Logspline Density Estimation
for Censored Data

CHARLES KOOPERBERG * AND CHARLES J. STONE t

Logspline density estimation is developed for data that may be right censored, left
censored, or interval censored. A fully automatic method, which involves the maximum
likelihood method and may involve stepwise knot deletion and either the Akaike infor-
mation criterion (AIC) or Bayesian information criterion (BIC), is used to determine the
estimate. In solving the maximum likelihood equations, the Newton—Raphson method
is augmented by occasional searches in the direction of steepest ascent. Also, a user
interface based on S is described for obtaining estimates of the density function, distribu-
tion function, and quantile function and for generating a random sample from the fitted
distribution.

Key Words: AIC; BIC; Maximum likelihood; Polynomial splines; S; Stepwise knot
deletion; User interface.

1. INTRODUCTION

Consider data that can be thought of as arising as a random sample from a distribution
on a known open interval having an unknown positive, continuous density function on
that interval. In practice the traditional way of modeling the unknown distribution is to
assume a classical parametric model such as normal, lognormal, gamma, Weibull, Pareto,
or beta. Alternatively, we can use a histogram, kernel, or other nonparametric estimate
of the unknown density function.

We can think of histogram density estimation as modeling the unknown log-density
function by a piecewise constant function and estimating the unknown coefficients of the
model by the method of maximum likelihood. Similarly, we can model the log-density
function by a linear spline (continuous, piecewise linear function), quadratic spline (con-
tinuously differentiable, piecewise quadratic polynomial), or cubic spline (twice con-
tinuously differentiable, piecewise cubic polynomial) and use the maximum likelihood
method to estimate the unknown coefficients. The resulting methodology, known as log-
spline density estimation, has been studied in Stone and Koo (1986), Stone (1990), and
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Kooperberg and Stone (1991). (In these papers as well as the present article, cubic splines
are employed.)

Here logspline density estimation will be further refined and studied and extended to
handle data that may be right censored, left censored, or interval censored. In addition, we
will describe a user interface that makes the extended procedure conveniently available
within the S environment (see Becker, Chambers, and Wilks 1988). To evaluate the
procedure in its present form, we will apply it to a number of simulated and real data
sets. Finally, the main issues involved in the numerical implementation of the procedure
will be discussed.

For work on kernel density estimation in the presence of right-censored data, see
Marron and Padgett (1987) and the references cited therein. We are not aware of work on
density estimation in the presence of right-censored, left-censored, and interval-censored
data.

2. LOGSPLINE MODELS

In this section we will give a detailed description of logspline models and introduce
some auxiliary notation that will be used later on. Given the integer K > 3, the numbers L
and U with —oo < L < U < 00, and the sequence t1,...,tx With L < t; < --- <tg <
U, let Sy be the space of twice-continuously differentiable functions s on (L,U) such

that the restriction of s to each of the intervals (L,t1], [t1,t2],. .., [tk—1,tk], [tk, U)
is a cubic polynomial. The space Sp is (K + 4)-dimensional, and the functions in this
space are referred to as cubic splines having (simple) knots at ¢;,...,tx. Let S be the

subspace of Sy consisting of the functions in S that are linear on (L, 1] and on [tg,U).
The space S is K-dimensional, and the functions in this space are referred to as natural
(cubic) splines. Set p = K — 1. Then S has a basis of the form 1, By, ..., Bp. We can
choose Bi, ..., B, such that B is linear with negative slope on (L, t], By, ..., B, are
constant on (L,t;], By is linear with positive slope on [tx,U), and By,...,B,_; are
constant on [tg,U).

A column vector @ = (0y,...,0,)" €IRP is said to be feasible if

U
/L exp(61By(y) + - + 0, B,(y))dy < 00

or, equivalently, if (1) either L > —oo or 6; < 0 and (2) either U < oo or 6, < 0. Let
© denote the collection of such feasible column vectors. Given 8 € O, set

U
C(8) = log ( /L exp(01Bi1(y) + - + Opo(y))dy>
and

f(4:8) = exp(01B1(y) + -~ +0,B,(y) — C(8)), L <y<U.

Then f(-;0) is a positive density function on (L,U) for @ € ©. The corresponding
distribution function F(-; @) and quantile function Q(-; @) are given by

y
F(y; 0) :/L f(z0)dz, L<y<U,
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and
Q(p; 0) = F‘l(p; 6), 0<p<i1

(so that F(Q(p;0);0) = pfor0 < p < 1 and Q(F(y;6);0) =y for L < y < U).
If U = oo, then the density function is exponential on [tx,00); if L = —oo, then the
density function is exponential on (—o0, t;].

We now define various quantities that will appear in Section 3 in the formulas for
the log-likelihood, score, and Hessian. First, given y € (L, U), set

¢(y;0) = log(f(y;0)) = Y_0;B;(y) — C(6), @€8.
J

Next, to handle censoring, given a subinterval A of (L, U) having positive length, set

©(A;0) = log ( /A f(y; 0)dy) = log ( /A e“’(y;o)dy) , 8¢ce.

Given a function g on ©, set

o _ 99(8) o 0%g(8)
9;(0) = 29, and g;x(0) = 50,00, 0co,

where 1 < j, k < p. Then, in particular,
¢;(y;0) = Bj(y) — C;(0) and ¢;x(y;0) = —Cjr(0), 0€6.
Moreover, when A has positive length,

Ja©i(y;0)f(y; 0)dy

o0 = o)y

6eo,

and

Ja0i(y;0)f(y; 0)dy 4 L4 0i(y; 0)pi(y; 0) f (y; 8)dy
Ja f(y;0)dy Ja Fy;0)dy
_Jaei(y:0)f(y; 0)dy [, ox(y; 0)f(y; 0)dy
(J4 f(y; 0)dy)’

vik(A;0) =

6co..

