Using Logistic Regression to Estimate the Adjusted Attributable Risk
of Low Birthweight in an Unmatched Case-Control Study
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Other authors have shown how to estimate attributable risk based on stratification. In this paper, we show how to estimate adjusted
attributable risks, standard errors, and confidence intervals from an unmatched case-control study that has population-based controls
and uses the logistic regression model to estimate relative risk. We apply the method to data from a case-control study of low
birthweight. The method is conceptually simple, has no assumptions beyond those of the logistic model, makes use of computer-
intensive statistical techniques (the bootstrap), and extends to interactions. A Fortran computer program to carry out the
computations is available from the authors upon request. (Epidemology 1991;2;363-366)
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Several authors have discussed the problem of estimating
the adjusted attributable risk based on data from case-
control studies.'™ Whittemore'? showed how to estimate
attributable risk, adjusting for one dichotomous covari-
ate. Bruzzi et al.’ presented an approach adjusting for
several factors simultaneously, based on estimates of
relative risk derived from a logistic regression model, but
they did not provide a way to estimate standard errors for
the attributable risk estimates. Kuritz and Landis*’ pre-
sented a method for obtaining summary estimators,
variances, and confidence intervals for attributable risk
from both unmatched and matched case-control studies
based on stratified analysis. They showed that, consider-
ing bias and coverage probability, their method for
estimating variances and confidence intervals was supe-
rior to weighting the attributable risk estimates from each
table by the inverse of its variance®’ and to weighting the
attributable risk estimate from each table by the number
of cases in the table.'*®

In this paper, we show how to estimate adjusted
attributable risks, standard errors, and confidence inter-
vals from an unmatched case-control study where con-
trols are “population-based” (that is, sampled at random
from the defined population from which cases also arose),
using the logistic regression model to estimate relative
risk. Estimating attributable risks, standard errors, and
confidence intervals from the logistic model is of interest
because this model is frequently used in epidemiologic
studies, being particularly well-suited to analysis of data
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where covariates include measures that are both categor-
ical and continuous.

We apply our method to analysis of data from a study
examining the risk factors for low birthweight in an urban
population.”'®

Methods

ESTIMATION OF THE ADJUSTED ATTRIBUTABLE RISK

All low-birthweight infants born during the study period
were included in our sample, while the controls were
chosen at random from noncases in the population, with
sampling fraction p,, so that the number of controls
equaled the number of cases.

To obtain estimates for the attributable risk, a logistic
model is fitted to the data. For each subject, there is a
response variable y, which is 1 if subject j is a case and 0 if
subject j is a control. There are data on a number of
covariates x,. These variables are all dichotomous, that is,
x, = 1 if subject j has risk factor i, and O otherwise.

The logistic model for the probability of low birth-
weight given the covariates is

exp (a + ZB'X")
Ply,=1|x) = — (1
1+ exp (a + ZB,x”)

The parameters a and P, are estimated by maximum
likelihood. To begin, consider the maximum likelihood
estimates & B, i = 1, ...k, based on our data and the
logistic model, but ignoring the fact that sampling took
place. That is, we base & and B, on all cases and controls
in the study and compute these estimates as if all low
birthweight and all normal birthweight in the population
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were included in the study. The maximum likelihood
estimates &, B, i = 1, . . . k of the parameters in Equation
1, taking the sampling into account, are then obtained as
tollows:

&=

& + 10g (Pl)
B =8,

for all {,

following Breslow and Day."

The expected number of cases in the population is
obtained by adding up the individual probabilities of low
birthweight, given the covariates:

C=2P=1]|x).

The sum is not just over all subjects in the study, but over
the entire population. For the controls, only a fraction p,
of the eligible population was sampled, so the expected
number of cases, taking sampling into account, can be
estimated from the logistic model as

k
exp (& + 2 f%,x”

k
v 1 + exp (d + Eé,xu)

C:

Here the controls are weighted by 1/p,.

To estimate the attributable risk for say, variable 1, we
compute what would happen if nobody in the population
has risk factor 1. Thus, the number of cases C expected if
nobody in the population has risk factor 1, that is, x, = 0
for all j:

The estimated attributable risk, AR, for the main effect of
variable 1 is

Pr C_CI
AR, =~ X 100%. Q)
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Likewise, we can estimate the attributable risk for the
remaining variables or for interactions between variables.
To estimate, for example, AR, ,, compute the number of
cases C, , expected if nobody had either risk factor 1 or
risk factor 2.

