
Previous’ lecture

I P-value based combination.
I Fixed vs random effects models.
I Meta vs. pooled- analysis.
I New random effects testing.



Interaction

Outline:

I Definition of interaction

I Additive versus multiplicative interaction

I Testing G×E under the additional restriction of G and E
independence

I Empirical Bayes (weighted) estimator of interaction

I General regression and likelihood function



Definition and Overview

I Broad notion: Effect of one factor on an outcome depends
in some way on the presence of another factor

I These two factors can be two genes, two environmental
factors, or a gene (G) and and environmental (E) factor

I Outcome: binary, continuous, time-to-event

I Focus on the binary case in depth as many of the intuitions
and observations translate to general regression models



Notation

I Y : Disease status

I G: Genotype (0 and 1)

I E : Exposure (0 and 1)

I pge: P(D = 1|G = g, E = e), g = 0, 1, e = 0, 1

G = 0 G = 1
E = 0 E = 1 E = 0 E = 1

pge p00 p01 p10 p11



Additive Interaction

I Lung cancer risk in smokers and non-smokers by asbestos exposure
(Hill et al. 1986).

No Asbestos Asbestos
Non-Smoker Smoker Non-Smoker Smoker

Pge p00 = 0.0011 p01 = 0.0095 p10 = 0.0067 p11 = 0.0450

I Effect of asbestos exposure alone (for non-smokers):

p10 − p00 = 0.0056

I Effect of smoking alone (in absence of asbestos):

p01 − p00 = 0.0084

I Effect of both in reference to absence of both:

p11 − p00 = 0.0439

I Difference in effect of both factors compared to sum of individual effects:

(p11−p00)−{(p10−p00)+ (p01−p00)} = p11−p10−p01 +p00 = 0.0299



Multiplicative Interaction
I Instead of using risk differences, use risk ratios

I Lung cancer risk in smokers and non-smokers by asbestos exposure
(Hill et al. 1986).

No Asbestos Asbestos
Non-Smoker Smoker Non-Smoker Smoker

Pge p00 = 0.0011 p01 = 0.0095 p10 = 0.0067 p11 = 0.0450

I Effect of asbestos exposure alone:

RR01 = p10/p00 = 6.09

I Effect of smoking alone:

RR01 = p01/p00 = 8.64

I Effect of both factors:

RR11 = p11/p00 = 40.91

I Measure of interaction on a multiplicative scale:

RR11

RR10RR01
= 0.78



Scale Dependence of Interaction (Rothman et al 2008)

I If both factors have some effect on the outcome, absence
of interaction on the multiplicative scale implies the
presence of additive interaction, and likewise, the absence
of interaction on additive scale implies presence of
multiplicative interaction

I If there is no multiplicative interaction, i.e.,
p11 = (p10p01)/p00

I Additive interaction

p11 − p10 − p01 + p00 =
p10p01

p00
− p10 − p01 + p00

=
(p01 − p00)(p10 − p00)

p00

6= 0



Statistical Models for Interaction in Case-control Data

I Logistic regression model.

logit{Pr(Y = 1|G, E)} = β0 + β1G + β2E + β3G × E

I OR ≈ RR if the disease is rare (<5%)

I Multiplicative interaction is quantified by

exp(β3) =
OR11

OR10OR01

I Testing G × E multiplicative interaction is to test

H0 : β3 = 0

I Wald, likelihood ratio or score tests can be used



Inference for Additive Interaction
I Relative excess risk due to interaction (RERI).

RERI = (p11 − p10 − p01 + p00)/p00

= RR11 − RR10 − RR01 + 1
= (RR11 − 1)− {(RR10 − 1) + (RR01 − 1)}

I When the disease is rare,

RERI ≈ OR11 −OR10 −OR01 + 1
= exp(β1 + β2 + β3)− exp(β1)− exp(β2) + 1

I Testing additive interaction is to test

H0 : exp(β3) =
1− exp(β1)− exp(β2)

exp(β1 + β2)

I Plug in β̂ML and use the delta theorem for standard errors.



Additive versus Multiplicative

I Additive scale is useful for public health relevance of an
interaction in different subgroups.

