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SUMMARY

Gaussian conditional autoregressions have been widely used in spatial statistics and
Bayesian image analysis, where they are intended to describe interactions between random
variables at fixed sites in Euclidean space. The main appeal of these distributions is in the
Markovian interpretation of their full conditionals. Intrinsic autoregressions are limiting
forms that retain the Markov property. Despite being improper, they can have advantages
over the standard autoregressions, both conceptually and in practice. For example, they
often avoid difficulties in parameter estimation, without apparent loss, or exhibit appealing
invariances, as in texture analysis. However, on small arrays and in nonlattice applications,
both forms of autoregression can lead to undesirable second-order characteristics, either
in the variables themselves or in contrasts among them. This paper discusses standard
and intrinsic autoregressions and describes how the problems that arise can be alleviated
using Dempster’s (1972) algorithm or an appropriate modification. The approach rep-
resents a partial synthesis of standard geostatistical and Gaussian Markov random field
formulations. Some nonspatial applications are also mentioned.

Some key words: Agricultural experiments; Bayesian image analysis; Conditional autoregression; Dempster’s
algorithm; Geographical epidemiology; Geostatistics; Intrinsic autoregression; Multi-way table; Prior
distribution; Spatial statistics; Surface reconstruction; Texture analysis.

1. INTRODUCTION

Let X =(X;,...,X,)" denote a random vector for which a joint distribution p(x) is to
be constructed. There are many practical applications in which each component X; is
located at a fixed site i, and where the relative arrangement of sites conveys useful infor-
mation. Such considerations apply in spatial statistics and image analysis, where the sites
represent regularly or irregularly distributed points or regions in Euclidean space, but
they also arise in many other contexts: for example, in multi-way tables with several factors
at equally-spaced levels, both for the model describing dependent responses and for the
prior distribution for factor effects or interactions.

In the Markov random field approach to such modelling, p(x) is constructed via the n
full conditional distributions, or local characteristics, p(x;|x _;), where x _;:={x;:j#i}. If
p(x;|x_;) depends on x;, then j is called a neighbour of site i. The usual first step is to
postulate a relatively small set of neighbours di for each site i, and then to choose corre-
sponding mutually compatible full conditional distributions. Under a positivity condition,
which can be relaxed somewhat, these determine p(x) through the Brook expansion (Besag,
1974, eqn (2.2)). There are strong links here with conditions for the validity of single
component Gibbs samplers for p(x) (Besag, 1994).

For the remainder of the paper, we shall be concerned only with Gaussian specifications.
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Also we assume that the graph induced by the neighbour relation is connected, since
otherwise the system can be broken down into its connected subsystems. In § 2, we first
provide a summary of the usual conditional autoregressions of spatial statistics, which
focus on specifying the precision matrix rather than the dispersion matrix of X. However,
these models typically produce quite different marginal variances, which is generally unde-
sirable. We show that the problem can be alleviated using an algorithm given by Dempster
(1972). The section concludes by discussing regular lattice systems and provides a
corresponding numerical example of the algorithm.

Another common disadvantage of conditional autoregressions is that appreciable corre-
lations between the X;’s at neighbouring sites require parameter values extremely close to
a particular boundary of the parameter space. In § 3, we turn this to advantage by consider-
ing intrinsic limits of conditional autoregressions. Although p(x) is then improper, the
distributions of certain, usually all, contrasts among the X;’s are well defined. In the latter
case, we show that Dempster’s algorithm can be modified so as to ensure that X; — X; has
constant variance when i and j are neighbours. Again we discuss some aspects of the
problem for regular arrays and give examples.

In geostatistics, e.g. Cressie (1991, Ch. 2), specifications are usually obtained by direct
modelling of the dispersion matrix or, when this does not exist, the semivariogram. Qur
approach represents a partial synthesis of the geostatistical and Markov random field
formulations.