STANDARD ERRORS AND CONFIDENCE INTERVALS

We turn now to standard errors. There are no exact
formulas for the standard error of the estimate (Equation
2) because of the complicated nonlinearities. Therefore,
we use a method based upon the bootstrap (see Efron,'*"”
Freedman and Peters,' and Peters and Freedman").

The basic idea is to see how good the estimates are in a
situation where the true value of the parameter, say AR,
is known. Since we do not know what AR, is, we
construct data sets in a simulated world where we do
know the parameter. The newly constructed data sets are
identical to the original one, except for the response
variable Y. The new Y*s are generated according to the
probabilities specified by equation 1. The e and B in this
equation are the estimates & and B. For each artificial
data set, we estimate AR,. Call these estimates AR* In
our simulation, the truth, AR¥, is known: it is /’\-R’{‘ Thus,
from the difference between the AR* based upon the
simulated data sets (the bootstrap estimates) and since
AR* = AR*, we estimate the accuracy of AR* These
estimates of accuracy of the bootstrap estimates are now
used as an estimate of the accuracy of AR%.

To generate artificial data sets exactly requires informa-
tion on the entire population. This was not available
because only a sample of mothers of normal infants was
interviewed. Therefore, to get bootstrap estimates, we
first reconstruct the population from which the cases
arose. That is, all cases are in the population; all controls
are replicated 1/p, times (rounded to an integer) in the
reconstructed population. Use of this replication leads to
a negligible underestimation of the standard errors.

Next, to get one artificial data set Y*, we generate a
pseudorandom number for every subject j in the recon-
structed population. If this number is smaller than

the jth subject will be labeled low birthweight, that is,
y* = 1, otherwise, it will be labeled normal birthweight,
that is, y* = 0. We use the same sampling scheme as was
used in the study: All the low-birthweight infants are
included in the data set, and the controls are sampled
from the normal birthweights, so that the number of
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TABLE 1. Attributable Risk (95% CI) of Low Birthweight for Six Variables in Blacks
and Whites, Adjusting for All Other Variables in the Table
Whites Blacks
Variable AR* SE* 95% CL* AR SE 95% CL

Aget

<17 0.8 0.8 -0.8,2.4 2.0 1.8 -1.2,55

35+ 10.5 4.0 2.8,17.9 1.8 1.9 -2.0,53
Parity}

0 239 8.1 6.8, 38.1 12.6 4.9 29,218
3+ -0.5 1.7 —-4.0,2.5 3.7 2.3 -1.0,83
Low prepregnancy weight$§ 9.2 2.7 4.2,14.6 19.3 2.5 14.4,24.3

Drug use -0.3 2.8 -6.5,4.6
Cocaine 8.2 1.9 4.2,11.8
Other illegal| 1.2 1.5 -2.2,3.7
Heavy alcohol usef 1.9 1.9 -2.2,5.5 2.1 1.6 -1.7, 4.8
Smoking# 19.0 4.5 9.7, 269 31.3 4.2 23.1,39.6

NOTE: Attributable risk is negative when the elimination of a factor would increase the number of
low-birthweight infants, for example, when the factor “protects” from low birthweight.
*AR = attributable risk; SE = standard error; CL = confidence limits.

tReference group is age 18-34.
tReference group is parity 1-2.

§Body mass index < 2.7 as measured in pounds and inches.
|[Except marijuana; includes heroin, amphetamines, PCP, angel dust, LSD.

93 or more drinks per day.
#Regular smoking.

controls equals the number of cases in this data set. We
proceed by fitting the logistic model, computing * and
B*, and by estimating the attributable risk for this
artificial sample, computing AR*

Now repeat this procedure many times (we used 1,000
repetitions), obtaining a large number of bootstrap esti-
mates for AR* The standard deviation of the bootstrap
estimates, AR¥, is the estimate for the standard error of
the main effect of the attributable risk for variable 1; the
sample 2.5th and 97.5th quantile of the bootstrap esti-
mates form an approximate 95% confidence interval.

