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ABSTRACT

Results obtained by Hansen and Sutera concerning the occurrence of bimodal probability density functions
(PDFs) in a wave amplitude index (WAI) calculated from large-scale atmospheric flow data are reexamined.
The PDFs are found to be highly sensitive to changes in the parameters used to calculate the WAL The excessive
sensitivity is suggestive of an insufficient number of degrees of freedom in the PDFs.

The Monte Carlo test used by Hansen and Sutera to establish the statistical significance of their PDFs is
reexamined, with emphasis on their attempt to compensate for the interdependence between neighboring data
points in their time series of the WAI. Their random samples contained only one (independent) data point for
each 4.5 data points in the WAI time series. It is shown that in order to generate PDFs with the same degree of
smoothing as the WAI PDF, they should have simultaneously reduced the smoothing parameter in the maximum
penalized likelihood (MPL) algorithm by the same factor. When this scaling factor is properly taken into account,
more than half of the randomly generated samples exhibit multimodality: hence, the occurrence of bimodality
in the PDFs calculated from the WAI data does not appear to be statistically significant. It is estimated that in
order to distinguish between samples drawn from populations with a degree of bimodality comparable to that
reported in the WAI data and samples drawn from a Gaussian population, a period of record of at least 150
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years would be needed.

1. Introduction

The question of whether large-scale atmospheric cir-
culation possesses multiple equilibria has intrigued
many researchers during the last 15 years and has led
to a number of publications of both theoretical and ob-
servational results. Theoretical results indicating that
the atmosphere might possess more than one equilib-
rium flow regime were obtained by Lorenz (1963). A
seminal work, centered around the issue of multiple
equilibria for the planetary waves, was Charney and
DeVore’s (1979) investigation based on a simple one-
layer free surface barotropic channel model that in-
cluded the G effect and a frictional momentum source
and that was perturbed by bottom topography and by a
barotropic analog of thermal driving. After truncating
the model by considering only the first six eigenfunc-
tions of the Laplacian, they were able to show that for
certain choices of parameters, the system possesses
three equilibria, two of which are stable. One of the
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stable equilibria corresponds to a strong zonal flow, the
other to a weak zonal flow with strong wavelike fea-
tures, analogous to the blocking patterns frequently ob-
served in the atmosphere.

The applicability of Charney and DeVore’s results
to the real atmosphere has been disputed in a number
of articles. Tung and Rosenthal (1985) found that the
parameter ranges for which Charney and DeVore ob-
tained multiple equilibria are not consistent with the
real atmosphere; for realistic parameter values, the ex-
istence of multiple equilibria cannot be shown. Fur-
thermore, their existence depends on the truncation ap-
plied to the model; for less severely truncated models,
they showed that no multiple equilibria exist. However,
it can be argued that any model for which the existence
or nonexistence of multiple equilibria can be proven
theoretically is probably too inexact a representation of
the real atmosphere to allow conclusions on the exis-
tence or nonexistence of these equilibria in the actual
large-scale circulation. For this reason, numerous at-
tempts have been made to find evidence of multiple
equilibria in observational data (Sutera 1986; Hansen
1986; Hansen and Sutera 1986; Molteni et al. 1988;
Hansen 1988; Hansen and Sutera 1988; Mo and Ghil
1988; Moiteni et al. 1990) and in the output of general
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circulation models (GCMs) (Hansen and Sutera 1990,
1992). If such equilibria exist, then they might give
rise to multiple peaks or, as they are referred to by
statisticians, modes in the probability density functions
(PDFs) for certain observable atmospheric variables.
Since we expect the two modes to be associated with
different intensity in planetary-scale wave activity,
which is usually best defined in the middle and upper
troposphere, it seems appropriate to analyze 500-mb
height data. Furthermore, we expect any effects asso-
ciated with such waves to be most distinct during win-
ter, which is why most analyses are based on winter-
time data.

The high dimensionality of hemispheric 500-mb
height data poses a problem concerning the estimation
of PDFs. The European Centre for Medium-Range
Weather Forecasts (ECMWEF) dataset, for example,
represents the 500-mb heights using 7500 grid points
for each hemisphere, making a PDF estimate for the
raw data practically unfeasible (particularly consider-
ing the relatively short length of the observational rec-
ord). Howeyver, if the multiple equilibria indeed cor-
respond to different intensities in wave activity, they
might be reflected as two modes in the PDF estimate
for a one-dimensional variable that somehow measures
this intensity.

