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Interaction

Outline:

» Definition of interaction

v

Additive versus multiplicative interaction

v

Testing Gx E under the additional restriction of G and E
independence

v

Empirical Bayes (weighted) estimator of interaction

v

General regression and likelihood function



Definition and Overview

» Broad notion: Effect of one factor on an outcome depends
in some way on the presence of another factor

» These two factors can be two genes, two environmental
factors, or a gene (G) and and environmental (E) factor

» Outcome: binary, continuous, time-to-event

» Focus on the binary case in depth as many of the intuitions
and observations translate to general regression models



Notation

Y: Disease status

v

v

G: Genotype (0 and 1)

v

E: Exposure (0 and 1)

v

pge: P(D=1/G=9g,E=¢€), g=0,1,e=0,1

G=1

-0
E-0 E=1 E=0 E—1

Pge Poo Po Pio P11




Additive Interaction

> Lung cancer risk in smokers and non-smokers by asbestos exposure
(Hill et al. 1986).
No Asbestos Asbestos
Non-Smoker Smoker Non-Smoker Smoker
Pge  poo =0.0011  po; =0.0095 pio = 0.0067 py1 = 0.0450

» Effect of asbestos exposure alone (for non-smokers):
P10 — Poo = 0.0056
» Effect of smoking alone (in absence of asbestos):
Po1 — Poo = 0.0084
» Effect of both in reference to absence of both:
P11 — poo = 0.0439
» Difference in effect of both factors compared to sum of individual effects:

(P11 — Poo) — { (P10 — Poo) + (Po1 — Poo) } = P11 — P10 — Po1 + Poo = 0.0299



Multiplicative Interaction

> Instead of using risk differences, use risk ratios

> Lung cancer risk in smokers and non-smokers by asbestos exposure
(Hill et al. 1986).
No Asbestos Asbestos

Non-Smoker Smoker Non-Smoker Smoker

Pge  poo =0.0011  poy =0.0095 pio =0.0067 p11 = 0.0450

» Effect of asbestos exposure alone:

RRo1 = p1o/Poo = 6.09
> Effect of smoking alone:

RRo1 = po1/poo = 8.64
» Effect of both factors:

RR11 = p11/poo = 40.91
> Measure of interaction on a multiplicative scale:

RR4

RRwRRy 078



Scale Dependence of Interaction (Rothman et al 2008)

» If both factors have some effect on the outcome, absence
of interaction on the multiplicative scale implies the
presence of additive interaction, and likewise, the absence
of interaction on additive scale implies presence of
multiplicative interaction

» If there is no multiplicative interaction, i.e.,
P11 = (P10Po1)/Poo

» Additive interaction

P11 — P1o — Pot + Poo = m&)’? — P10 — Po1 + Poo
(Po1 — Poo) (P10 — Poo)

Poo
#0



Statistical Models for Interaction in Case-control Data

» Logistic regression model.

logit{Pr(Y = 1[G, E)} = Bo + f1G + B2E + f3G x E

v

OR =~ RR if the disease is rare (<5%)

v

Multiplicative interaction is quantified by

_ ORyy
eXp(BS) - OR1OOR01

v

Testing G x E multiplicative interaction is to test

Ho:,@3=0

v

Wald, likelihood ratio or score tests can be used



Inference for Additive Interaction

» Relative excess risk due to interaction (RERI).

RERI = (p11 — p1o — Po1 + Poo)/Poo
= RRyy — RRyg — RRy1 + 1
= (RRH - 1) — {(RRm - 1) + (RR01 — 1)}

» When the disease is rare,

RERI ~ OR1 — ORio — ORp1 + 1
= exp(Bi + B2 + B3) —exp(B1) — exp(B2) + 1

» Testing additive interaction is to test

1 —exp(B1) — exp(f2)
exp(B1 + B2)

Ho : exp(f3) =

» Plugin BML and use the delta theorem for standard errors.



Additive versus Multiplicative

» Additive scale is useful for public health relevance of an
interaction in different subgroups.

» Additive scale more closely corresponds to mechanistic
interaction ((both exposures together turns the outcome on
and the removal of one turns the outcome off), which
requires stronger assumptions than statistical interaction.

» Multiplicative models are easier to fit.

» Some noted less heterogeneity in multiplicative interaction
while meta-analyzing interactions.

» When the main effects are weak, the difference between
additive versus multiplicative interaction is small.