I Additive scale more closely corresponds to mechanistic
interaction ((both exposures together turns the outcome on
and the removal of one turns the outcome off), which
requires stronger assumptions than statistical interaction.

I Multiplicative models are easier to fit.

I Some noted less heterogeneity in multiplicative interaction
while meta-analyzing interactions.

I When the main effects are weak, the difference between
additive versus multiplicative interaction is small.



A Data Example



Power of G × E Interaction

I Power for identifying GxE is typically low. It needs ∼ 4
times as many subjects to test for an interaction that is
equally powerful as a main effect test.

I G and E may be assumed to be independent in many
situations.

I Under the additional restriction for G–E independence,
more efficient estimates may be obtained by exploiting this
assumption.



Case-only Estimation
Table: A binary G and a binary E.

G = 0 G = 1
E = 0 E = 1 E = 0 E = 1

Y = 0 p01 p02 p03 p04
Y = 1 p11 p12 p13 p14

I Multiplicative interaction

logit{Pr(Y = 1|G, E)} = β0 + β1G + β2E + β3G × E .

exp(β3) =
OR11

OR10OR01

=
p11p14

p12p13
/

p01p04

p02p03

=
GE odds ratio in cases

GE odds ratio in controls︸ ︷︷ ︸
becomes 1 under G–E independence



Case-only Estimation

I Model
Pr(G = 1|E ,Y = 1)
Pr(G = 0|E ,Y = 1)

=
Pr(Y = 1|G = 1,E)/Pr(Y = 0|G = 1,E)

Pr(Y = 1|G = 0,E)/Pr(Y = 0|G = 0,E)
· Pr(Y = 0,G = 1,E)

Pr(Y = 0,G = 0,E)

=
exp(β0 + β1 + β2E + β3E)

exp(β0 + β2E)
· Pr(G = 1|Y = 0,E)

Pr(G = 0|Y = 0,E)

= exp(β1 + β3E) · Pr(G = 1)
Pr(G = 0)

I The last equality holds if G and E are independent in
controls.



Power Comparison Between Case-Control versus
Case-only



Type 1 Error
I Type I error is inflated if G–E independence doesn’t hold.



Independence Assumption

I Natural for external exposure (e.g., exposure to pollution,
pesticide).

I True for treatment in a randomized clinical trial.

I Tricky for behaviour exposures (e.g., smoking, alcohol)



Measure of G − E Independence
I Measure of G and E association in controls, θ̂GE =log

(odds ratio) of G and E in controls.

θ̂GE ∼ N(θGE ,σ2)

I Since we are not sure about the G − E independence
assumption

θGE ∼ N(0, τ2)

I If τ2 = 0, uses the case-only estimator, if τ2 =∞, uses the
case control estimator.

I Since θ̂GE ∼ N(0,σ2 + τ2), one may estimate unknown
hyperparameter τ2 by

τ̂2 = max(0, θ̂2
GE − σ̂

2)

I One could be conservative and use τ̂2 = θ̂2
GE



Empirical Bayes (EB) Estimator of Interaction

I A weighted average estimator of interaction

β̂EB =
σ̂2

CC

θ̂2
GE + σ̂2

CC

β̂CO +
θ̂2

GE

θ̂2
GE + σ̂2

CC

β̂CC

I β̂CO: case-only estimator; β̂CC : case-control estimator.
I thβ̂EB can be viewed as a shrinkage estimator, where the

robust β̂CC has been shrunk toward the efficient β̂CO under
the assumption of G-E independence

I The specific form of the ”shrinkage” weights resembles the
form of a posterior mean obtained in a classical Bayesian
analysis under a normal-normal model (Berger, 1985, p.
131), with the prior variance substituted by an estimate
obtained using a method of moments approach.



Inference

I The EB-estimator can be re-written as

β̂EB = β̂CO −
θ̂2

GE

θ̂2
GE + σ̂2

CC

θ̂GE

I By using the delta-method

V (β̂EB) ≈ σ2
CO +

(
θ̂2

GE (θ̂2
GE + 3σ̂2

CC)

(σ̂2
CC + θ̂2

GE )2
σ̂2
θGE

)
I Wald test based on this variance can be constructed to test
β3 = 0



Type I Error
I Empirical Bayes (EB) estimator has better control of type I

error than case-only under independence.