3. MAXIMUM LIKELIHOOD ESTIMATION

We will now discuss the implementation of the maximum likelihood method for
estimating the unknown parameters 6,,...,0, of the logspline model. For conceptual
simplicity, we think of the method as being applied to a random sample Yj,... Y, of
size n from a distribution on (L, U) having density function f, distribution function F,
and quantile function Q.

Let Aj,..., A, be subintervals of (L,U) such that it is known only that Y; € A;
for 1 < ¢ < n. IfY; is uncensored, then A; = {Y;}. If Y; is right censored at T; < Y;,
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then A; = (T;,U). If Y; is left censored at T; > Y;, then A; = (L,T;). In either
case we refer to T; as the censoring value of Y;. If Y; is interval censored, then its
censoring interval A; is a subinterval of (L,U). Under the usual assumption that the
random sample is independent of the censoring mechanism, the log-likelihood function
oorresponding to the logspline model is given by 1(8) = Y . p(A;;60),0 € ©. Thus

(0)=3",9,(A;:;0),0 € ©, and Ljx( ) 3 wik(Ai 0), 6co.

The maximum likelihood estimate 8 is given as usual by (8) = maxg g [(0) and
the log-likelihood of the model is given by [ = l( ). The corresponding maximum
likelihood estimates of f, F, and Q are given by fw) = fv 0) forL <y < U,
F(y) F(y; )forL<y<U andQ( ) =Q(p 0) for0<p<1.

Let S(6) denote the score at @ (that is, the p-dimensional column vector with ele-
ments [;(0)), and let H(@) denote the Hessian at @ (that is, the p x p matrix with elements
l;x(0)). The Newton—Raphson method for computing 8 is to start with an initial guess

6 and iteratively determine 8(™) from the formula
. . . -1,
g(m+1) — g(m) _ [H <o(m))] S (g(m)) .
If at some stage [ (5(’"“)) <l (5("‘)), then 8(™+1) should be replaced by

SR

for some constant v € (0, 1). In our implementation we choose v = 27¥, where v is the
smallest nonnegative integer such that

! (aw —2[u(om)] s (a<m>)) > 1(8m).

This procedure is referred to as the Newton—Raphson method with step-halving. We stop

the iterations when
L@ o) "s(om) =

where ¢ = 107°; roughly speaking this corresponds to stopping the iterations when
L(Bm+) —1(8™) < e

When there is no censoring the Hessian is globally negative definite, the log-
likelihood function is strictly concave, and the maximum likelihood estimate of € is
necessarily unique (see Stone 1990); moreover, the Newton—Raphson method with step-
halving works quite well. When there is censoring, however, the Hessian need not be
globally negative definite. Here we augment the Newton—Raphson method by occasional
searches in the direction of steepest ascent; see the Appendix for details.

4. KNOT SELECTION

The knot selection methodology involves initial knot placement, stepwise knot dele-
tion, and final model selection based on AIC or BIC. Let n, be the number of un-
censored observations, n, the number of right-censored observations, n; the number of
left-censored observations, and n; the number of interval-censored observations. Then
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n = ny +n,. +n; +n;. Set n. = ny +n; +.5(n. +ny), and let N be the num-
ber of distinct sets among Aj,..., A,. As the default value for the initial number of
knots K we have used K = min(4n;2,n./4, N, 25) when knot deletion is employed and
K = min(2.5n2,n./4, N, 25) in the absence of knot deletion. (If the indicated value of
K is not an integer, it is rounded up to the next integer.) These choices are in reasonable
agreement with conclusions reached about this issue in Kooperberg and Stone (1991).
Observe that if N < 25 and n, is sufficiently large relative to NV, then the number of
parameters in the model is givenby p=K —1 =N — 1.

(Suppose all of the observations are interval censored and that the number NV of dis-
tinct intervals is not large. In principle it should be possible to fit a model with N +1 knots
and hence N free parameters. In practice, however, the numerical problem of obtaining
the corresponding maximum likelihood estimate 9 is likely to be ill-conditioned.)

We will now describe an initial knot placement rule, which is more complicated than
the corresponding rule in Kooperberg and Stone (1991); the added complications are due
to the need for handling censored observations. In order to place the K initial knots in a
reasonable manner, we first define a suitable smoothed empirical distribution on (L, U).
To this end, for y € (L,U), let #(y) denote the number of intervals Ay,..., A, that
correspond to uncensored, right-censored, or left-censored observations and that have y
as an endpoint, and set

Hily) = Y #e) + 5 3 #).

z<y

Also, let H,(y) be the sum of

length(A; N (L,y))
length(A;)
over all values of ¢ that correspond to interval-censored observations, and set H3(y) =
Hy(y) + H2(y). Let Y denote the collection of finite endpoints of Aj,..., A,, and
let Hy be the function on [min(}), max(})| obtained from Hi(y), y € Y, by linear
interpolation. Let fs be the function H, normalized to have integral one, let Fs be the
distribution function of fs, and let Q5 = FS”1 be its quantile function.

When the n observations are uncensored and distinct, ()5 has a simple form. Let the
observations be written in increasing order as Y(y), ..., Y(5). Then Y = {Y(l), Yok
min()) = Y{3), and max(Y) = Y. Also, Hy(y) = 0fory € Y, s0 H3 (Y;n)) = m—3
for 1 < m < n. Thus

Y(n) ,
Hy(y)dy =n—1.
Y
Consequently,
m—1
Fs (Yim)) =71 1<m<n,

and Fs is obtained for other values of y € [Y{1), Y(,,)] by linear interpolation. Therefore,

m—1
QS(n_l):}f(m), lsmén,

and Qs(p) is obtained for other values of p € [0, 1] by linear interpolation.
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The knot placement rule is governed by a sequence of numbers ry,...,rx_1 such
that ry < 1, < -+ < rg_; < rg, where r; = 0 and rg = 1. Specifically, knots are
placed initially at min(}), Qs(rx), 2 < k < K — 1, and max()).

