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ROBUST CONFIDENCE BOUNDS FOR
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Four related methods are discussed for obtaining robust confidence bounds for extreme upper quantiles
of the unknown distribution of a positive random variable. These methods are designed to work when
the upper tail of the distribution is neither too heavy nor too light in comparison to the exponential
distribution. An extensive simulated study is described, which compares the performance of nominal
909% upper confidence bounds corresponding to the four methods over a wide variety of distributions
having light to heavy upper tails, ranging from a half-normal distribution to a heavy-tailed lognormal
distribution.
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1. INTRODUCTION

Often, in applications, we want to estimate extreme quantiles from sample data.
For example, we might have 30 years of annual high-water levels on a river and
want to estimate the 100-year flood level y, ¢, defined by the requirement that the
probability of annual high-water level exceeding y,,, should be 0.01. For
applications to air quality data, see Crager (1982).

Frequently, confidence bounds or confidence intervals are desired in addition to
or instead of point estimates. In this paper, we focus on robust 909 upper
confidence bounds for the upper pth quantile of a distribution based on a random
sample of size n from that distribution when np is so small that no order statistic
can serve as such a confidence bound.

Let Y be a random variable (whose distribution function is continuous) and let
y, denote the upper pth quantile of Y for 0<p<1, so that P(Y=y,)=p. Let n be a
positive integer and let Yi,...,Y, be a random sample of size n from the
distribution of Y. Then Yi,...,Y, are independent and identically distributed
random variables. Let Y;),..., ¥, denote the corresponding upper order statistics,
obtained by writing Y;,..., Y, in decreasing order: Y;,2 - 2 Y.

Let U be a statistic based on the random sample, which is thought of as an
upper confidence bound for y, The corresponding coverage probability is
P(y,<U). Let O0<c< 1. If U is derived as a 100c %, upper confidence bound for y,
by making various assumptions and approximations, then we refer to ¢ as the
nominal coverage probability of U and to P(y,=U) as its actual coverage
probability.

Consider, for example, the maximum value Y,, in the sample as an upper
confidence bound for y,. Since
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P(Yyy <y ) =P(Yy <y,,.... Y, <y, ) =[P(Y; <y, )]"=(1—p)",
we see that the actual coverage probability of Y, is given by
P(Yyzy,)=1—(1=p)"
In particular, Y, is a 909 upper confidence bound for p, if and only if

log(10) EE, n 1.
n n

p=1—(0.1)"=1—exp(—log(10)/n) =

Thus (for nz8) if p<2/n, there is no order statistic that serves as a 909 upper
confidence bound for y,,

When p <2/n, we can obtain a nominal 909, upper confidence bound for y, in a
standard manner by assuming a Weibull, gamma, lognormal or other classical
parametric model for the distribution of Y. However, if our assumption is cven
mildly inaccurate in a given application, the actual coverage probability can differ
substantially from 0.9. In other words, the actual coverage probability of the
nominal 909 upper confidence bound for an extreme quantile is very sensitive to
model departures. A better approach is to obtain a nominal 907, upper confidence
bound for y, by first fitting a parametric model to the upper tail of the data; that
is, to the m upper order statistics ¥;),..., ¥,,, where m<n. This is the approach
that will be followed here.

In Section 2 we describe several such methods for obtaining confidence bounds
for extreme quantiles. The well-known exponential-tail method is described in
Section 2.1. The quadratic-tail method, briefly described in Section 2.2, was
introduced in Breiman et al. (1981), which is a precursor to the present work.
Further details for this method are given in Sections 6 and 7. A preliminary power
transformation is discussed in Section 2.3. Some computer-based refinements of the
exponential-tail and quadratic-tail methods are described in Section 3. The results
of a reasonably extensive simulation study of four methods of obtaining 909
upper confidence bounds for extreme quantiles (exponential-tail and quadratic-tail,
with and without the preliminary power transformation), are presented in graphi-
cal form in Section 4 and various conclusions are drawn in Section 5.

When this work was started in the late 1970s in connection with air pollution
studies, the prevailing approach in practice was to fit a standard global model,
usually Weibull or lognormal, to the data and to obtain confidence bounds and
confidence intervals for extreme quantiles by the usual large-sample parametric
approach. It was and is our contcntion that this approach is unrealistic because it
ignores modelling errors that can lead to substantial bias in confidence bounds for
extreme quantiles. The obvious alternative is “to let the tails of the data speak for
themselves” (DuMouchel and Olshen, 1975), but this would seem to suggest using
a much smaller proportion of the data than we have found to be desirable.