Power
I EB estimator has power gain over case-control under

independence.



General Regression Set-up
I Likelihood

P(G, E |Y ) =
Pr(Y |G, E)P(G|E)P(E)∑

G∗E∗ P(Y |G∗, E∗)P(G∗|E∗)P(E∗)

I Logistic regression model

logit{Pr(Y = 1|G, E)} = β0 + β1G + β2E + β3GxE

where β = (β0,β1,β2,β3)

I P(G|E): dependence parameter θ. If θ = 0, G and E are
independent.

I P(E) is a non-parametric function.

I Unconstrained model: estimate (β, θ) allowing for
dependence θ 6= 0.

I Constrained model: estimate β assuming θ = 0.



Estimation

I β: parameters of interest; θ: nuisance parameter

I Under the independence assumption, θ = 0

I Relaxing the independence assumption, postulate a prior
distribution of the form, θ ∼ N(0, τ2)

I Define β̂ML(θ) as the profile MLE of β for fixed θ from the
retrospective likelihood (Chatterjee and Carroll 2005)

I Constrained MLE for β with θ = 0

β̂0
ML = β̂ML(θ = 0)

I Unconstrained MLE for β

β̂ML = β̂ML(θ = θ̂ML)



Profile MLE (Chatterjee and Carroll 2005)

An interesting result
I Lemma 1 (Identifiability). Under the assumption that G and

E are independent, for all β′ = (β1,β2,β3) ∈ B,

Pr(E = e,G = g|Y = d ,β0,β
′,Q,F ) = Pr(E = e,G = g|Y = d ,β∗0 ,β

′,Q∗,F∗)

if and only if β0 = β∗0, Q = Q?, F = F ?, where Q and F are
the distributions of G and E , respetively, and d = 0, 1.

I Sketch of proof: The probability equality holds only if

dH∗(G, E) = constant ·
1 + exp(β∗0 + m(G, E ,β′))

1 + exp(β0 + m(G, E ,β′))
dH(G, E)

If H is of the product form QxF , H? 6= H could be of the
product form only if β′ has only the main effect of either G
or E. Thus, for any β′, then F = F ∗ and Q = Q∗. Moreover,
since H = H∗, it also follows that β0 = β∗.



Empirical Bayes Estimation

I Consider a general function β(θ), and θ has a prior,
MVN(0, A). By applying Taylor’s expansion at θ = 0, the
prior for f (θ) is

β(θ) ∼ MVN(β(0), [β′(0)]T A[β′(0)])

where β′(θ) = ∂βT (θ)/∂θ.

I The profile MLE
β̂ML ∼ N(β(θ), V )

I Posterior mean

E(β(θ)|β̂ML) =V [V + {β′(0)}T Aβ′(0)]−1β(0)

+ {β′(0)}T Aβ′(0)[V + {β′(0)}T A{β′(0)}]−1β̂ML



Variance-Covariance Matrix

I β̂EB is a function of MLE, (β̂ML, θ̂ML, β̂0
ML)β̂ML

θ̂ML

β̂0
ML

 ∼ N

 β
θ
β0

 , Σ


I Apply the multivariate Taylor’s expansion provides the

variance-covariance expression matrix.



Revisit the 2×4 Case

I The unconstrained MLE β̂ML = β̂cc = β̂co − θGE

I The constrained MLE (G-E independence) β̂0
ML = β̂co

I Replace V by σ̂2
cc , A by (β̂cc − β̂co)2 = θ̂2

GE , and
β′(0) = ∂βML

∂θGE
= −1,

β∗(θ) =V [V + {β′(0)}T Aβ′(0)]−1β(0)

+ {β′(0)}T Aβ′(0)[V + {β′(0)}T A{β′(0)}]−1β(θ)

=
σ̂2

cc

σ̂2
cc + θ̂2

GE

β̂co +
θ̂2

GE

σ̂cc + θ̂2
GE

β̂cc

=β̂EB



Power Comparison



Effect size estimation: Winner’s curse

I Combine β̂MLE that accounts for selection |β̂| > cσ̂ and β̂ is
estimated directly from the data