Suppose first that L = —oo and U = oo. The numbers 73, ..., 7k are then chosen
to satisfy the symmetry condition rx 1 = 1 — 1 for 1 < k < K, which implies that

TK41—k —TK—k =Thk41— Tk, 1<k K-—1.

Motivated by the discussion in Section 5.1 of Kooperberg and Stone (1991), we require
that

n(rge1 —rk) =44 —€)V1---[(4— (k—1)) V1] (4.1)

for 1 < k < K/2, where ¢ €IR; here a V b = max(a,b). The constant ¢ is determined
as follows: If K is an odd integer, then r(gx41)/2 = 1 /2; if K is an even integer, then
Tk/2 + TR+ =1

For a numerical example of this rule, let n = 100. If K = 11, then € = 1.42 and
the numbers ry, ..., 19 are approximately as follows:

k1 2 3 4 5 6 7 8 9 10 11
.. 0 .04 .14 26 .38 50 .62 .74 86 96 1

If K = 10, then € = 1.34 and the numbers 7y, ..., 7o are approximately as follows:

k1 2 3 4 5 6 7 8 9 10
re. 0 .04 15 29 43 57 71 8 96 1

Suppose next that L = —oo and U < oo. The numbers 73, ..., 7k _1 are then chosen
so that (4.1) holds for 1 < k < K — 1. Suppose instead that L > —oo and U = co. Then
r2,...,TK_1 are chosen so that

n(rgs1—k —rk—k) =4[(4—€)Vv1]---[4—(k-1e) V1, 1<k<K-1.
Suppose, finally, that L > —oo and U < oo. Then 7,,...,7x_1 are chosen so that
Thl =Tk =Tk —Tk—1, 25k<K -1

thus

k-1
Tk = -K——:T, 1 S k S K.
Generally, we have preferred stepwise knot deletion to using a fixed number of knots.
In this procedure we place permanent knots at min()}) and max()) and nonpermanent
knots at Qs(ry) for 2 < k < K — 1. Then we successively remove the least statistically
significant among the remaining nonpermanent knots until there is only one nonpermanent
knot. The statistical significance of a nonpermanent knot is measured by the absolute
value of its Wald statistic Wy, = 74 /SE(7%). Here 7, = /\25 is the jump of the third
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derivative of ) @-Bj at the corresponding knot, where the B’’s are defined in terms of

the remaining knots. Also,
SE(?]‘;) =1/ )\ij_l)\k,

where the estimate I of the information matrix is the negative of the Hessian matrix of
the log-likelihood function at 6 for the model based on the remaining knots.

Using stepwise knot deletion we get a sequence of models indexed by m € {0,...
, K —3}; the mth model has K — 1 —m free parameters. Let [,,, denote the log-likelihood
of the mth model, and let AIC,, ,, = 20 + a(K — 1 —m) be the Akaike information
criterion with penalty parameter « for this model. We choose the model corresponding to
the value 7 of m that minimizes AIC, . Traditionally, & = 2. In Kooperberg and Stone
(1991) we recommended choosing o = 3 to reduce the chance of spurious modes in the
density estimate. Based on our more recent experience, we now recommend choosing
a = log(n) as in the Bayesian information criterion (BIC) due to Schwarz (1978).

It would be worthwhile to extend the logspline methodology to allow for knot ad-
dition as in TURBO (Friedman and Silverman 1989) and MARS (Friedman 1991). This
would obviate the need for the rather complicated knot placement rule described previ-
ously.

S. USER INTERFACE

A program for implementing logspline density estimation as it applies to possibly
censored data has been written in C (see Appendix), and an interface based on S (see
Becker, Chambers, and Wilks 1988, and Chambers and Hastie 1992) has also been
developed. (The software is publicly available from StatLib. Send an electronic mail
message with the body ‘send logspline from S’ to statlib@stat.cmu.edu to obtain the
logspline density estimation program.) The interface has several purposes: (1) to facilitate
the application of logspline density estimation to real data; (2) to facilitate the evaluation
of the corresponding methodology and its comparison to kernel and other approaches to
nonparametric density estimation; and (3) to explore the broader issue of the practical
utility of nonparametric density estimation.

The interface consists of seven S functions: dlogspline, plogspline, glog-
spline, rlogspline, logspline.fit, logspline.summary, and log-
spline.plot. The first four of these functions are analogous to the S functions
dnorm, pnorm, gnorm, and rnorm, and to similar four-tuples of S functions for ¢
distributions, F' distributions, gamma distributions, and so forth. Thus dlogspline
gives the density function corresponding to logspline.fit, plogspline gives
the distribution function, glogspline gives the quantile function, and rlogspline
gives a random sample from the fitted distribution. The function logspline.fit
performs the model fitting and model selection tasks and supplies the modest output
that is used as input to dlogspline, plogspline, and so forth. This takes advan-
tage of the feature of logspline density estimation that the estimate is determined by a
moderate number of parameters, namely, L, U, a and the number and position of the
initial knots. The function logspline.fit has defaults for all of these parameters.
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Figure 1. Logspline Density Estimates for Interval-Censored Data From a Normal Density. — equals estimate
using censored data, —— equals estimate using actual data, and - - - equals truth. Left, n = 100; right, n = 500.