2. GAUSSIAN CONDITIONAL AUTOREGRESSIONS
2-1. General formulation
Suppose that the random vector X = (X, ..., X,)" has density

p(x)oce 9% xeR", (2:1)
where Q is a n x n positive definite symmetric matrix. Then
Xilx—i~N<Z ﬂijxj> Ki>> (22)
j
where f; =0, B;;=—0,;/0: (i # j) and k; = 1/Q; > 0. The symmetry of Q requires that
Bijx;= Bjik:. (2:3)

Note that i and j are neighbours if and only if §;; + 0, in which case we write i ~ j, and
that sgn( ﬂ,-j)\/( Bi;B;:) is the partial correlation coefficient between X; and X;. Of course,
x on the right-hand side of (2-1) can be replaced by x — y, where y is an arbitrary real
n-vector, with corresponding adjustment to (2-2).

The reverse route from (2:2) to (2-1), with given f;/s and x;’s satisfying (2:3), is less
obvious but follows from the Brook expansion for p(x)/p(0). Positive definiteness of Q
may need to be checked on an individual basis but the identity,

xTQx = Z Qi X} — Z Qii(x; — xj)za (2:4)
i i<j
where subscripts + denote summation over replaced indices, implies that a sufficient
condition is that the B;;’s are all nonnegative and f;, <1 for all i, with strict inequality
for at least one i. When the specification of p(x) is based on (2:2) and hence on the
precision matrix Q, rather than on the dispersion matrix V= Q ™!, it is usually referred to
as a conditional autoregressive or auto-Normal formulation (Besag, 1974).
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Gaussian conditional autoregressions have been used in a wide range of applications:
human geography, e.g. Cliff & Ord (1975; 1981, Ch. 4); agricultural field experiments,
e.g. Bartlett (1978 including the Discussion), Kempton & Howes (1981), Martin (1990);
geographical epidemiology, e.g. Clayton & Kaldor (1987), A. Mollié in the University of
Paris Ph. D. thesis ‘Représentation géographique des taux de mortalité: modélisation
spatiale et méthodes Bayésiennes’, Cressie (1991, Ch.7), Marshall (1991), Molli¢ &
Richardson (1991), Bernardinelli & Montomoli (1992); astronomy, ¢.g. Molina & Ripley
(1989), Ripley (1991); texture analysis e.g. Chellappa & Kashyap (1985), Cohen, Fan &
Patel (1991), Cohen & Patel (1991); and other forms of image processing, e.g. Jinchi &
Chellappa (1986), Cohen & Cooper (1987), Simchony, Chellappa & Lichtenstein (1989),
Zerubia & Chellappa (1990). Here, we consider the simplest case of practical interest.

Example 2-1. Given the neighbours di of each site i, suppose that the conditional mean
in (2:2) is Ax;, where 1€(0, 1) and X; is the mean of the x;’s, j € 0i. Connectedness and
(2:3) together imply that var(X;|x _;) = x/n; for some x > 0, where n, is the cardinality of i.

Even in this very simple example, an unsatisfactory feature is present, for it is not
possible for the X;’s all to have the same marginal variance, nor for all neighbour pairs
to have the same covariance, unless the corresponding graph has a very special structure.
This suggests an alternative strategy. We first choose a neighbourhood criterion, as before,
but then fix, perhaps empirically, the V;;’s for i = j and for i ~ j. Thus, we seek a positive
definite matrix Q such that, for each i and j, either Q;;=0 or the value of Q7Y is
specified.

2-2. Dempster’s algorithm
As one aspect of a very wide-ranging paper, Dempster (1972) proves that, if the above
matrix Q exists, it is unique and can be found using a Newton-Raphson algorithm, with
possible step reduction. We give a numerical example in § 2-3.

THEOREM 2'1 (Dempster, 1972). Define I, to be the set of all $n(n+ 1) index pairs (i, j)
for 1<i<j<mn, and let (I,,1,) be particular ordered partition of I, with I, having m
elements, say. Let V* and Q* be fixed n x n matrices. If there exist symmetric positive
definite matrices Q and V such that:

@) Q=v"4

(i) V=V for (i, j) € I;

(i) Qi=Qf for (i, j) e I;
then Q and V are unique.