A Data Example

0Odds ratios (OR) for Joint Associations of Smoking Status (ever vs. never)
and 12 Susceptibility Loci with Bladder Cancer Risk

Observed Ors Expected P-values
OR joint interaction

Location N Cases Controls RAF OR OR OR Additive Multi.
i i SNP joint

0.036
(NAT2)
Chr 1p13.3 6 3745 3930 o071 17 335 47 405 57 oo0n 0.097
(GSTM1)
Chr 8q24.21 5 3525 5108 045 134 279 359 313 374 0034 0.743
(MYC)
Chr 3q28 5 3519 5110 074 141 293 38 334 412 o024 0.722
(TP63)
Chr 8q24.3 6 3843 5438 047 107 241 291 248 259 0017 0.325
(PSCA)
Chr 5p15.33 5 3526 5117 055 1.06 253 29 259 268 0.141 0.579
(CLPTMIL)
Chr 4p16.3 8 4063 5,668 02 123 241 28 265 298 0354 0.582
(TMEM129 TACC3-FGFR3)
Chr 22q13.1 8 4,066 5643 065 113 207 273 22 234 002 0.362
(CBX6, APOBEC3A)
Chr 19912 8 4068 5668 033 132 259 293 291 342 0919 0.139
(CCNE1)
Chr 2q37.1 8 4062 5660 092 124 234 295 258 29 0088 0.904
(UGT1A family)
Chr 237.1 8 4048 5304 097 144 173 347 217 248 20x10* 0254
(UGT1A6)
Chr. 18q12.3 8 4017 5640 043 119 235 288 254 28 0046 osn
_(SLC14A1)
Test for multiplicative interaction: empirical-Bayes (EB) shrinkage esti loiting the ion of gene-
environment independence.
Test for additive i ion: likelihood-ratio (LRT) test comparing saturated and additive model for joint effects using
logistic regression models. Garcia-closas et al. (2013)

[m] = =




Power of G x E Interaction

» Power for identifying GXE is typically low. It needs ~ 4
times as many subjects to test for an interaction that is
equally powerful as a main effect test.

» G and E may be assumed to be independent in many
situations.

» Under the additional restriction for G—E independence,
more efficient estimates may be obtained by exploiting this
assumption.



Case-only Estimation
Table: A binary G and a binary E.

G=0 G=1
E-0 E=1 E—-0 E—1
Y=0 poi Po2 Po3 Po4
Y=1 pn P12 P13 P14

» Multiplicative interaction

logit{Pr(Y =1|G,E)} = Bo + 81G + B2E + p3G x E.

ORy4
exp(fs3) = OR1oORo;
_ P11P14 ,Po1Po4
P12P13" Po2Po3
GE odds ratio in cases
GE odds ratio in controls

becomes 1 under G—E independence




Case-only Estimation

» Model

Pr(G=1|E, Y =1)
Pr(G=0|E, Y =1)

_ P(Y=1|G=1,E)/P(Y =0/G=1,E) Pr(Y =0,
T Pr(Y=1|G=0,E)/Pr(Y=0/G=0,E) Pr(Y=0,
_ exp(Bo + B1 + BE + BsE) Pr(G=1|Y =0 E)

exp(fBo + B2E) "Pr(G=0|Y=0,E)

= exp(B1 + BE) %

0,G
0,G

» The last equality holds if G and E are independent in
controls.



Power Comparison Between Case-Control versus
Case-only
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Type 1 Error

» Type | error is inflated if G-E independence doesn’t hold.
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Independence Assumption

» Natural for external exposure (e.g., exposure to pollution,
pesticide).

» True for treatment in a randomized clinical trial.

» Tricky for behaviour exposures (e.g., smoking, alcohol)



Measure of G — E Independence

» Measure of G and E association in controls, dgg =log
(odds ratio) of G and E in controls.

fce ~ N(0ge, o°)

» Since we are not sure about the G — E independence
assumption
e ~ N(0,72)

» If 72 = 0, uses the case-only estimator, if 72 = oo, uses the
case control estimator.

» Since fge ~ N(0, 02 + 72), one may estimate unknown
hyperparameter 2 by
72 = max(0, 0% — 5°)

> One could be conservative and use 72 = 62,



Empirical Bayes (EB) Estimator of Interaction

» A weighted average estimator of interaction

2 Tec 5?35 2
Bes Beo + Bee
n2 2 ~2
0% + 02, 0% + 02,

» Bco: case-only estimator; Sqc: case-control estimator.