We are unaware of previous work on confidence bounds for extreme quantiles,
other than Breiman et al. (1981) and the follow-on work of Crager (1982). On the
other hand, there have been many studies of exponential-tail and related methods
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of estimation for tail probabilities and extreme quantiles. These (mainly theoreti-
cal) studies have focused on methods that are appropriate when the tail is (I) in
the domain of attraction of some extreme-value distribution; (II) approximately
algebraically decreasing; or (III) approximately exponential decreasing. These three
conditions are very closely related. For example, the upper tail of Y is approxima-
tely algebraically decreasing if and only if that of log(Y) is approximately
exponentially decreasing; thus methods appropriate to approximately exponen-
tially decreasing tails may be applied to data having approximately algebraically
decreasing tails by first applying the logarithmic transformation. In category (I)
are Maritz and Munro (1967), Pickands (1975), Weissman (1978), Boos (1984),
Davis and Resnick (1984), and Smith (1987); in category (II) are Hill (1975),
DuMouchel and Olshen (1975), DuMouchel (1983), Hall and Welsh (1985), and
Csorgt et al. (1985); and in category (III) are Breiman et al. (1978, 1979 and 1981),
and Crager (1982). See Smith (1987) for a recent and thorough review of this
literature.

2. CONFIDENCE BOUNDS

2.1. Exponential-tail Method
Let 0<po<1. Consider the exponential-tail model, in which there is an «>0 such
that

P(YZy|Y Zy,)=exp(—(y—y,)/2) (2.1

for y2zy,, or, equivalently, in which y, is a linear function of log(1/p) as p ranges
over (0, py]. Let m be a positive integer with m/n < p,. Then

m
yp=ym/n+alog ;p

for 0<p<p,. It is reasonable to estimate y,, by Y, The maximum-likelihood
estimate of « based on the data Y;,, 1 <i<m, is given by

. 1
“ZEZ[YH)— Yom - (2.2)

(Summations are over ie{1,...,m—1} unless otherwise noted). The corresponding
estimate of the upper pth quantile, for 0 <p <p,, is given by

§p=Yom+alog (%) (2.3)
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Suppose that Y has a (two-parameter) exponential distribution or, equivalently,
that y, is a linear function of log(1/p) as p ranges over (0, 1). Let & and j, be given
by (2.2) and (2.3), respectively, and set SE(y,)=4. Then t=t, ., , can be obtained
numerically from the incomplete beta function so that j,+tSE(,) is an exact
100c %, upper confidence bound for y,.

Consider, in general U(t)=y,+tSE(y,) as a nominal 100c?%, upper confidence
bound for y,, which we refer to as being obtained by the exponential-tail (ET)
method. Under the more general exponential-tail model, the actual coverage
probability of U(t) is close to its nominal coverage probability if P(Y,,=y,)~1. It
is more realistic, however, to consider the exponential-tail model as being a
reasonably accurate approximation. Hopefully, when p is not too small, the actual
coverage probability of U(t) will be close to its nominal coverage probability; but
when p is extremely small, the nominal and actual coverage probabilities may
differ considerably because of the error of approximation.

2.2. Quadratic-tail Method

Let 0<pg<1. In the corresponding exponential-tail model, y, is a linear function
of log(1/p) as p ranges over (0,p,]. In order to obtain a more accurate
approximation, we consider the quadratic-tail model, in which y, is assumed to be
a quadratic function of log(1/p) as p ranges over (0, po]. Let m be a positive integer
with m/n<p,. Then

Yp=Ymm+a[log(1/p) —log(n/m)] +§ [log*(1/p)—log*(n/m)],
0<p<po. (2.4)

Here o and f are unknown parameters with x>0. The quadratic-tail model can be
exactly valid if f>0 or if >0 and f=0. It cannot be exactly valid when <0, for
in that case, the quadratic function in (2.4) tends to —o0 as p—0. Even when
B <0, however, the quadratic-tail model can provide a good approximation to y,
for values of p that are not exceedingly small. The quadratic-tail model was
proposed in Breiman et al. (1981), but it can be motivated in terms of Proposition
9.1 of Smith (1987).
Given m and p, set

L=log(1/p)~log(n/m) and M =4[log?(1/p)—log?(n/m)]. (2.5)
It follows from (2.4) that y,=y,,,+1, where t=La+ Mp. Corresponding to an
estimate £ of t is the estimate ,= Y, +1 of y,.

More generally, let L and M be arbitrary constants and set 7= La+ Mp.
Consider an estimate 7 of t of the form

f:ZWz‘[Y(i)_YIiH)]' (2.6)
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It is shown in Sections 6 and 7 that
var(£)=c,0? + c,aB +c3 52, )]

where ¢y, ¢, and c, are given explicitly in terms of L, M and the weights
Wi, ..., W,y If the exponential-tail model is reasonably accurate and, in particu-
lar, if f~0, then

var(f)=c,a’ . (2.8)

In light of (2.8) it is reasonable to choose the weights to minimize ¢, subject to the
constraint that ¢ be unbiased; that is, that, for all values of L and M,

Et= Lo+ Mp. (2.9)

It is shown in Section 6 that this minimization problem has a unique solution,
which is given explicitly. (The quadratic model should be thought of as an
approximation. In Section 6 the error of approximation is ignored. Thus (2.7) and
the solution to the indicated minimization problem should be thought of as
informal approximations. Using the minimization problem stemming from (2.8) to
choose the weights is reasonable since it is not possible to choose the weights to
minimize var(f) for all values of « and f.)