The function logspline.summary uses the output of logspline.fit to provide
summary information about the fit and about the other fits that could be obtained by using
alternative values of the penalty parameter. Finally, logspline.plot uses the out-
put of logspline.fit directly to produce a plot of the density function, probability
function, hazard function, or survival function.

6. SIMULATED EXAMPLES

An advantage of using simulated data for examples involving censoring is that we
know not only the true density function from which the data was generated but also the
actual values of the sample data before the censoring took place. In the figures in this
section we indicate the position of the knots in the final estimate (after knot deletion): “c”
indicates a knot for the density estimate based on the partly censored data; “a” indicates
a knot for the estimate based upon the actual (uncensored) data.

Figure 1 contains examples involving the normal distribution. We generated a sam-
ple of size n from the standard normal distribution and then grouped this data into
the intervals (—oo, —3], (-3, 2], (=2, 1],...,(2, 3], (3, 00). The logspline density es-
timate based on this interval-censored data (the counts in (—3,2], (-2,1],...,(2,3]),
left-censored data (the count in (—oo, —3]), and right-censored data (the count in (3, 00))
is the solid line in Figure 1. We report here typical results for density estimates based on
sample sizes of n = 100 and n = 500. The dashed line is the logspline density estimate
based on the actual data. The dotted line is the true normal density.
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Figure 2. Logspline Density Estimates for Normal Data, Left Censored, and Right Censored by Exponential
Data. — equals estimate using partly censored data, —— equals estimate using actual data, and - - - equals truth.
Left, n = 100, 35% left censored, 33% right censored, right, n = 500, 29% left censored, 30% right censored.

Figure 2 also contains examples involving the normal distribution. We generated a
sample Y;, 1 < ¢ < n, from the standard normal distribution. We also generated two
independent samples, L;, 1 <4 < nand R;, 1 < i < n, from the exponential distribution
with mean % The solid line in Figure 2 is the density estimate based on A;, 1 <1i < mn,
where

A = (—o0,—Ly)ifY; <L
— {Vi}if -Li<Y; <R
(Rl,OO) if Y; > R;.

The dashed line is the logspline density estimate based on the actual data and the dotted
line is the true normal density.

From Figures 1 and 2 we observe that the logspline procedure with censoring yields
very good results. For each sample size the density estimate based on the partly censored
data is just as good as the estimate based on the actual data. When the underlying
density is smooth and unimodal the number of knots after knot deletion is typically 3 to
5, independent of the sample size (and thus of the initial number of knots).

Figures 3 and 4 contain logspline density estimates for a more traditional censoring
scheme. We generated a sample Y;, 1 < ¢ < n, from the gamma distribution with shape
parameter 5 and scale parameter 1 and an independent sample C;, 1 < 7 < n, from the
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0 5 10 15

Figure 3. Logspline Density Estimates for Gamma Data, Right Censored by Exponential Data. —equals estimate
using partly censored data, —— equals estimate using actual data, and - - - equals truth. Left, n = 100, 58% right
censored; right, n = 500, 54% right censored.

exponential distribution with mean 6. (The mean was chosen so as to yield about 50%
censoring.) The solid line in Figure 3 is the density estimate based on A4;, 1 < i < n,
where

A = {Y}iEY<C
= (Ci,OO) ifY; > C;,

and L =0 and U = oc.

The interpretation here is that Y; is the time of an event of interest for object ¢ and
that we observe Y; unless it is greater than the censoring time C;, in which case we
know only that the event happened after the time C;. The dashed line is the logspline
density estimate based on the actual data and the dotted line is the true gamma density.

The solid line in Figure 4 is the density estimate based on A;, 1 < i < n, where

A = (Yi,00)ifY; <C;
(CYiEY, > G,

I

based on the same data as in Figure 3. The dashed line is the logspline density estimate
based on A; = {C;} for all 4, and the dotted line is the true exponential density.

From Figures 3 and 4 we observe that it is possible in practice to recover both
the underlying density of interest and the density of the censoring times using logspline
density estimation from the information that is available in studies with right-censored
data.
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Figure 4. LogsplineDemityEstimates for Exponential Data, Right Censored by G Data. quals estimat

using partly censored data, —— equals estimate using actual data, and - - - equals truth. Left, n = 100, 42% right
censored; right, n = 500, 46% right censored.

The censoring scheme for Figure 5 is the same as the one for Figure 3. Here the
Y;’s were generated from a bimodal density f that was used in Kooperberg and Stone
(1991): f = .8g + .2h, where g is the (lognormal) density of exp(Z/2), with Z having
the standard normal distribution, and h is the normal density with mean 2 and standard
deviation .17. The C;’s were generated from the exponential distribution with mean 2.5.
The solid line in Figure 5 is the density estimate based on A;, 1 < i < n, where

4 = {M}iEYi<G
= (Ci)oo) ifYt > Ci7

and L = 0 and U = oo. The dashed line is the logspline density estimate based on
A; = {Y;} forall i, L =0 and U = oo; the dotted line is the true bimodal density.
Even for this bimodal density, logspline density estimation does a decent job. For the
smaller sample size, however, the estimate for the height of the second mode is not very
accurate. This appears to be caused primarily by the sampling variation. (The number of
data points close to the second mode, ignoring censoring, is binomial with parameters
n = 100 and p = .2.) Actually, about one fifth of the time that we simulated this example,
the number of data points near the second mode was so small that the density estimate
missed the second mode completely. Although the percentage of censoring typically is
less than 40%, about 55% of the cases in the range of the second mode get censored.

Nevertheless, when the sample size is large this censoring has almost no influence on
the fit.
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Figure 5. Logspline Density Estimates for Bimodal Data, Right Censored by Exponential Data. — equals
estimate using partly censored data, —— equals estimate using actual data, and - - - equals truth. Left, n = 100,
32% right censored; right, n = 500, 44% right censored.