> thﬁEB can be viewed as a shrinkage estimator, where the
robust B¢ has been shrunk toward the efficient oo under
the assumption of G-E independence

» The specific form of the "shrinkage” weights resembles the
form of a posterior mean obtained in a classical Bayesian
analysis under a normal-normal model (Berger, 1985, p.
131), with the prior variance substituted by an estimate
obtained using a method of moments approach.



Inference

» The EB-estimator can be re-written as
Bes = Bco — ﬁ%E
Ge t0¢cc

» By using the delta-method

~ 6 (9 +362,)
~ G G CC/ ~
V(BeB) ~ U%o + ( (EAz ié?z )2 Uges)
9¢cc GE

» Wald test based on this variance can be constructed to test
B3 =0



Type | Error

» Empirical Bayes (EB) estimator has better control of type |
error than case-only under independence.
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Power

» EB estimator has power gain over case-control under
independence.
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General Regression Set-up
» Likelihood

B Pr(Y|G, E)P(G|E)P(E)
P(G.ElY) = > g-e- P(Y|G*, E*)P(G*|E*)P(E*)

» Logistic regression model
logit{Pr(Y =1|G,E)} = fo + 1G + B2E + p3GXE

where 8 = (Bo, 81, B2, B3)

» P(GI|E): dependence parameter 6. If # = 0, G and E are
independent.

» P(E) is a non-parametric function.

» Unconstrained model: estimate (3, ) allowing for
dependence 6 # 0.

» Constrained model: estimate g assuming 6 = 0.



Estimation

» (3. parameters of interest; §: nuisance parameter

v

Under the independence assumption, § =0

v

Relaxing the independence assumption, postulate a prior
distribution of the form, 6 ~ N(0, 72)

v

Define ﬁML(H) as the profile MLE of s for fixed 6 from the
retrospective likelihood (Chatterjee and Carroll 2005)

v

Constrained MLE for g with § =0
EI?JL = BML(Q = 0)

Unconstrained MLE for 3

v

B = B (6 = )



Profile MLE (Chatterjee and Carroll 2005)

An interesting result

» Lemma 1 (ldentifiability). Under the assumption that G and
E are independent, for all 5’ = (84, 2, 83) € B,

Pr(E=e,G=g|Y=4d,5.8,Q,F)=Pr(E=e,G=g|Y =4d,5;,8.,Q", F")
if and only if 8y = 8§, Q = Q*, F = F*, where Q and F are
the distributions of G and E, respetively, and d = 0, 1.

» Sketch of proof: The probability equality holds only if

1+ exp(B5+ m(G,E,(5"))
1+ exp(Bo + m(G, E, "))

If H is of the product form QxF, H* # H could be of the
product form only if 3’ has only the main effect of either G
or E. Thus, for any 5/, then F = F* and Q = Q*. Moreover,
since H = H*, it also follows that 3y = 5*.

dH*(G, E) = constant- dH(G E)



Empirical Bayes Estimation

» Consider a general function 5(¢), and 6 has a prior,
MVN(O, A). By applying Taylor's expansion at 6 = 0, the
prior for f(0) is

B(6) ~ MVN(5(0), [5'(0)]" A[5'(0)])
where 8'(8) = 087(6)/06.

» The profile MLE R
Bur ~ N(B(0), V)

» Posterior mean

E(5(0)Bm) =VIV + {8'(0)}T A3'(0)] ' 5(0)
+{B(0)}TAB'(0)[V + {8'(0)}TA{B'(0)}] " Bmw



Variance-Covariance Matrix

> Beg is a function of MLE, (Bur, O, B,

EML B
O | ~ N 01.x
B Fo

» Apply the multivariate Taylor’s expansion provides the
variance-covariance expression matrix.



Revisit the 2x4 Case

» The unconstrained MLE BML = Bcc = 300 —fOcE

» The constrained MLE (G-E independence) 3%, = Bco

» Replace V by 52;, Aby (Bec — Beo)? = ngE, and
B'(0) = Gote = 1,

B*(0) =V[V + {5'(0)}T A3'(0)] " 5(0)
+{B'(0)}TAB'(0)[V + {B'(0)} TA{B'(0)}]~" B(6)

52, 2.
= € Beo + GE/\Q Bee
o + é\éE Occ +0GE

=BEeB



Power Comparison

How does the general estimator perform?

ng = n Bexe, Bk, MSE1 MSE?2 MSE1

Dependence 0.7308 0.7890 0.4564 0.4797 0.9361
100 Independence 0.7278 1.1369 0.1994 0.3875 0.5869
EB 0.7215 0.9320 0.2881 0.3593  0.6474