In particular, by choosing L=1 and M =0, we obtain an unbiased estimate of o
having the form

a=y wil Y= Yern));
by choosing L=0 and M =1, we obtain an unbiased estimate of § having the form
B:Z W2i[Y(i>— i+ 1)]-
As shown in Section 6, for arbitrary values of L and M the unbiased estimate of
t=La+M§p for which ¢, is minimized is given by f=L&+Mpf; thus the
corresponding quantile estimate is given, for 0 <p=<p,, by

Pp=Ym+La+M§B. (2.10)

It is shown in Sections 6 and 7 that

var(j,)=C 0% + Craf + C, %, (2.11)

where C;, C, and C, are given explicitly in terms of n, m, L, and M. The
corresponding standard error is given by

SE(§,)=(C,8%+ C88 + C, )12

Set U(t)=3,+tSE(y,). Presumably, under suitable conditions, (¥,—y,)/SE(j,)
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has approximately the standard normal distribution, in which case the actual
coverage probability of U(z, ) as a nominal 100c %, upper confidence bound for
¥, is close to its nominal coverage probability c. (Here ®(z,_.)=c, where ® is the
standard normal distribution function.) We refer to U(t) as having been obtained
by the quadratic-tail (QT) method. Our computer-based experience, however, is
that, when n is not extremely large, p<2/n and 1=z, ,=1.282, then the actual
coverage probabilities of the QT 90% upper confidence bound for y, is consider-
ably less than 0.9 even when Y has an exponential distribution. In Section 3.1 we
will describe an alternative way of choosing t that leads to actual coverage
probabilities that are much closer to their nominal counterparts.

2.3. Preliminary Power Transformation

Suppose that Y is a positive random variable. The approximation errors of the
exponential-tail and quadratic-tail models can be substantially reduced by a
preliminary power transformation (see Weinstein, 1973). Given a positive constant
y, set W=7Y? and W,=Y/! for 1<i<n. The upper pth quantile of W is given by
w,=y3. We would like to choose y so that the conditional distribution of W—w,,
given that W2=w, is approximately exponential. Let W, be an estimator of w,
based on the random sample W,,..., W,. By applying the inverse power transfor-
mation, we obtain the estimate y,=w,” of y, based on the original random
sample. Similarly, let w,+tSE(W,) be a nominal 100c9; upper confidence bound
for w,. Then [W,+tSE(W,)]"" is a nominal 100c % upper confidence bound for y,.
In practice, the power transformation must be determined from the sample data;
we denote the corresponding parameter by 5. We are led to j,=w,” as an
estimate of y, and to [W,+tSE(%,)]'” as a nominal 100c?% upper confidence
bound for y,.

Let po=m/n, where 2<m=n. A reasonable way to choose § is by maximum
likelihood based on the two-parameter exponential family with the dependence of
9, on the sample data being ignored. We are lead to choosing § to maximize the
function

g(y)=(m—1)log(y)+(m—1)1og(} (Y{y— Yi,)
+(y—= 1Y log(Y)+(m—1)log(m—1)—(m—1).

Observe that

g’(}/) _ 1117;1 (1 _ Z(Y(y,) 10%();3};)): )Y/:f/mi)log( YEm)))> + Z lOg( Y;z))

Under the assumption 0< Y, <Y, it is straightforward to show that g"(y) <0 for
>0 and Pence that g'(y) is a strictly decreasing function of y. As y |0, g'(y) has
limit (1—A4/2) Y log( Y/ Y,m), Where
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(m=1)""1% log*(Yy/Yom) .
[(m—1)"" Y log(Yiy/ Yom)1*

as y— o0, g(y) has limit Y log(Y,/Y,)-

Suppose that 0< Y, =Y, _, <Y, Then g(y) ig a strictly degreasing function of
y if A=2 and g(y) has a unique maximum j if 4<2. When A <2, the numerical
value of § is easily found by solving the equation g'(7)=0 in an iterative manner.
(When A=2, it is reasonable to consider the logarithmic transformation:
W=log(Y) and W,=log(Y), 1<i<n) Using maximum-likelihood to determine a
preliminary power transformation was suggested in part by Box and Cox (1964).

A=

3. SIMULATION-BASED PARAMETER SELECTION

3.1. Adaption to the Exponential Distribution

Consider a nominal 100c % upper confidence bound U(r) for y, that involves a
constant ¢ in its definition, where ¢ is to be chosen to yield the nominal coverage
probability ¢. Usually this is done by means of an appeal to some central limit
theorem to justify normal approximation, but, as noted in Section 2.2, the actual
coverage probability of U(t) can be significantly less than c. In the present context,
more reliable confidence bounds can be obtained by adapting ¢ to the exponential
distribution: choose ¢t such that P(y,=U(t))=c when Y is exponentially distri-
buted. In practice this must be done by computationally intense Monte Carlo
simulation, as in the implementation of bootstrap methods for obtaining confi-
dence bounds (see Efron, 1981).