In Kooperberg and Stone (1991) many more examples of bimodal (uncensored)
logspline density estimates are discussed. Based on the present version of the procedure,
the estimates are at least as good as they were before.

For the left side of Figure 6 we generated a sample Y;, 1 < ¢ < 100, from an
exponential distribution with mean 1 and an independent sample C;, 1 < i < 100, from
a uniform distribution on [0,1.5]. (The maximum of 1.5 was chosen so as to yield about
50% censorlng) The solid line in the left side of Figure 6 is the logspline estimate
S(y) = 1 — F(y) of the survival function based on A;, 1 < i < 100, where

A = {YVi}ifYi <G
= (Cy,00)ifY; > O,

The dashed line is the true survival function.

Because of the distribution of the censoring times in this example, all observations
for which Y; > 1.5 are censored. Logspline density estimates will have an exponential
tail beyond the last knot. When the underlying density is (almost) exponential, as in the
present example, this will be a useful approximation. (As usual, the user should be wary
about extrapolation beyond the range of the data. In particular when all observations
beyond a certain point are censored, as in Type I or Type II censoring, the reliability of
conclusions about the right tail of the density may be severely limited.) To investigate the
accuracy of logspline estimation of the survival function in the context of this example,
we obtained 100 simulations of the data and recorded the estimated probability of survival
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Figure 6. Logspline Survival Estimates for Exponential Data. — equals estimate and —— equals truth. Left, n
= 100, 49% right censored; right, quantile sample, censored at .7.

at 1.5 (“end of the data”) and 2.0 (“extrapolation”). The averages and standard deviations
of these 100 estimates are listed in the following table.

Estimate
Probability Average Standard Deviation Truth
1—- F(1.5) 209 .070 223
1 - F(2.0) 127 .065 135

It can be seen from this table that the estimates are biased slightly downward. (We
also made density estimates using the 100 estimates of the probabilities of survival as
the sample, which looked like normal density functions with the indicated means and
standard deviations.)

We carried out identical calculations for deterministic censoring at .7 (i.e., C; = .7
for 1 < ¢ < 100.) The results that we obtained were almost identical to those reported
in the preceding table and in the left side of Figure 6.

To get some feeling for the portion of the error that was due to sampling variation
(as opposed to bias in the estimate), we also “estimated” the survival function for a
“deterministic sample.” For the right side of Figure 6 we put ¥; = —log (1 — ),
1<:<100 and C; = .7, 1 <4 < 100. The solid line in the right side of Figure 6 is
the logspline estimate of the survival function based on A4;, 1 < i < 100, where

A = {Yi}ifY; <G

The dashed line is the true, exponential, survival function. As can be seen from the right
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Figure 7. Logspline Estimates for Suicide Data.

side of Figure 6, the logspline method appears almost unbiased for this censoring scheme.
We have found these “deterministic samples™ to be very useful in getting a feeling about
the behavior of logspline density estimation.

Figures 1-6 do not include any examples with Type I or Type II censoring. The
simulations we have carried out suggest that the behavior of logspline density estimation
with such censoring schemes is similar to that for the example shown in the left side of
Figure 6.

7. REAL EXAMPLES

The data for Figure 7, which is labeled suicide, consist of 86 lengths of psychiatric
treatment spells undergone by patients used as controls in a study of suicide risks reported
by Copas and Freyer (1980). The data are used extensively in Silverman (1986), and they
are also used in Wand, Marron, and Ruppert (1991) and Kooperberg and Stone (1991).
The logspline estimate in the left side of Figure 7 was made using L = 0 and U = oc. (In
Kooperberg and Stone [1991], the data was first transformed to (—oo, ), after which a
logspline density estimate with L = —oo was obtained.)

Because kernel density estimation handles finite boundaries in an awkward manner,
there has been considerable discussion about the legitimacy of a peak around y = 50
in the kernel density estimate based on the suicide data. We are comfortable with the
monotonic decreasing behavior of our estimate.
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Figure 8a. Logspline Estimates for Efron Data. — equals group A (n = 51,9 censored) and - - - equals group
B (n = 45, 14 censored).

In the right side of Figure 7 we show the logspline hazard estimate / defined by

.o fw)

where f is the logspline density estimate and F is the corresponding estimate of the
distribution function. Because the logspline density estimate has very smooth tails, the
estimate for the hazard rate is smooth too. It appears that kernel density estimation,
unless transformations like those in Wand, Marron, and Ruppert (1991) are made, will
yield density estimates that are too wiggly in the tails to provide smooth estimates of the
hazard function. In this connection the reader may wish to compare our estimate with
the one in Figure 6.5 in Silverman (1986, p. 150).

The data for Figure 8 comes from Efron (1988). He reports data on survival times
for patients in a study of head-and-neck cancer. There were two treatments, A and B.
In Group A there were 42 uncensored and 9 censored observations; in Group B there
were 31 uncensored and 14 censored observations. For both groups we report logspline
density estimate (the left side of Figure 8a) and the logspline hazard estimate (the right
side of Figure 8a). The symbols “a” and “b” indicate the location of the knots (the
right-most knots fall outside the plot). The hazard rates look very much like the ones in
Efron (1988).

A possible use of rlogspline is to resample from a fitted logspline density. As in
Figures 3 and 4 we estimated not only f4 and fg but also the densities g4 and gp of the
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Figure 8b. Logspline Hazard Estimates for the Efron Data (—) and Five Resampled Estimates (- - -).

censoring times. For both groups we then generated five samples of size 51 (for group
A) or 45 (for group B) from fa, §a, fB, and §p. We then applied the same sampling
scheme as in Figure 3, treating the samples from f4 and fp as the actual times and the
samples from §4 and gp as the censoring times. The left side of Figure 8b shows fa
together with the five resampled logspline density estimates for group A. The right side
of Figure 8b shows the same information for group B. Each of these figures gives an
indication of the variability among logspline estimates based on different samples from
a density like the one being studied. It remains to investigate the use of such figures in
assessing the accuracy of logspline estimates.