Dependence 0.7420 0.6849 0.2071 0.2055 0.4126
200 Independence 0.7153 1.1039  0.0966 0.2603  0.3599
EB 0.7294 0.8284 0.1455  0.1634  0.3089

Dependence 0.7015 0.7075 0.0805 0.0897  0.1702
500 Independence 0.6980 1.1041  0.0393 0.2089 0.2482
EB 0.6988 0.8178 0.0601 0.0862  0.1463

Simulation Setting: £ = (E1, Ep), P(Ey = 1) = 0.3, P(E; = 1) = 0.3 OR, £, = 2.0,
P(G=1)=0.3, ORGE1 =1, ORGE2 = 1.5 in controls. Interactions: Bg«g, = BGxE, = log(2), no main effects. Thus we

have G-E; independence and G-E, dependence.



Effect size estimation: Winner’s curse

» Combine BMLE that accounts for selection ]3] > c¢o and E is
estimated directly from the data

~ Gl = (B Bue)? =
w = ~ = B + =~ = B
’ 02+ (B—DBwe)® 724 (B — Bue)? MLE

» It has a similar form to the Empirical-Bayes estimator

» Zhong et al. (2012) argued the welght from the MSE
perspective, MSE(B) =52+ (,6 Bo)?



EB-estimator

» EB-estimator as posterior mean also minimizes MSE,

MSE — / / (0 — 6)2f(x, 0)dxdo

where f(x, 0) is the joint density of the observations and
the parameter. To minimize the integral with respective to
#, we rewrite using the laws of conditional probability as

MSE — / f(x) / (0 — 6(x))27(0]x)doax

» To minimize MSE, we must minimize the inner integral for
each value of x because the integral is weighted by a
positive quantity. Hence, the estimator is E(¢|x).



Empirical Bayes

» Empirical Bays (EB) is a pragmatic Bayesian paradigm,
between the extreme Bayesian and frequentist standpoints.

» Comparison with two-stage testing procedure.
» Test Hp : Oge = 0.
» If reject, use case-control estimator; If not, use case-only.
» The second-stage testing needs to account for the
uncertainty of the decision rule associated with
independence testing.

» EB depends on ¢ on a continuous scale, which has less
bias and MSE.

» Computationally feasible for large-scale GWAS. In large
scale association studies: Average performance is of
interest.



Confounding in G x E

» We need to account for confounding not only for G, but
also for E.

» When G is independent of E and U, as long as there is no
interaction effect between G and U, the interaction effect of
GXxE is not biased despite the main effect for E is biased
(VanderWeele, 2011)

AT
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Simple derivation for confounding

» Suppose U is an unobserved confounder associated with

EandY

Pr(Y=1|G=1,E=1)

Pr(Y=1|G=0,E=1)
[P(Y=1G=1,E=1,u)f(u/G=1,E =1)du
[Pr(Y=1/G=0,E=1,u)f(u/G=0,E =1)du
[Pr(Y=1G=1,E=1,u)/Pr(Y=1|G=0,E =0, u)f(u/G=1,E =
JPr(Y=1G=0,E=1,u)/Pr(Y=1G=0,E=0,u)f(u/G=0,E =
[ RRGRReRRyRRce RRcuRReyf(u|G = 1,E = 1)du

fRREHRuRREuf(U|G: 0, E = 1)dU

f Fl'RuFl'Fl'Guﬁﬁguf(ME = 1)dU

[ RRyRReyf(ulE = 1)du

= RRsRRge

» The last equality holds because G is independent of U



Main effect of E

» The effect effect of E is biased.
Pr(Y=1|G=0,E =1)
Pr(Y =1|G=0,E =0)
JPr(Y=1G=0,E=1,u)f(uG=0,E =1)du
[Pr(Y=1/G=0,E =0,u)f(u/G=0,E =0)du
[P(Y=1/G=0,E=1,u)/Pr(Y=1G=0,E=0,u)f(u/G=0,E =
[Pr(Y=1]G=0,E=0,u)/Pr(Y=1|G=0,E =0, u)f(u|G=0, E =
[ RReRRyRReyf(u|G=0,E = 1)du
[ RRyf(u|G=0,E =0)du
[ RRyRReyf(u|E = 1)du
[ RRyf(ulE = 0)du

= RAe

» The last equality holds because G is independent of U

» The consequence is that even though the interaction effect
can be estimated consistently, the joint effects of G and E
are biased. The effect of G stratified by E can be
estimated consistently.



Summary

» Additive versus multiplicative interaction.
» Empirical Bayes estimator.

» General regression and likelihood function.
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