Consider, for example, a confidence bound for y, of the form (Wp-f—tSE(wI,))”’i.
Let ¢ be chosen so that, when Y has an exponential distribution,

P(y,S[W,+ISE(W,)]" ) =c

or, equivalently, so that

oy
p(Ye Ve )=
SE(W,)

Then —t is the upper cth quantile of the distribution of (W,— y})/SE(w,) when Y
has an exponential distribution, so ¢ is easily found by Monte Carlo simulation.

3.2. Selection of Tail Sizes

We now consider four specific methods of obtaining upper confidence bounds for
extreme quantiles: exponential-tail (ET), quadratic-tail (QT), exponential-tail with
preliminary power transformation (ETP), and quadratic-tail with preliminary
power transformation (QTP). In the ETP and QTP methods, the parameter § of
the preliminary power transformation is chosen as described in Section 2.3. In all
four methods, the parameter ¢ is chosen by simulation and adaption to the
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exponential distribution. (For the ET method, t could be obtained without
simulation, as described in Section 2.1.)

The ET and QT methods, as described in Sections 2.1 and 2.2, respectively,
depend on a tail size m. The ETP and QTP methods depend on two tail sizes, m,
and m,. Here m, is the value of m used in the preliminary power transformation
and m, is the value of m that is used in the exponential-tail or quadratic-tail
method applied to the transformed data. A procedure for choosing the tail size(s)
will now be developed.

Let W have the gamma distribution with shape parameter « and let §>0. The
distribution of Y =W? is referred to as a generalized gamma(«) distribution with
power parameter f§ (see the Appendix). A generalized gamma(0.5) distribution with
p=05 is a half-normal distribution. The generalized gamma(l) family is the
Weibull family; in particular, a generalized gamma(1) distribution with f=1 is an
exponential distribution. The lognormal family can be thought of as the genera-
lized gamma(cc) family.

In the Appendix, the “tail-heaviness” of the distribution of Y at (in particular)
its upper decile y, , is defined and formulas for the tail-heaviness of generalized
gamma and lognormal distributions are given. The tail-heaviness of an exponential
distribution equals zero, that of a “light-tailed” distribution is negative and that of
a heavy-tailed distribution is positive.

Consider the generalized gamma(0.5), Weibull, generalized gamma(5) and log-
normal families of distributions. For each of these four families, we consider the
seven values of the power parameter that corresponds to the values —0.2, —0.1, 0,
0.1, 0.2, 0.3, 0.4 of the tail-heaviness at the upper decile.

Let Med(U) denote the median of a random variable U, so that
P(U zMed(U))=0.5. The excess of an upper confidence bound U for a quantile y,
is defined as

Mlyz x 1009,
Vo ’

The excesses of the confidence bounds obtained from any of the four methods
under investigation depend on the power parameter of the underlying family.

Excesses and coverage probabilities of the nominal 909, upper confidence
bounds based on the four methods will be used to determine the various tail sizes.
Attention will be restricted to two sample sizes, n=50 and n=>500, and two
quantiles, y,,, and y,,,, for each sample size. Thus, for n=50, we consider
nominal 909, upper confidence bounds for y,,, and y, 02, for n=>500, we
consider nominal 90 %, upper confidence bounds for y, 40, and yg 0002-

In order to determine reasonable values for the tail sizes of the ETP and QTP
methods, we conducted a simulation in which we used 10000 trials to determine
values of ¢t for adaption to the exponential distribution, 5000 trials to determine
actual coverage probabilities and excesses for the generalized gamma(0.5) family,
and 5000 trials each for the Weibull, generalized gamma(5) and lognormal families.

It is necessary to make tradeoffs between coverage probabilities and excesses.
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We settled on choosing pairs m;, m, to meet the objective that the estimated
coverage probability be at least 859 for both quantiles and all four families of
distributions. (The performance at the lognormal distribution and y,,, was
critical.) Our second objective was, subject to the constraint of the first objective,
to minimize the excesses of the confidence bounds. (Since the various excesses have
quite similar behavior, it was not necessary to define the criterion more precisely.)

Upon inspection of the results of the simulation, it became clear that m, =n/2
was nearly optimal for each sample size; thus, for simplicity, we restricted our
attention to this choice of m,. For ETP these constraints clearly led to the choice
of m,=5 when n=50 and m,=7 when n=500. For QTP, at each sample size,
there was a fairly large interval of optimal values of m,, so we chose the midpoint
of this interval: m, =22 when n=50 and m, =130 when n=>500.

The ET and QT methods have a single parameter m. For these methods, the
coverage probability depends on the power parameter of the underlying distribu-
tion. For the ET method we chose m=3 for both sample sizes, since the coverage
probabilities dipped too low for m=4 and the excesses were unreasonably large
for m=2.