Figure 9 involves the Stanford heart transplant data as taken from Kalbfleisch and
Prentice (1980). There are 103 observations of which 75 are exact (deaths) and 28 are
censored (survivals). In Figure 9a, left, we report the logspline density estimate (with
L =0 and U = o00) and the logspline hazard estimate (Figure 9a, right). Because the
density and hazard rate in this example are relatively high near the origin, we found it
more useful to examine these estimates on a log-scale. Note that we have ignored the
covariates in this set of data. It would be worthwhile to extend the logspline methodology
to handle such covariates. In Figure 9b the logspline estimate S(y) = 1 — ﬁ'(y) of the
survival function (solid line) based on the heart transplant data and the traditional product-
limit (Kaplan—Meier) estimate (dotted line) are shown.
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Figure 9a. Logspline Estimates for the Stanford Heart Transplant Data. n = 103, 28 censored.

The data for Figure 10, which is labeled income, consist of a random sample of size
7,125 annual net incomes in the United Kingdom (Family Expenditure Survey 1968—
1983). (The data have been rescaled to have mean one as in Wand, Marron, and Ruppert,
1991.) The logspline density estimate in the left side of Figure 10a is essentially the same
as in Kooperberg and Stone (1991). The sharpness of the peak near .24 is remarkable.

For a check on the height of our estimate of the peak we selected those incomes
that were between .19 and .27. The dotted line in the right side of Figure 10a is the
logspline density estimate based on the 452 cases (with L = .19 and U = .27), rescaled
to integrate to %; the solid line is part of the logspline density estimate based on all
the data. It is clear from this figure that the peak is “real.” Although position of the peak
has shifted a bit, the height of the peak is essentially unchanged.

Alternatively, we can use plogspline to get that ﬁ(.27) - ﬁ(.l9) ~ 063 ~ A2
Thus the estimated probability in this interval almost coincides with the proportion of
cases between .19 and .27. As a further check, in Figure 10b we plotted F (Y(,-)) against
1 on the logit scale. Interpretation of the figure shows that the fit is excellent, even
far out in the tails.

Wand, Marron, and Ruppert (1991) compute a fixed-width kernel density estimate
after an initial transformation of the data. While their estimate has a smooth tail, the
height of the first peak in their estimate is considerably smaller than that of the logspline
estimate.
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Figure 9b.  Logspline and Product-Limit Estimates of the Survival Curve for the Heart Transplant Data.

How much of the income data does the logspline density estimate need to detect
the sharp spike? To investigate this question we repeatedly sampled 500 cases from the
complete set of data and obtained the density estimates based on the sample of size 500.
In Figure 10c we show the part of the logspline density estimate that contains both modes
for five of these samples, together with the estimate based on the complete set of data.
The five density estimates are typical of the many more we have examined; for samples
of size 500 the sharp peak is nearly always detected.

Generally, if the true density is unimodal, then the logspline density estimate is
insensitive to the position of the initial knots, provided that they are reasonably spread
out. When applied to random samples of size 500 from the income data, the estimate needs
two initial knots near the spike, but is otherwise insensitive to the initial knot placement. If
there is only one initial knot near the spike, then the estimate may substantially understate
the height of the spike or even fail to detect it. Fortunately, the knot placement rule
described in Section 4 almost always places two initial knots near the spike.

To study the effect of the penalty term «, we focused on the sample of the income’
data that resulted in the logspline density estimate indicated with two bullets in Figure
10c. The function logspline.summary for this fit gave the following results:
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Figure 10a.  Logspline Density Estimates for the Income Data. — is based on all data, - - - is based on data
between .19 and .27 (rescaled).
knots  loglik AlC minimum penalty —maximum penalty
3 -5252.90 10685.80 104.34 Inf
4 -5200.73 10641.46 31.07 104.34
5 -5197.78 10695.55 NA NA
6 -5169.66 10699.33 2.93 31.07
7 -5168.20 10756.39 0.79 2.93
8 -5167.80 10815.60 0.45 0.79
9 -5167.58 10875.15 0.40 0.45
10 -5167.38 10934.75 0.06 0.40
11  -5167.36 10994.72 NA NA
12 -5167.33 11054.66 NA NA
13 -5167.28 11114.56 0.00 0.06
14 -5167.28 11174.56 0.00 0.00

The present optimal number of knots is 6.
Penalty was the default: log(samplesize)=log(500)=6.21.

According to the table, if we had chosen the penalty o to be any number between
2.93 and 31.07, we would have obtained the same fit, while if we had chosen o to be
between .79 and 2.93, we would have obtained a fit with 7 knots. Note also that for no
value of a would we have obtained a fit with 5 knots. Figure 10d shows the logspline
density estimate with 6 knots based on the default penalty; it is shown here as a solid
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Figure 10b.  P-P plot for the Income Data.

curve and was shown with bullets in Figure 10c. Also shown in Figure 10d is the fit
with 7 knots (dashed curve) obtained by choosing a = 2 and the fit with 4 knots (dashed
curve) obtained by choosing o = 40. The fit with 7 knots is qualitatively similar to the
default, but the fit with 4 knots is nearly constant between the two modes based on all
data.