Essentially, the same method can be used for the
attributable risk of interactions of variables, and it can
easily be extended to include the situation where only the
controls are not a probability sample from all eligible
controls, but also if the cases are sampled from some
larger set of eligible cases. It would also work for other
models than the logistic model.

Application and Results

The details of procedures for recruiting and interviewing
cases and controls have been described in detail else-
where.”® Briefly, we used information from birth certifi-
cates filed in Alameda County, California, to identify
singleton infants without congenital anomalies born
between January 1, 1987 and December 31, 1987 to
white, non-Hispanic, and black residents of Alameda
County. Cases weighed 500-2,499 grams, and all were
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targeted for interview. Controls were chosen at random
from among infants with weights of 3,000 or more grams,
the number of controls in each ethnic group being equal
to the number of cases. The sampling fraction for white
controls was 1/26.32; for black controls, it was 1/7.75.
Two hundred and twenty-three white cases, 239 white
controls, 377 black cases, and 389 black controls were
successfully interviewed.

For blacks and whites separately, Table 1 shows
estimates of the attributable risk of low birthweight for
the main effect of six variables (age, parity, low prepreg-
nancy weight, heavy use of alcohol, cigarette smoking,
and use of cocaine and other illegal drugs). Standard
errors and 95% confidence intervals are also shown. In
both whites and blacks, after adjustment for all of the
other variables, smoking accounted for the highest per-
centage of cases of low birthweight (AR% = 19, 95% Cl:
10-27 for whites; AR% = 31, 95% CI: 23-40 for blacks).
In blacks, after adjustment for all of the other variables
including smoking and alcohol, use of cocaine accounted
for 8% of cases of low birthweight (95% CI: 4-12).

Other models that we tried gave essentially the same fit
and estimates for attributable risk for these six variables.
The logistic model that included interactions also gave
the same estimates.

These results suggest that elimination of substance
abuse during pregnancy would prevent a substantial
percentage of low-birthweight births in both whites and
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blacks in this population, with smoking being numerically
the most important contributor to the problem of low
birthweight. The findings reinforce conclusions we made
in two prior analyses based on data from this study that
did not present adjusted attributable risk estimates.”™"

Discussion

As a tool for the program planner, attributable risk has
important advantages over other measures of association
derived from epidemiologic studies because it takes into
account not only the strength of the factor’s association
with the disease or condition being studied, but also the
prevalence of exposure. If the association of the factor
with disease or condition is causal, attributable risk
measures the percentage of all cases that would be
prevented by eliminating the risk factor from the popula-
tion. From the policy perspective, factors with high
attributable risk should receive priority for preventive
intervention, irrespective of the size of the relative risk of
the disease or condition in the exposed.

A practical limitation of use of attributable risk for
program planning has been the difhculty of estimating
attributable risk after taking into account other factors
known to be related to the disease. Kuritz and Landis’™*
recently showed how to do this in a stratified analysis.
The disadvantage of stratification is the need for a
prohibitively large amount of data if one wants to take a
number of variables into account at the same time. Using
a model makes it possible to do computations with a
considerably smaller amount of data. Modeling, however,
has its risks. If the data do not fit the model, estimates for
the attributable risk will be incorrect; so, of course, will be
the standard errors and confidence intervals.

A computer program to carry out the computations,
written in Fortran, is available from the authors upon
request. Using the bootstrap to compute standard errors
and confidence interval is highly computer intensive; it
took 40 minutes CPU time on a Sparc-station to compute
confidence intervals for the main effects of the atcribut-
able risk of low birthweight for blacks, using 1,000
bootstrap estimates. The computation of the estimates,
which does not involve the bootstrap, was much faster. If
only a PC is available, one could do a number of bootstrap
estimates (say, 25} and compute standard errors using
these estimates. Quantiles of the normal distribution are
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then used to construct approximate confidence bounds
from the bootstrap estimates and standard errors.

The approach we present has some other important
features. First, the only assumptions made are the stan-
dard assumptions behind a logistic model. Second, the
method of obtaining estimates is conceptually simple.
Third, the computation of confidence intervals and
standard errors makes use of computer-intensive statisti-
cal techniques. Fourth, the method works not only for
main effects, but it can easily be extended to include
interactions of variables.
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