For the QT method it was not possible to realize the objective of 859, coverage
probability for y,,, when the underlying distribution was lognormal with tail
heaviness 0.4. We ended up by choosing m to give (approximately) the best
coverage probability for the heavy tailed distributions: m=36 when n=350 and
m=45 when n=>500. These values of m yield reasonably good coverage probabili-
ties and excesses that are not unreasonably large.

4. RESULTS

In order to evaluate the performance of the four methods for obtaining 909, upper
confidence bounds for extreme upper quantiles, with the values of m or m,, m,
that were given explicitly in Section 3.2, we conducted another simulation (in
which new pseudorandom numbers were used). Again 10000 trials were used to
determine values of ¢ for adaption to the exponential distribution and 5000 trials
were used to determine actual coverage probabilities and excesses for each of the
four families under consideration.

Figures 1 and 2 show the results for n=50 and n= 500, respectively. The header
for generalized gamma(0.5) is “half-normal™ when the tail heaviness is —0.20, the
underlying distribution is half-normal. The header for generalized gamma(5) is
“gamma”; when the tail heaviness is —0.13, the underlying distribution is a
gamma distribution with shape parameter «=35. The Weibull distribution with tail
heaviness zero is an exponential distribution. The lognormal distribution with tail
heaviness 0.30 is the distribution of a«exp(Z), where « is a positive scale parameter
and Z has the standard normal distribution. In both figures, the Monte Carlo
estimates of the coverage probability (expressed as a percentage) and excess of
each method are shown. In each plot on each figure, the tail heaviness ranges from
—0.2 to 0.4 along the horizontal axis.

Consider a confidence bound obtained by using the ETP or QTP method, with
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t being chosen by adaption to the exponential distribution (which takes the
preliminary power transformation into account). Its actual coverage probability
does not depend on the power parameter of the underlying Weibull, generalized
gamma, or lognormal distribution. In particular, for underlying Weibull distribu-
tions, its actual coverage probability is equal to its nominal coverage probability.

Consider, instead, a confidence bound obtained from the ET or QT method
with ¢ being chosen by adaption to the exponential distribution. Its coverage
probability does depend on the power parameter of the underlying distribution. In
particular, for underlying Weibull distributions, its actual coverage probability is
equal to its nominal coverage probability when the tail heaviness is zero, but not
otherwise.

5. CONCLUSIONS

Upon examination of Figures 1 and 2, we conclude that, overall, the QT method
is best for both quantiles when n=50 and the QTP method is best when n=500.
In particular, the ET method is never the best method. (Other methods that we
have tried, not reported here, have performed less well than the better of QT and
QTP for various sample sizes.)

Roughly speaking, confidence intervals can be thought of as having bias and
variance, the bias being due to errors in modelling approximations and leading to
incorrect coverage probabilities and the variance causing the excesses. The ET
method can have large bias unless m is very small, in which case it has large
variance. For the QT method a substantial proportion of the data (m=236) should
be used when n=>50 to avoid large variance. For both the ETP and QTP method,
the upper half of the data should be used in estimating the power parameter to
avoid unnecessarily large variance. (For values of n substantially larger than 500,
less than half of the data should be used to estimate the power parameter.) Even
though a substantial proportion of the data is used to estimate the power
parameter, the largest observed values have most of the influence on the estimate.
Similarly, when the QT method is used, with or without the preliminary power
transformation, the largest observed values are the most influential ones.

One important conclusion of this work is that intuition about confidence
bounds for extreme quantiles based entirely on asymptotic approximations is very
likely to be faulty, for a variety of errors that are asymptotically negligible are
actually quite substantial unless the sample size n is unrealistically large. It is only
by combining analysis with computer simulation that we can develop sound
intuition.

As of now, someone wanting to apply the QT or QTP method to real data
would need to do a computer simulation to select ¢t as described in Section 3.1. A
further simulation, along the lines of Section 3.2, may be required to select m for
the QT method or m, for the QTP method for the sample sizes, quantiles and
hypothetical distributions of interest. Such computer simulations are increasingly
feasible because of the ever greater prevalence and affordability of powerful
workstations.
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6. QUADRATIC-TAIL MODEL

We now develop the properties of the quadratic-tail model that were used in
Section 2 to obtain the corresponding upper confidence bounds. To this end,
let Z,,...,Z, be a random sample of size n from the exponential distribution
with mean one and let Z)...,Z, be the corresponding decreasing order
statistics,.  Then  Y,),...,Y, have the same joint distribution as
G Yexp(—Z)),....G ™ Y(exp(~Z,)). In particular, Y,,...,Y,, have the same
joint distribution as G~ Yexp(—Z;))), ..., G“(exp(—Z(m))).
Since py = m/n, it follows from (2.4) with p=e~* that

G (€)= Ypu+aly—log(n/m)] +§ [y?—log*(n/m)], yzlog(n/m).
Thus if Z,, 21log(1/py), then G~ }(exp(—Z)), i=1,..., m coincide respectively with
Vmin + [ Z ;) —log(n/m)] +§ [Z% —log*(n/m), i=1,...,m.