2. The wave amplitude index

As a measure of the amplitude of the quasi-stationary
planetary waves, Sutera (1986) introduced a quantity
that he referred to as the wave amplitude index (WAI).
The procedure for calculating the WAI from any record
of daily hemispheric 500-mb height data is as follows.
In the first step, the data for each day are averaged over
a prescribed latitude belt so that an average geopoten-
tial height as a function of longitude only is obtained.
The resulting data are then Fourier decomposed with
respect to latitude, yielding one complex number Z;
representing each wavenumber i. The wave amplitude
index is calculated by adding up the absolute values of
the squared amplitudes of wavenumbers 2 through 4
and then taking the square root:

2] = (3 122 ) (2.1)

i=2

To remove the spurious influence of the annual cycle
and the noise associated with high-frequency variabil-
ity, the time series of [Z,_,] is then filtered in time; for
this purpose, it is Fourier transformed, the Fourier com-
ponents corresponding to the undesired frequencies are
removed, and the signal is resynthesized. (The average
value of [Z,_,] is removed as well.) Hansen and Sutera
(1986, hereafter referred to as HS86) point out that the
removal of the interannual variability from the time
series could actually conceal bimodality that might be
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present in the data; for this reason, the interannual vari-
ability was not removed in the present study. The re-
sulting filtered series will be referred to as the WAL
Obviously, the values of the WAI depend on both the
latitude belt over which the averaging is carried out and
the exact frequency ranges removed by the filtering.
The wintertime WAI data obtained this way can now
be interpreted as a sample taken from the probability
density function (PDF). Using the WAI data we can
estimate this PDF. The algorithm used by both HS86
and us to perform this estimation is the maximum pe-
nalized likelihood (MPL) algorithm that will be dis-
cussed later in more detail.

3. Probability density function estimates for
the WAI

Hansen and Sutera (1986) investigated the Northern
Hemisphere WAI for the winters 1964/65 through
1979/80. In their study, they averaged geopotential
height data over a latitude belt extending from 45° to
70°N and removed the variability in the high-frequency
range, corresponding to periods of less than five days,
and in the range surrounding the annual cycle, corre-
sponding to periods of 9 to 22 months. In their PDF
estimate, two modes are clearly visible.

We first verified that we were actually able to repro-
duce the time series used by Hansen and Sutera. In this
effort, we were aided by A. Hansen, who supplied a
number of technical details concerning their calcula-
tions of the WAI and provided data for comparison.
For our study, we used once-daily 500-mb heights ob-
tained from the U.S. National Meteorological Center
(NMC) Final Analysis from 1 January 1946 through
31 May 1991 with missing analyses supplied by linear
interpolation. For further details of the preprocessing,
see Kushnir and Wallace (1989). The data were line-
arly interpolated onto a 5° latitude by 8° longitude grid.
For an example, we compared our time series segment
for the winter 1964/65 with Fig. 11a in HS86. The two
time series are shown together in Fig. 1; evidently, they
are virtually identical.

We then investigated the dependence of the PDF es-
timate on the latitude belts over which the data are av-
eraged in computing the index, on the frequencies that
are removed to eliminate the annual cycle, and on the
period of record on which the estimates are based. A
variety of different latitude belts and frequency bands
have been used in previous studies: as noted above, in
HS86 a 45° to 70°N latitude belt was used and the fre-
quency band corresponding to periods from 9 to 22
months was filtered out. Hansen (1986), by compari-
son, averaged over the 20° to 80° latitude belt and re-
moved all signals with periods greater than six months.
The period of record 1964—-80 was used by HS86; per-
iods of record spanning parts of the 1980s have been
used in the studies of Hansen (1986, 1988). Using the
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FiG. 1. Wave amplitude indicator for the winter 1964/65. Hori-
zontal axis: time in days (day 1 = 1 December 1964). Vertical axis:
WAI in m. The data shown by the dashed line were adapted graph-
ically from Fig. 11a of Hansen and Sutera (1986); the data shown
by the solid line were obtained by us, using the same parameters.

same latitude belt and the same temporal filtering pa-
rameters as HS86, we obtain the PDF estimate shown
in Fig. 2a. As expected, it possesses two modes with
maxima at about the same values as found in HS86.