β̂w =
σ̂2

σ̂2 + (β̂ − β̂MLE)2
β̂ +

(β̂ − β̂MLE)2

σ̂2 + (β̂ − β̂MLE)2
β̂MLE

I It has a similar form to the Empirical-Bayes estimator
I Zhong et al. (2012) argued the weight from the MSE

perspective, MSE(β̂) = σ̂2 + (β̂ − β0)2



EB-estimator

I EB-estimator as posterior mean also minimizes MSE,

MSE =

∫ ∫
(θ − θ̂)2f (x , θ)dxdθ

where f (x , θ) is the joint density of the observations and
the parameter. To minimize the integral with respective to
θ̂, we rewrite using the laws of conditional probability as

MSE =

∫
f (x)

∫
(θ − θ̂(x))2f (θ|x)dθdx

I To minimize MSE, we must minimize the inner integral for
each value of x because the integral is weighted by a
positive quantity. Hence, the estimator is E(θ|x).



Empirical Bayes

I Empirical Bays (EB) is a pragmatic Bayesian paradigm,
between the extreme Bayesian and frequentist standpoints.

I Comparison with two-stage testing procedure.
I Test H0 : θGE = 0.
I If reject, use case-control estimator; If not, use case-only.
I The second-stage testing needs to account for the

uncertainty of the decision rule associated with
independence testing.

I EB depends on θ on a continuous scale, which has less
bias and MSE.

I Computationally feasible for large-scale GWAS. In large
scale association studies: Average performance is of
interest.



Confounding in G × E

I We need to account for confounding not only for G, but
also for E .

I When G is independent of E and U, as long as there is no
interaction effect between G and U, the interaction effect of
GxE is not biased despite the main effect for E is biased
(VanderWeele, 2011)



Simple derivation for confounding

I Suppose U is an unobserved confounder associated with
E and Y
Pr(Y = 1|G = 1,E = 1)
Pr(Y = 1|G = 0,E = 1)

=

∫
Pr(Y = 1|G = 1,E = 1, u)f (u|G = 1,E = 1)du∫
Pr(Y = 1|G = 0,E = 1, u)f (u|G = 0,E = 1)du

=

∫
Pr(Y = 1|G = 1,E = 1, u)/Pr(Y = 1|G = 0,E = 0, u0)f (u|G = 1,E = 1)du∫
Pr(Y = 1|G = 0,E = 1, u)/Pr(Y = 1|G = 0,E = 0, u0)f (u|G = 0,E = 1)du

=

∫
RRGRRE RRURRGE RRGURREU f (u|G = 1,E = 1)du∫

RRE RRURREU f (u|G = 0,E = 1)du

= RRGRRGE

∫
RRURRGURREU f (u|E = 1)du∫

RRURREU f (u|E = 1)du

I The last equality holds because G is independent of U



Main effect of E
I The effect effect of E is biased.

Pr(Y = 1|G = 0,E = 1)
Pr(Y = 1|G = 0,E = 0)

=

∫
Pr(Y = 1|G = 0,E = 1, u)f (u|G = 0,E = 1)du∫
Pr(Y = 1|G = 0,E = 0, u)f (u|G = 0,E = 0)du

=

∫
Pr(Y = 1|G = 0,E = 1, u)/Pr(Y = 1|G = 0,E = 0, u0)f (u|G = 0,E = 1)du∫
Pr(Y = 1|G = 0,E = 0, u)/Pr(Y = 1|G = 0,E = 0, u0)f (u|G = 0,E = 0)du

=

∫
RRE RRURREU f (u|G = 0,E = 1)du∫

RRU f (u|G = 0,E = 0)du

= RRE

∫
RRURREU f (u|E = 1)du∫

RRU f (u|E = 0)du

I The last equality holds because G is independent of U
I The consequence is that even though the interaction effect

can be estimated consistently, the joint effects of G and E
are biased. The effect of G stratified by E can be
estimated consistently.



Summary

I Additive versus multiplicative interaction.

I Empirical Bayes estimator.

I General regression and likelihood function.
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