Ignoring the error in the quadratic-tail model and the possibility that Y, <
G !(po), we conclude that Y, i=1,...,m have the same joint distribution as

Vmm+ [ Z—log(n/m)] +§ [ZE —logi(n/m)], i=1,...,m.
In particular, Y;— Y.y, i=1,...,m—1, have the same joint distribution as

a[z(i)—z(i+l)]+§ [Z(li)_Z(ziH)l i=1,....m

Let L and M be known constants. Consider the parameter t=La+ Mf. Let
Uy,...,Vy—; be known constants and consider the estimate #=) iv,[ ¥ — ¥ 4,] of
7. Observe that £ has the same distribution as

Y i”i(“[z(n_z(wl)] +‘§ (Z5—Z5+ 1)]>
and hence that
Et=a) iv,E(Z3y—Zg4y) +§ Y i E(ZE —ZF 1 1) (6.1)

As is well known (see page 37 of Galambos, 1978, or page 21 of David, 1981),
Z, i=1,...,n, have the same joint distribution as
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ZQ, i=1,....n
j=iJ

Consequently, for 1 <ign—1,

Z
EZy—Zi+1) =E( >

and hence
1
E(Z(i)_Z(H- 1)) =? (6-2)
Now
Z(zi)_Z(2i+ H= [Z([)_Z(H- 1)]2 + 22(i+ I)EZ(;’) —Z(i+ 1)]
and hence
) b Z. n ) n
E(Zﬁ)—Zm”):E([Z.'] )+2E<—.-‘ > Z.f)=§+3. > !
1 Uj=i+1 J 1 Lj=i+1]
Therefore,
2u;
E(Z}—Z1)= o (6.3)
where

Z 1

=) -.

jgl J

We conclude from (6.1)—6.3) that
Et=a) v;+ > uyv;
(6.4)
Thus % is unbiased if and only if
L=Yv and M=) uuv,. (6.5)

The variance of ¢ is derived by a simple but lengthy computation given in
Section 7. To state the result, set
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uP=y -15 and z7,-=l, Y v,
j=il lj=1
Then
var(?) =Y (aw;+ B+ Buw)® + Y ulPv? + (m— DulPsz ). (6.6)

It follows from (6.6) that (2.7) holds with w,/i=v; for 1 Zi<m—1,

=Y v, (6.7)
€= Z vd0; + wv;),
and
c3 =) [(Fi+u)* +uPof]+(m—1)*uP5r
Consider the problem of choosing v,,...,v,_, to minimize the right side of (6.7)

subject to (6.5). It is geometrically clear that there is a unique solution to this
minimization problem and that the solution is given by v;=4, +A,u;, 1Zig<m—1,
where 4, and 4, are chosen to satisfy (6.5). It is easily seen that

oS L=SM L o DM =S,
D D

where
Y =zui, Sz=zui2,

and D=(m—1)S,—S2, Thus, for 1<i<m—1,

=5 18, = Sl + 5 Lom— D=5, (68)

By choosing L=1 and M =0, we obtain the unbiased estimate of o given by

5‘=ZW1;‘[YU)— Y;i+1)]=2ivli[Y(i)_ Y;i+1)],

where

Wi, =SS
i 1 D

for 1£i<m—1. By choosing L=0 and M =1, we obtain the unbiased estimate of
B given by

B=ZW21‘[Y“)— Yiinl =zivzi[YEi)— Yiinls
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where

Wa_,_(m=1u—S,

. 2i
i D

for 1<i<m—1. It now follows from (6.8) that, for arbitrary values of L fxnd M,
the unbiased estimate of t for which ¢, is minimized is given by ¢ =La + Mp.
The variance of

Vo= Yo+ =Y+ 2 iti[ Yiy— Y4 1]

is the same as the variance of

AZ +§ Zly+Y iy, (ot[Z(,«)—Z(,»J, vl +§ (23— Z%. 1)]>.
This variance is clearly a quadratic function of « and f3, so (2.11) holds. It follows
from (6.8) that the constants C,, C, and C; in (2.11) depend only on n, m, L, and
M. These constants are determined explicitly in Section 7.

7. TECHNICAL DETAILS FOR THE QUADRATIC-TAIL MODEL

We now derive (6.6) and determine the constants in (2.11).