Algorithm 2-1 (Dempster, 1972). Suppose Q and V exist. For any symmetric n x n matrix
B, let 6,(B) be the row vector whose kth element is B;; if i + j, or 3B;; if i =j, where
(i, j) is the kth element of I,. Define 6,(B) correspondingly with respect to I, and write
6(B) = (0,(B), 0,(B)). Let Q© be any symmetric positive definite matrix having property
(iii) above. Then the following steps for [=0, 1, ... will converge to Q and V:

(a) set VO =(Q")7%;

(b) form the m x m matrix C? with (k, k,) element

VO v+ Vi Vo) i io= jo, iy = ji,
Cik, = (VY Ve + V%f)’,-l VO if o= jo, iy % jy OF ig = jo, iy = jy,

I 3 1 1 P . . .
Vgo)ll Vﬁ'o)h + V(io)h V§0)i1 if lo ¥* Jo I1 ¥ J1»

where (iy, jo) and (iy, j;) are the kyth and k,th elements of I,;
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(c) obtain QU*V by
0:(Q""P)=0,(QY) + {6,(V¥) — 0, (V) (CP) 7T,
0,(Q"" V) =0,(Q?).

2-3. Regular arrays

Practical applications of Gaussian conditional autoregressions often involve random
variables distributed on a regular lattice. Examples include image analysis, where sites
represent pixels, and crop experiments, where they equate with plots in the field. A two-
way table with responses that are the aggregate of independent Gaussian row effects,
column effects and noise is an autoregression with conditional mean at each site that
depends on the average responses at sites in the same row, at sites in the same column,
and at sites elsewhere; in some applications, more localised autoregressive formulations
would be of interest.

The second-order properties of lattice processes are often interpreted in terms of finite
restrictions of stationary autoregressions on corresponding infinite arrays. The latter
are most elegantly studied through their spectral densities, or equivalently their auto-
covariance generating functions. Here we provide a brief review for the two-dimensional
rectangular lattice; see Lévy (1948), Whittle (1954), Rosanov (1967), Moran (1973), Besag
(1974), Kinsch (1987), Cressie (1991, Ch. 6) and Guyon (1992, Ch. 1) for further details.
Generalisations to multivariate site variables are discussed by Kittler & Foglein (1984)
and Mardia (1988) in the context of multi-spectral imaging.

There is a simple relationship between the conditional formulation of a stationary
autoregression and its autocovariance generating function. Thus, let i = (u, v), for u,v=

0, £1,..., denote the sites of an infinite rectangular lattice, and suppose that {X,,} is a
stationary Gaussian process with conditional moments, as in (2-2),
E(Xuvl' . ) = z z nklxu—k,u—la Var(Xuvl' . ) =K> Oa (25)
k 1
with the conditioning being on all other variables, where
(i) Hoo = 09
(ii) the number of nonzero #,,’s is finite,
(1i1) M =n—r-1

(iv) XX ni cos(w  k + w,1) < 1 for all o, and w,.
Condition (iii) replaces (2-3), and (iv) that of positive definiteness.

Now define y,, = E(XpoX,s) and p,s =7,s/Yoo t0 be the autocovariance and autocor-
relation of lag(r, s), respectively. The equation (2-5) implies that

Yrs = Kérs + Z Z NriVr+k,s+1 (r’ §= Oa i 1, .. -)7 (26)
k1

where oo =1 and J,, = 0 otherwise, and the autocovariance generating function of {X,,}
is

I'(zy, 2,) = z z Vrszr123=’€/<1_22’1klzllez>a (2-7)
— o0 — o k 1

from (2:6), establishing the simple relationship between (2-5) and I'(z,, z,). The spectral
density of {X,,} is proportional to I'(e” 1, e~**2), and yields the inversion formula for
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the autocovariances:

ok [T [T cos(wyr + wy5)dwy do, (2:8)
Trs =42 e Jee 1= g cos(w k + w,l)’

integrability is ensured by (iv). Knowledge of the spectral density also underlies a simple
method of simulating a stationary autoregression over an arbitrary finite set of sites, e.g.
Cressie (1991, p. 203). Results for processes on higher-dimensional lattices are similar to
those above, except that strict inequality in the analogue of (iv) can be relaxed.

