CI consists of the 3y values for which
log L(Bo) >log L(AuLe) — 3.84/2
—log L(Bme) — 1.92

ragion satisfying
log-likelihond inaguality

log-likelihood
135 -130 -125

-140

-145




Practice

> B has upward bias; however, BMLE tends to overcorrect and
to underestimate S.

» Combine these two estimators with a weight
B =3B+ (1 - 2)Bue
82
o2 + (B — BumLe)?

o=
» The lower bound of Cl

Bw;oa/Z = a04/2//8\01/2 + (1 - a()c/Z)B\MLE;oa/Z

» The upper bound of ClI

B —of2 = 01—as2B1—aje + (1 = B1_a/2) BMLEA—a/2



Example: Colorectal Cancer

» The discovery set includes 4,878 cases and 4,914 controls, and
the replication set includes 13,114 cases and 14,304 controls.

Summary odds ratios and p-values for the SNPs showing association with Colorectal Cancer

rsID

Trend p-value

Per Allele OR (95% CI)

C
Gene Allele? Chr Position” Stages 1&2 Replication Unadjusted Adjusted Replication P het Combined

15961253

1$355527

1s9929218

154444235

rs1862748

154951291

1s7259371

rs4951039

rs10411210RHPN2. C/T 19 38224140 54 (o7

C/A 20 6352281 g, 1077
G/A 20 6336068 7gx 1077

CDHI G/A 1

o

67378447 | | x 1076
BMP4 T/C 14 53480669 56 x 16

CDHI C/T 1

e

67390444 ¢ 55 1077

G/A

202273161 ¢ 196

RHPN2 G/A 1

©

38226481 345 106

AIG

202273220 ¢ x 106

6.9x107*
34%107°
34x107°
1.5x1074
18x 1074
15x1074
57x107"
2.1x107°

52x1072

0.79 0.81 0.90
(0.72-0.86) (0.72-0.95) (0.85-0.96)
113 1.10 L11
(1.08-1.19) (1.00-1.18) (1.06-1.17)
113 1.10 111
(1.08-1.19) (1.00-1.18) (1.06-1.17)
0.88 0.91 0.93
(0.84-0.93) (0.84-1.00) (0.90-0.97)
12 1.03 1.10
(1.07-1.18) (0.99-1.17) (1.05-1.16)
0.88 0.91 0.93
(0.84-0.93) (0.84-1.00) (0.90-0.97)
0.85 0.97 1.02
(0.79-0.91) (0.80-1.01) (0.95-1.09)
0.86 0.93 091
(0.81-0.92) (0.81-1.01) (0.86-0.97)
0.85 0.97 1.09
(0.79-0.91) (0.80-1.01) (1.00-1.19)

024 089
(0.84-0.94)
087 L1l
(1.06-1.15),
087 L1l
(1.06-1.15),
071 093
(0.90-0.96)
042 1.
(1.04-1.14)
064 093
(0.90-0.96)
035 099
(0.95-1.01)
084 091
(0.86-0.97)
003 099
(0.96-1.01)

aMajor/minor allele;
PFrom NCBI build 139;
Csignificance level (p-value) for testing equality of bias-adjusted and replication odds ratios.




Other Likelihood-based Estimator

» MLE BMLE provides no guarantee of unbiasedness or
efficiency, because large-sample assumptions are already

~

applied to 5 when constructing the conditional likelihood.

» An alternative estimator

5= [ 86y o B: 0108

» [ is a posterior mean with a flat prior on 5 and has
favorable MSE properties

» Averaging E and EMLE to balance out the strengths of the
two estimators

Ghosh et al. (2008) Estimating Odds Ratios in Genome Scans: An Approximate
Conditional Likelihood Approach. AJHG 82: 1064—1074



Summary

» Single variant association

» Use genome-wide SNPs to account for confounding
(population substructure)

» Estimation of effect size and winner’s curse



Recommended Reading

» Devlin B & Roeder K (1999) Genomic control for
association studies. Biometrics 55(4):997—1004.

» Lin DY & Zeng D (2011) Correcting for Population
Stratification in Genomewide Association Studies, J Am
Statist Assoc 106:997-1008.

» Pritchard JK, Stephens M, Rosenberg NA, & Donnelly P.
(2000) Association mapping in structured populations. Am
J Hum Genet 67(1):170-181.

» Zhong H & Prentice RL (2008) Bias-reduced estimators
and confidence intervals for odds ratios in genome-wide
association studies. Biostatistics 9(4):621-634.