Our PDF estimates for different combinations of pa-
rameters are summarized in Fig. 2. The shaded graphs
indicate PDF estimates that obviously exhibit two or
more modes, where modes occurring in the tails of the
PDFs (with maximum values less than one-half the
main maximum) are not counted. As the figure shows,
the occurrence or nonoccurrence of bimodality depends
sensitively on all the parameters mentioned, and no sys-
tematic dependence can be discerned unambiguously.
In general, it seems that the PDFs for the longer periods
of record exhibit less pronounced departures from a
smooth, unimodal shape than those for the shorter rec-
ords. Multimodal distributions, when they occur, ex-
hibit a variety of shapes.

4. Monte Carlo test for the statistical significance of
bimodal spectra

The fact that the PDFs exhibit so much sensitivity to
parameter changes raises the question of whether the
PDF estimates presented here are actually statistically
significant, or whether the multimodality that can be
found in some of them is merely a result of insufficient
sample size. To show that the bimodal density they
observed in the 1964 to 1980 WAI data could not be
interpreted as resulting from the sampling variability of
an underlying unimodal PDF, Hansen and Sutera
(1986) used a Monte Carlo test. For this purpose, they
drew samples from a similar unimodal density (which
was obtained from the 1964 to 1980 WAI data by ap-
plying more smoothing). The sample size was chosen
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equal to the number of independent observations in the
1964 to 1980 record; according to their estimate, one
winter contributes roughly 20 independent observa-
tions so that the appropriate sample size is 320. MPL
density estimates were then made for each of these
samples. Out of 100 samples, only 14 showed any ev-
idence of bimodality; following HS86, this leads to the

~ conclusion that the true WAI PDF is most likely bi-

modal.

Comparing the first plot in Fig. 5b of HS86, which
shows the PDF estimate for the 1964 to 1980 WAI data,
with their PDF estimates for random samples shown in
their Fig. 5a, one may notice that the latter appear in
general smoother than the former. This raises the ques-
tion of whether the results of the Monte Carlo simu-
lation are actually comparable with the 1964—80 PDF
estimate, or whether adjustments have to be made in
the PDF estimation algorithm. To address this question,
we first need to discuss this algorithm.

The MPL algorithm used by HS86 is discussed by
Scott et al. (1977) and Good and Gaskins (1980). [For
an overview of density estimation methods, see Silver-
man (1986).]

To motivate this algorithm, we first consider the log-
likelihood function for an independent sample {x;}, i
=1,...,N,

logL(f; (%)) = 3 logf(x).  (41)

Here L(f) measures the likelihood that a sample {x; }
was generated from the PDF f(x). One could try to
maximize logL (f) with respect to f in order to obtain
a “‘most likely’’ density; however, the maximization
of this expression (under the constraint that [f(x)dx
= 1) would be achieved for an fthat is a sum of Dirac
& functions at each data point. To obtain a more likely
smooth density estimate, we add a roughness penalty
term to the log-likelihood logL (f),

0gL,(/) = 3 tog/(x) — o [ (L2 ]
} (4.2)

with @ > 0. Obviously, the penalty term will be close
to zero for smooth density estimates and it will assume
very large negative values for ragged PDF estimates.
The degree of smoothness of the PDF estimate depends
on the value of the parameter « that is used. It can be
shown that when « is very large, the density estimate
is smooth and unimodal whereas for sufficiently small
a, the estimate will generally possess as many peaks as
there are different points in the sample. Since we are
concerned with the detection of bimodality, the choice
of a is of critical importance: if we choose a small
enough, the density estimate will certainly be multi-
modal, whereas if a is large enough, the density esti-
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FiG. 2. PDF estimates for the WALI, using different periods of record, latitude bands, and time filters. Horizontal axis: WAI in m.
Vertical axes: probability density. Shaded graphs indicate multimodal estimates.

mate will always be unimodal! Of course, we do not
know a priori the ““correct’” value for a; however, we
want to make a choice that at least ensures that PDF
estimates for different datasets will be comparable with
regard to the effective importance of the penalty term.
It can be shown (see appendix A) that if the data are
scaled by a factor ¢, a has to be scaled as c® in order
to produce a scaled version of the same density esti-
mate. We therefore normalize « by ¢°, where o2 is the
sample variance of the data, and define & = a/o°,
which we will refer to as the equivalent penalty
weight.!

' HS86 do not use this normalization; since they do not compare
estimates for samples with different variance, it does not appear nec-
essary in their case.

Although in our situation the data are obviously not
independent and therefore (4.1) is no longer correct, it
is still reasonable to estimate the density by minimizing
logL,(f). For the results shown in Figs. 2 and 3, we
have used a value of @ = 1.0; in the case of Fig. 2a,
this corresponds to & = 7.75 X 10°, which is in be-
tween the two values used in HS86.