As the previous plots and summary table illustrate, it is rather typical in logspline
density estimation for the estimate based on the default penalty to be quite reasonable
and to correspond to a fairly wide range of values of . If we make a too large, however,
we get too much bias and may miss some genuine modes; if we make it too small, we
get too much variance and possibly one or more spurious modes.

8. CONCLUDING REMARKS

In light of the examples in Sections 6 and 7 and much additional experience with
logspline density estimation and its user interface, we are convinced that the current im-
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Figure 10c.  Logspline Density Estimates for Samples of the Income Data. — is based on all data and - - - is
based on samples of size 500.

plementation is of considerable practical value in data analysis. It is sufficiently accurate
and flexible to handle sharp peaks in the middle of the data (see Figures 5 and 10), and
it also works well far out in the tails (see Figure 10b) without using preliminary trans-
formations as described in Kooperberg and Stone (1991). Moreover, a moderate amount
of censoring has very little effect on the accuracy of estimation and the procedure can
deal effectively with a high proportion of censoring. The estimation procedure is rather
insensitive to the initial knot placement and choice of penalty parameter.

In Section 7 we have compared logspline fits to the suicide and income data with
published results for kernel fits to these data sets. Based in part on such comparisons, it is
our tentative belief that, for kernel density estimation to be as effective as logspline den-
sity estimation in handling both regular tails and sharp spikes, it would need to combine
variable kernel width as in Silverman (1986) and transformations as in Wand, Marron, and
Ruppert (1991). It would certainly be worthwhile to have publicly available user-friendly
software that implements kernel density estimation with these two refinements.

It is noteworthy and perhaps a little surprising that, with proper algorithmic de-
velopment and programming, maximum likelihood can be tailored to logspline density
estimation so as to work well in the context of right-, left-, and interval-censored data,
where the log-likelihood function can fail to be concave. This suggests that the logspline
methodology could be modified to handle deconvolution in a reasonable manner.
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APPENDIX: NUMERICAL IMPLEMENTATION

The program for logspline density estimation is written in C, with an interface to
S. In the following sections we describe some of the more interesting features of the
program.

A.1 STARTING VALUES

Newton—Raphson approximations to a maximum converge extremely fast to the
maximum when the starting values are sufficiently good, but the method can behave
poorly when the starting values are not very good. The following idea for the starting
values is due to Jin (1992).

Set
f,(y) - dfd_(yy)a
B.; (y) dB(;:lfy) )
and
d*B;(y)

J dyZ
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The basic idea is to minimize the L, distance between the score function, dlog(f(y))
dy, and its logspline approximation relative to the density; that is,

2

4(0) — - vy )
00 = argnzn/L ZO B ( (y) f(y)dy

Setting the derivatives with respect to 8 for 1 < k < p equal to 0, we get that

v 2(0) o '@ 5
/L Zf)j Bj(y)‘m By(y)f(y)dy =0, 1<I<p.

This can be written as
U 0 U
| a0 BB = [ B, 1<k<p
J
Applying integration by parts to the right side of this equation, we get that

U
[ SaBwBwsww
J

Il

U
- /L B! (y)f(w)dy — BU(L)F(L) + By(U)F(U)

U
- /L Bl(wW)i(y)dy, 1<k<p,

where we have assumed that f(L) = f(U) = 0.
Because f is unknown, the integrals are replaced by sums over the observations.
Thus solving

AB© = D,

where A is a p X p matrix with elements

ajk = Y Bj(Y:)Bi(Y;
=1

and D is a column vector of length p with elements

n

d; = — Z Bj(Yy),

1=1

we get starting values (). Because the B;’s are (almost) B-splines (de Boor 1978), A
is a band-matrix with seven diagonals.

The previous algorithm is used to compute the starting values if there is no censoring.
If an observation is left censored or right censored, we replace it by its censoring value;
if the observation is interval censored, we replace it by the midpoint of its censoring
interval.
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A.2 CoOMPUTATION OF NORMALIZING CONSTANT, LOG-LIKELIHOOD FUNCTION,
ScorE FUNCTION AND HESSIAN.

The main numerical task of the algorithm is the computation of the normalizing
constant C(8), the log-likelihood function {(8), the score function S(8), and the Hessian
H(0) for various values of 6. In the absence of censoring, the computation of /(8) is
trivial and the computation of C(8), S(8), and H(@) amounts to the computation of

tigr
o = [ viwoy

t;

tiy1
— / yJebO+b1w+bzz2+b3z3dy, 1 S i< K and 0 SJ S 6’
t;

t1 . 131 )
w = [wswer= [Tty 0<j<a,
and
v U
ag; = / yjf(y;O)dy=/ ylehtbiyvgy  0<j<2.
itk 1374

It is possible to compute ag; and ak; analytically. We compute the other a;;’s using
Gaussian quadrature (Abramowitz and Stegun 1970), with 6 points between knots, unless
some preliminary diagnostics suggest using a larger number of points.

If the ith observation is censored, it is also necessary to compute

bij =/ o f(y;8)dy, 0<j<6.
A;

Potentially, this increases the number of numerical integrations from the order of mag-
nitude of 7K to 7(K + n) per iteration. Therefore, in the presence of censoring, we first
compute the maximum likelihood estimator for an approximate problem:

0 = arg max B;;0),
goee;ﬂ )

where B; is defined by

B, = A;if A;={Vi},

{M;} if A; is a bounded interval of (L,U),
= (Lt;)if A; = (L,Ti), and

= (t;,U)ifA; = (T;,U).