Recall that Z,,...,Z, are independent random variables, each having an
exponential distribution with mean one. The following facts are easily checked:
var(Z,)=1; var(Z})=20; var(Z,Z,)=3; cov(Z,,Z})=4; cov(Z,,Z,Z,)=1;
cov(Z3,Z,Z,)=4; and cov(Z,Z,, Z,Z4)=1. It can be assumed that, for I <i<n,

n Zj‘

Until further notice, unless otherwise indicated, the variables i and j range over
1,...,m—1.Set 6;;=1if i=j and 6;;=0 if i#j; and set ;=1 if i>j and ;=0 if
i<j. The following formulas are easily verified:

Vi 0y,

COV(Zi, ZjZ(j+1))=()‘..u_+7.
1 1

[Yee)

COV(Z}, Z,Z ;4 1)) :4<5qu+£‘7 - %),

i i

; 1
var(Z,Z ;4 ) =uf =2 L =
i i
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and

u, 2
2 . Py
COV(ZZ 4110 Z;Zj+ 1) = 1 )+7’*i7, 1>

In verifying (6.6), it can be assumed that
=Y iy, (a[l(f,—Z(H nl +§ (Z%)-Zf+ 1)]>
Z?
=aY u,Z+BY v <?;+Z[Z(,-+1,>.
Thus var(2) =c,a? +c,af + 32, where ¢, =var(} v,Z) =Y v? and

A
¢, =2cov (Z v Zy Y v; (2—:,+Z,.Z(i+1)>>

1

2
=4ZvTi+ZZZvivj(6,»juj+£iii - £>

=2 v T +u).

Also,
v;
c3=var(%z?‘Z?+ZviZiZ(i+1,)=c4+c5+c6.
Here
v; v?
c4=ivar<z7‘li2>=52iv;.
Next,
Vi 2 uiviz vD; v[z
C5 =COV ZYZi,ZviZiZ(,-H) =4ZT+4ZT—SZF
Moreover,

Ce :var(z viZiZ(i+ 1))

=Y v} (uf—2%+2u§2’— %2)"'22”"(“52)"'% - 132) (i;—vy)
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2 )2 0
=Zu?vf—4zu—iiﬁ+ 3Z%+2Z iuﬁz’viﬁi—4zv—‘iv—'+22u,viﬁ,~.
Consequently,
c3=) ufv?+2) iP5, +2 ud,.

Observe that

2
Zﬁ?=z(u52’—u$i’1)(2 vf) =23 iuPd— Y ufvf = (m— D5
izj
and hence that
c3=Y (0;+uv)? + Y uPo? +(m—1)2uPor _ .
The last formula for ¢; and the previous formulas for ¢, and ¢, together show that
(6.6) is valid.
Writing §, as Y, + £, we see that
var(j,) = var(¥Y,,) +2cov(Y,,, 1) +var(?).
The variance of 7 is given explicitly in (6.6). Thus to determine the constants in

(2.11), we need to determine explicit formulas for var(Y,,) and cov(¥,, ©).
Now

var(Y,,,)=var (ocZ(,,,, +§ me)>

and hence

2
var(Y,,,) =o?var(Z,) + af cov(Z,, Z{,) + ﬂ4 var(Z2,). (7.1)

It will be shown below that

var(Z,,,) =u?), (12)
COV(Z ys Z i) = 2uy + 1 1), (7.3)
and
var(Z2,) =6ulP + 8uu,, + 2(u?)? + 4uPul, (7.4)
where

n n
1 1
uP=3 3 and uP=>y .
i=m

i=m
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Equations (7.1)~(7.4) together yield an explicit formula for var(Y,,). Also,

cov( Yy, ) =cov <aZ(,,,) + g Zi BY v Zir [ Z—Z s 1)]>

=cov (ch(m) + g z¢,. B Ui)Z(m)>

and hence

2
cov( Yy, 1) =(m—1)p,,_ af var(Z,,) + % COV(Z iy Ziw)- (7.5)

Equations (7.2), (7.3), and (7.5) determine an explicit formula for cov(Y,,, 7).
It remains to verify (7.2)«7.4). To this end, let i, j, k, ] range from m to n. Then

Var(Z(m)) =var <Z gll) = z 215 = uinz),

so (7.2) holds. Observe next that

COV(Z s Z2)) = COV <Z %, [Z (%)} )
1
=Zzzij—kcov(2i, Z,Z))

=3 L ooV(Z, Z) 428 5 Y cov(Z, ZiZ)

i#j

1 1 1
=z4u$’+zzi_z<zj - ;>
=2+t ),

so (7.3) holds.
Finally,

2
var(Z,)=var ((Z %) ):Zzzzﬁcov(zizﬁ Z,Z).

The total contribution of all terms for which i=j=k=11s
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5y 1 )
var(Z3) Y - =20u).
i

The total contribution of all terms for which exactly three of the four quantities i,
J, k, | coincide is

4cov(Z2,Z,Z,) Z% y §= 16(uu,,, — ul).
W izj

The total contribution of all terms for which i and j are distinct and exactly one of
the pair k, / equals i or j is

1
4C°v(Zsz~Zazs>ZZZ;;;=4Z% z 1 <um_ i 1)

ik izl i
=8u —8u'Du, — HuP)? + 4uPul;

here i#j#k means that i, j and k are distinct. The total contribution of all terms
for which i and j are distinct and (k, I) is either (i,j) or (j, i) is

2aK(Z,Z) Ly T =60 )

i#j

Equation (7.4) follows by adding up these four totals.
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APPENDIX. TAIL HEAVINESS

Let G denote the tail distribution function of Y, which is given by G(y)=P(Y 2=y),
yeR, and let G~ ! be the inverse function to G, which is assumed to be continuous
and strictly decreasing on (0, 1). Then ysz‘l(p) for 0<p<1. It is also assumed
that Y has a density function that is positive and continuously differentiable on
the range of G~ 1.