When HS86 performed their Monte Carlo test, they
used a value of a = 107, which was the largest value
for which they obtained a detectable bimodality in the
196480 WAI data. Now let us consider the question:
Is it appropriate to use the same value of a for the
samples of 320 independent data as for the original
WAL dataset that contains 1440 dependent data points
equivalent to 320 degrees of freedom, or should the
different degrees of dependence in the samples be taken
into account by appropriately scaling «? Formally, if
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we have 320 independent observations yy, . . . , Y30 €-
placing the 1440 dependent ones, expression (4.2) be-
comes

gL, (1) = 3 loef ) o [ (T2 ar].

(43)

Evidently, since we are only adding 320 terms instead
of 1440 terms, while f(x) is approximately the same,
we will have to rescale & by dividing it by the factor
1440/320 = 4.5.

As a heuristic argument in support of this scaling
law, let us consider a similar (though not equivalent)
situation. We start out with the PDF estimate for the
1964—-80 WAI data. In the first step, we sort the sample
points in ascending order and divide them into groups,
each consisting of four consecutive points. Then we
replace the value of each point in the sample by the
average value of the group to which it has been as-
signed. This sample (which we will refer to as S2) still
contains 1440 data points; however, there are obviously
not more than 1440/4 = 360 degrees of freedom in this
sample because it consists of 360 groups of four iden-
tical values. Yet we do not expect that we have deleted
much information from the sample by using this
procedure (since the data were not independently sam-

pled in the first place), and indeed, a PDF estimate for -

the new sample, using & = 1.0, is virtually identical to
the one for the original data obtained with the same &
(Fig. 3a).

We now remove three out of the four identical data
points from S2, creating a sample S3 that consists of
360 data points, but still possesses as many degrees of
freedom as S2 (because the operation that created S3
from S2 obviously did not remove any information
from the data). If we now perform a PDF estimate,
again using & = 1.0, we obtain an estimate that is more
smoothed than the one obtained for S2 (or the original
data) (Fig. 3b). This fact is easy to understand if we
consider once again the penalized log-likelihood func-
tion that is minimized in the MPL algorithm [Eq.
(4.2)]. Assume we had obtained an MPL estimate for
the sample S2. If we now use the same « to obtain an
estimate for S3, the first term on the right-hand side
will become smaller by a factor of 4 (since every data
point is now only considered once instead of four
times). The penalty term, on the other hand, does not
depend directly on the sample points and is therefore
not going to change. It follows that the penalty term
will become four times more important than in the S2
estimate, leading to stronger smoothing. However, we
can recover the S2 estimate from S3 data if we corre-
spondingly decrease a by a factor of 4. In this case, the
penalized likelihood function for S3 is just proportional
to what it was for S2 and hence is minimized by the
same f, as is illustrated in Fig. 3c. If we want to com-
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FiG. 3. PDF estimates for grouped and averaged sample points.
Horizontal axes: WAI in m. Vertical axes: Probability density. (a)
All data retained, & = 1.0. (b) Only one data point from each group
is considered, & = 1.0. (c) Only one data point from each group is
considered, & = 0.25. Dashed lines in all three graphs represent the
estimate obtained from the unmanipulated dataset for comparison.

pare PDF estimates for samples with the same number
of degrees of freedom, but different numbers of sample
points, we should therefore scale @ (or &) to make it
directly proportional to the number of sample points.
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We repeated the bootstrap test suggested by HS86
(section 4b). Since we wished to examine a much larger
number of Monte Carlo realizations than they did, we
replaced their subjective criterion for classifying PDFs
as unimodal or multimodal by the automated algorithm
described in appendix B. In general, results of such tests
will obviously depend on the choice of criteria. How-
ever, the testing scheme can be “‘tuned’’ to increase or
decrease the incidence of multimodality in the random
samples by lowering or raising the value of & We drew
500 samples, consisting of 320 realizations each, from
both a Gaussian PDF (Fig. A3.1d) and a skewed uni-
modal PDF that was obtained by applying the MPL al-
gorithm on the WAI 19641980 data with & = 10 (Fig.
A3.1c). The testing scheme was tuned by setting our
& = 1.67: the value that yielded the same percentage of
occurrence of multimodal PDF estimates (14%) as
HS86 obtained using their subjective criterion.