I

Here M; is the midpoint of the bounded interval and t; is the jth knot, determined by
the condition that |T; — t;| < |T; — ti| for all j # k. N

No extra integrals, other than the a;;’s, have to be computed to determine . Starting
at 6 the algorithm typically converges in at most three steps; this limits the number of
times we have to compute 7n integrals.
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A.3 ALTERNATING BETWEEN NEWTON-RAPHSON AND STEEPEST ASCENT

In the absence of censored data the Hessian of the log-likelihood function at 8 is
n times the Hessian of C(@), so the log-likelihood function is strictly concave. There-
fore, if a maximum of the log-likelihood function exists, it is unique. If some of the
observations are censored, however, the log-likelihood function need not be concave.
As O’Sullivan (1988) pointed out, logspline hazard estimation, in which the log-hazard
function is modeled by a spline, does result in a concave log-likelihood function if all the
observations are either uncensored or right censored. If some of the observations are left
censored or interval censored, the log-likelihood function is not necessarily concave for
this estimation problem either. For this reason, and because logspline hazard estimation
is not invariant under multiplication by a negative number, we did not pursue logspline
hazard estimation in this project.

If the log-likelihood function is not concave we are not guaranteed that there is a
unique maximum. A modified version of the Newton—Raphson algorithm, which alter-
nates between Newton—Raphson approximations and steepest ascent searches, invariably
seems to converge to the global maximum in our context. After computing S(@) and
H(@), as described in the previous section, we use a Linpack routine (Dongarra, Bunch,
Moler, and Stewart 1979) to determine whether or not the eigenvalues of H(8) are all
positive. If they are all positive {(@) is locally concave and we proceed with a Newton—
Raphson approximation. Otherwise we carry out a steepest ascent search in the direction
of S(8). To increase the speed of the procedure, we do one more steepest ascent search
in the direction of (the new) S(€) and conclude the steepest ascent cycle with a steepest
ascent search in the direction of (™) — §(m—=2),

After two steepest ascent cycles we do one Newton—Raphson approximation to avoid
the known slow convergence of the steepest ascent algorithm. Our experience is that,
after at most a few steepest ascent searches, the log-likelihood function is locally concave
and a maximum is found by Newton—Raphson approximations.

This algorithm will converge to a local maximum of the log-likelihood function.
When that function is not concave, there is no guarantee that such a local maximum is
unique or that it is a global maximum. However, we have not found a (nonpathological)
example where 5, as found by the algorithm, does not correspond to a reasonable estimate
of the unknown density function.

A.4 MANAGEMENT OF L AND U

For a vector 8 €IRP to be feasible, it is necessary that (1) 6, <0or L > —co and
2) 5,, <0orU < oo. If L =—00orU = oo, however, the Newton—Raphson algorithm
does not prevent (™ — [H(6(™)]~18(8™) from yielding intermediate estimates for
0 that are not feasible. (An almost identical situation arises during a linear search in
a steepest ascent direction.) We found the obvious solution, to choose « in gim+1) —
6™ —a[H(6'™)]~18(6™) such that 8™ < 0and 8™ ") < 0, not practical because
it leads to extremely slow convergence. Instead, we have used the following algorithm
when L = —oo and U = oo (when L = —oo and U < oo or when L > —oco and U = oo
we proceed similarly):
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Table 1. Approximate CPU Time (Seconds) for Simulated Examples

Distribution n=100 n =500
Examples with no censoring 1.5 4.0
(the actual data in Figures 1-6)

Figure 1—interval censored data. 15 5.0
Partly left and right censored 5.5 29.5

(the partly censored data in Figures 2-6)

1. Set Ltmp =2t; —tp and Utmp =2tg —tg_1.
2. If b\go) < 0 and 5’()0) < 0 go to step S; else go to step 3.
3. Instead of using

C() = log (/IR exp (01B1(y) + -+ + 6By (y)) dy) :

use

Utmp
é(8) = log (/ exp (01 B1(y) + -+ - + 0, Bp(y)) dy) .

Ltmp

Compute 0 usmg the algorithm as described.
4. If 6, < 0 and 0 < 0 after the prev1ous step,
(a) then carry out Step 5, using 0 of Step 3 as the starting values for Step 5.
(b) else, if either 6; > 0 or 8, > 0 set Lnew = 2Limp — 1 and Upew = 2Uimp —
Go back to Step 3, while using Lpew and Upew instead of Ligp and Ugp.
5. Compute 0, integrating from —oo to oco. If at some intermediate stage é\(m) >0

or 6, o > 0, go back to Step 4b, thereby using for Ly and Uy the values last
used during Steps 1 or 3. If the algorithm converges without this happening, we
have obtained 8.

Experience has shown that one does not have to use Step 3 very often, but if one
does have to use it, one pass of Step 3 is typically sufficient and only for very heavy
tailed distributions are more than two passes required. It almost never happens that one
has to go back from Step 5 to Step 3. For extremely heavy tailed densities, such as the
Cauchy density, 51 or §p is sometimes numerically indistinguishable from 0. In this case
even if L = —oo or U = oo the algorithm increases Linp and Uiyp only until maximum
values Lynqay and Unaz (81 — Limaz = Umaz —tx = 25 (range of the data)) are reached.
In this situation the algorithm will not fit a model with K or fewer knots.

A.5 CPU TME

Logspline density estimation, as currently implemented, is computer intensive, es-
pecially in the presence of censored data or if n is very large. In Tables 1 and 2 we
report CPU time (in seconds) on a SPARCstation 2 for computing the logspline density
estimates that were shown in Figures 1-10.
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Table 2. CPU Time (Seconds) for Real Examples

Suicide data (Figure 7) 1.5
Efron—Group A (Figure 8) 25
Efron—Group B (Figure 8) 2.0
Stanford heart data (Figure 9) 55
Income data (Figure 10) 73.0

It should be noted that for the interval censored data in Figure 1, the program makes
use of the fact that A; takes on only a few distinct values and hence that the number of
distinct integrals that have to be computed is very limited.
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