Let 0<p<1. The tail heaviness at the upper pth quantile y, of the distribution
of Y is defined by

_ _ dzy dylJ
H®)=HP) = gisett/pr / d(log(1/p)) A1)

It follows from (A.1) and elementary calculus that

dy, [dy PG'(yp)
H(p)=—p| /2 ]|-1= B — 1. A2
w=-r <de/ dp> (G, A2

For an alternative definition of tail-heaviness, suppose that G'(y)>0 for y>0 and
set o(y) =(d(log(G(y)/dy)~! (see (9.1) in Smith, 1987). Then H(p)=¢'(y,).
The tail heaviness is invariant under location and scale transformations; that is,

H, .y p)=Hy(p), a€Rand b>0.

The effects of power and logarithmic transformations on the tail heaviness of a
positive random variable Y are given by

(b—-1) dy,

Hy, =H ’
vo(p)=Hy(p) + v, d(log(1/p))

E]
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and

1 d
Hiogr(p) = Hy(p) — — ——22_—

y, d(log(1/p))’

A random variable is said to be heavy-tailed if its tail heaviness is positive and
light-tailed if its tail heaviness is negative. Suppose that Y has a Weibull
distribution with positive power parameter § and hence that Y has the same
distribution as W¥, where W has an exponential distribution. The yp=a[log(1/p)]”
for some positive constant a, which is a scale parameter. By (A.l), the tail
heaviness of Y at y, is given by

_ -1
P = log(1/p)

When =1, Y is exponentially distributed and has tail heaviness zero; when f>1,
it is heavy-tailed; and when 0 < f <1, it is light-tailed.

Let W be a positive random variable having tail distribution function G, and
set w,=Gg '(p) for 0<p<1. Let >0 and set Y=WP" Then G(y)=Gy(y'?) for
y>0and y,=wh for 0<p<1. Moreover, by (A.2) and elementary calculus,

WL Golo,) 1 ' (4

H(p)

Suppose, in particular, that W has the gamma distribution with shape parameter o
and scale parameter ¢, whose density function is

The distribution of Y =W?# is referred to as a generalized gamma(a) distribution. It
follows from (A.3) that

Hp)= - PT@ —(ﬁw—a)—l. (A4)

(wy/c)exp(—w,/o)\ ¢

As a special case, suppose that W has the chi-square distribution with one
degree of freedom, which is the square of a standard normal random variable Z.
Then W has the gamma distribution with parameters «=0.5 and c=2. Here
wp=zé‘5p, where P(Z zz, 5,) =0.5p. It follows from (A.4) that

p/m(2B—1+235,)
220.5p€XD( = 23 5,/2)

H(p)=
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When f=0.5, Y=W* has the same distribution as |Z|, which is known as the
half-normal distribution.

Suppose now that Y has a lognormal distribution; that is, that log(Y) is
normally distributed. Then y,=aexp(fz,) and

G(y)=1 —¢(5?§§3y/i)>, y>0.

Here @ denotes the standard normal distribution function, whose density function
is denoted by ¢; and the scale parameter o and power parameter f are both
positive. The random variable log(Y) has mean log(x) and standard deviation f.
According to (A.2), the tail heaviness of Y at y, is given by

H(p)=PZtP) (A.5)

It follows from (A.S) by straightforward asymptotics that

lim H(p)z,=lim H(p),/210g(1/p)=B. (A.6)
p—0

p—0

Thus the tail heaviness is positive for p sufficiently close to zero and it converges
exceedingly slowly to zero as p—0.

If H(p)—0 as p—0, then the distribution of Y belongs to the domain of
attraction of exp(—exp(—y)) for the distribution of the maximum (see Theorem
2.7.2 of Galambos, 1978). In particular, generalized gamma and lognormal
distributions belong to the indicated domain of attraction. This fact does not
appear to be helpful in obtaining confidence bounds for extreme upper quantiles
that are reliable for these distributions, however, since the convergence of H(p) to
zero as p—0 can be exceedingly slow. Consider, in particular, the lognormal
distribution with f=1. Suppose we want to treat the upper ten order statistics
Yi),..+> Y10y as coming from a distribution having tail heaviness approximately
equal to zero over the relevant portion of the tail. To this end, we might
reasonably desire, say, that H(p)<0.1 for np =10, but by (A.5) or (A.6) this would
entail that z,,,,2 10 and hence that n210%*,
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