We then performed our actual test, taking into ac-
count the scaling considerations discussed earlier in
this section. To account for the fact that the samples
are viewed as representing independent points 4.5 days
apart, an equivalent penalty weight & = 1.67/4.5
= 0.371 was used. In this case, 49% (245 out of 500)
of the estimates for Gaussian samples and 69% (345
out of 500) of the estimates for the skewed unimodal
samples were found to be multimodal. We do not claim
that HS86 would have obtained exactly the same rate
of incidence of multimodality based on their subjective
criterion, had they lowered their a by a corresponding
amount, but they certainly would have obtained a much
higher rate of incidence than the 14% that they re-
ported. The observation of bimodality in 16-winter
samples of WALI data thus does not support the conclu-
sion that the WAI PDF actually possesses two modes.

5. Conclusions

The results presented seem to indicate that the bi-
modality reported in the WAI PDF is not statistically
significant. However, this does not imply that we can
say with certainty that the true PDF possesses only one
mode; in fact, the results presented do not support either
conclusion with even moderate statistical significance.

To investigate whether statistically significant results
concerning the existence or nonexistence of bimodality
could be obtained by means of the PDF algorithm using
different values of &, a more comprehensive Monte Carlo
simulation was performed (see appendix C). It turns out
that in order to distinguish between a weakly bimodal
PDF (as shown in Fig. 2a) and a unimodal one (as shown
in Fig. Clc) with even moderate confidence, a minimum
of 3000 independent sample points is needed; if we as-
sume that the estimate of 20 independent sample points
per winter is valid, it follows that we would need at least
a 150-year record of data. For this reason, a definitive
resolution of whether the actual WAI PDF is bimodal
cannot be expected in the near future.
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Finally, it should be pointed out that the existence of
multiple equilibria in the large-scale general circulation
is not necessarily coupled to the occurrence of bimo-
dality in the WAI PDF. First of all, we do not know
whether the WAL is the most appropriate variable to
examine in search of multiple equilibria (even though
it seems a plausible candidate). An alternative would
be indexes related to the patterns that have been iden-
tified in cluster analysis as in the works of Kimoto and
Ghil (1993) and Cheng and Wallace (1993). Also, us-
ing the theory of nonlinear dynamic systems, it can be
shown that for noise-driven systems (and in treating
the large-scale circulation as a separate system, we im-
plicitly treat it as driven by noise corresponding to
smaller-scale effects), multiple equilibria are not nec-
essarily reflected in bimodality in the PDF for any ob-
servable quantity. For example, if the amplitude of the
driving noise were too high, it could conceal the exis-
tence of the two separate equilibria, and if it were too
low, the system might not be able to overcome the po-
tential maximum between the equilibria.?
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APPENDIX A

Scaling of & with the Standard Deviation
of the Sample

Consider a sample {x; } with unit standard deviation;
for a given a, we calculate a PDF estimate fby mini-
mizing Eq. (4.2), which is repeated here for reference:

togL,(f) = 3 logf(x) - ,,[ [ (%(x_)) dx]

(A1)
Now let us assume we scale the sample by multiply-
ing each sample point by an arbitrary factor o. The
scaled version of fwould then be given by
1 X
£ =21(). (A2)
ag g

where the factor 1/¢ is included to maintain the nor-
malization. Forming the second derivative yields

2 As a reviewer pointed out, a different question that cannot be
addressed by the methods used in this study is the nature of the
atmospheric flow if the background parameters were to change
slightly, e.g., due to volcanic eruptions or changes in the earth’s or-
bital parameters. It is conceivable that equilibria corresponding to
quite different flow regimes might exist within the range of naturally
occurring variations of these parameters.
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F1G6. C1. The four PDFs used for the Monte Carlo test described in appendix C. Horizontal axes: WAI in m.
Vertical axes: probability density.

(A3)
Integrating, we obtain
)
2 2 d2 2
[ (E5OY e L [ (29 0. ca

At the same time, the first term on the rhs of (A.1) does
not need to be scaled when each sample point is mul-
tiplied by o because

2 logf,(ox;) = E logf(x;) —nloge (AS)

i=1

and the constant term — r logo does not influence the
maximization. Therefore, it is necessary to scale a with
o” to obtain f, as the density estimate. In order to quan-
tify the degree of smoothing that one is applying in
calculating the PDF estimate independently of the sam-
ple’s standard deviation, we define the equivalent pen-

alty weight & by letting @ = o°&, where o is the stan-
dard deviation of the sample.

APPENDIX B
Detection of Multimodality

In classifying a PDF estimate as multimodal in the
computerized evaluation of the Monte Carlo experi-
ment, we applied the following criteria: in the form of
the MPL algorithm that we used, the PDF is approxi-
mated by its values at 101 equidistant mesh points that
are linearly interpolated.

¢ A PDF estimate was counted as multimodal if it
possessed two or more distinct maxima.

* Maxima were regarded as distinct if they were ten
mesh points, equivalent to one-tenth the total width of
the PDF, apart.

¢ For a maximum to be counted, the values on either
side had to be decreasing over at least two nelghbormg
mesh points.

¢ Maxima occurring in the tails of the PDF with
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“values of less than one-half the value of the main max-
imum were not counted.

APPENDIX C

A Monte Carlo Test for the Ability of the MPL
Algorithm ¢o Distinguish between Unimodal
and Bimodal PDFs

The Monte Carlo test in section 4 has shown that the
application of the MPL algorithm with a penalty weight
& = 1.0 (corresponding to & = 0.22 for independently
sampled data) leads in most cases to bimodal PDFs
even if the PDF from which the sample was taken is
unimodal. In contrast, excessively large values of & will
certainly lead to unimodal PDF estimates even if the
sample is taken from a bimodal PDF. Therefore, we
designed a Monte Carlo test to find out if there is any
value of & for which the algorithm can reliably distin-
guish between samples from unimodal and bimodal
PDFs. Obviously, the answer to this question will de-
pend on the sample size; we therefore considered sev-
eral different sample sizes. We proceeded as follows.
We drew 200 samples each out of four different PDFs
shown in Fig. C1. The first one is a distinctly bimodal
PDF constructed by adding two Gaussian PDFs. The
second is a PDF estimate for the 1964—1980 WAI with
the parameters from HS86, but an even smaller value
of & (& = 0.5) than used for Fig. 2a, resulting in a more
distinct second mode. The third one is a more strongly
smoothed PDF for the same sample (& = 10.0). The
fourth one is a Gaussian.

Table C1 shows our results. Even for samples with
320 degrees of freedom, the algorithm distinguishes well
between the strongly bimodal PDF1 and the others if
values of & between 2.0 and 5.0 are used. These values
correspond to values of & between 9.0 and 22.5 for the
dependent 1964—1980 WAI data; the corresponding
PDF estimates for the WAI data are found to be smooth
and unimodal (not shown) so that the hypothesis that
the WAI PDF is strongly bimodal can be rejected.

The situation is different for samples from the other
three PDFs. It turns out that for sample sizes up to 1000,
the algorithm cannot reliably distinguish between them.
For example, 35% (70 out of 200) of Gaussian samples
of 320 independent points yield bimodal PDF estimates
using & = 0.5; however, if we obtain a unimodal PDF
estimate for another 320-point sample with the same
value of &, we cannot be sure that the underlying PDF
is actually unimodal, since roughly 35% of the bimodal
PDF samples (71 out of 200) yield unimodal estimates.
For a sample of 3000 independent points, in contrast,
the unimodal and bimodal PDFs can be distinguished
with relatively high significance if values of & between
0.5 and 1.0 are used. If we assume, following HS86,
that one winter contributes roughly 20 degrees of free-
dom to the WAI sample, 3000 independent points cor-
respond to a 150-year record, which means that within
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TABLE C1. Number of multimodal PDF estimates (out of 200 each)
from samples of various sizes drawn out of the PDFs shown in Fig.
A3.1a—d. Samples marked with an asterisk (*) were not evaluated.

(a) Bimodal  (b) Bimodal  (¢) Unimodal  (d) Gaussian
a PDF1 PDF2 PDF PDF
Sample size = 320
0.1 180 192 193 169
0.25 199 169 162 123
0.5 200 129 106 70
1.0 199 69 50 30
20 200 19 16 7
5.0 200 1 1 1
Sample size = 1000
0.1 188 197 197 172
0.25 198 176 169 127
0.5 200 152 120 72
1.0 200 120 59 35
20 200 56 26 7
50 200 S 2 0
Sample size = 3000
0.1 * 194 157 81
0.25 * 193 85 39
0.5 * 180 35 16
1.0 * 163 6 6
2.0 * 109 0 2
5.0 * 17 0 1
Sample size = 10 000
0.1 * 186 77 11
0.25 * 193 14 4
0.5 * 197 2 1
1.0 * 198 0 0
20 * 199 0 0
5.0 * 178 0 0

the foreseeable future, the observational record will not
be long enough to support reliable assessments of bi-
modality using WAL
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