In order to obtain the restriction of a particular infinite lattice autoregression to a finite
array, it remains to identify the conditional means and variances at its boundary B; that
is, at sites that have missing neighbours with respect to the infinite system. Unfortunately,
except in special cases such as the separable processes of Martin (1979), the neighbours
of any boundary site include all other sites in B. This unwieldiness aside, the problem can
be solved in principle by using (2-8) to calculate all y,, relevant to the finite array and
then inverting the corresponding V to obtain Q. However, numerical integration of (2-8)
is usually exceedingly delicate because the moderate or substantial autocorrelations that
are typical in practical applications occur only when # ., is extremely close to unity. We
shall turn this to advantage in § 3 but here it remains problematical, with published results
available only for the first-order autoregression, for which #,0=#_,, and 5o, =#¢_, are
the sole nonzero coefficients in (2-8): see Besag (1981) and, for extensions to second-order
processes, unpublished work by R. Roberts and J. Besag.

The above difficulties have led to the use of various boundary approximations. It should
be emphasised that, in large-scale applications where the region of interest is well removed
from the boundary, the choice of an approximation is of secondary importance and one
should usually settle for the most convenient one. However, as we illustrate below, this is
unlikely to be the case for small arrays where all the data need to be used and, for example,
conditioning on the boundary values is inappropriate.

Example 2-2. The simplest version of (2-5) is the symmetric first-order autoregression,
for which

E(Xuvl' . :%l(xu—lv +xu+lv + Xuv—1 + xuv+1)a

with | 1| < 1. Here, we take y,, = 1 and neighbour autocorrelations p,, = po; = 0-75, which
requires A==0-999972. Suppose we are concerned with the restriction of the process to a
10 x 10 array. The (p,;, 0 <r <s<9) needed to construct the correct Q are given in the
middle rows of Table 1: compare with Table 3 of Besag (1981). In the approximations
below, A and x are chosen so that at least the variables in the central 2 x 2 block of the
array have variance unity and neighbour correlation 0-75.

One common boundary approximation is to replace each missing variable in (2-5) by
some ‘typical value’, which here would be zero. This shrinks the conditional expectations
at boundary sites towards zero and hence decreases the corresponding marginal variances.
In the example, we find 1==1-0463; variances range from 0-31 to 1, and neighbour covari-
ances and correlations from 0-12 to 0-75 and from 0-35 to 0-75, respectively. Note that the
value of A is allowable here, although not of course on the infinite lattice; the original
value gives correlations that are much too small.

Another suggestion is to ignore the missing values and to re-scale the coefficients at
boundary sites in some appropriate fashion. Here, this is unambiguous and leads to the
autoregression in Example 2-1, with 1==0-9954. The corresponding variances range from
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Table 1. Example 2-2: Minimum (bottom) and maximum (top) correlations

of lag(r, s), for ,s=0,1,...9, when Dempster’s algorithm is used to

approximate the symmetric first-order autoregression, with autocorrela-
tions p,, (middle) and pyy = p1o =075

r s=0 s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9

0 1000 0750 0637 0562 0510 0467 0429 0396 0365 0337
1000 0750 0-637 0570 0523 0487 0458 0434 0413 0394
1:000 0750 0629 0546 0478 0423 0378 0340 0306 0275

1 0750 0681 0610 0551 0503 0463 0426 0394 0364 0336
0750 0682 0613 0560 0518 0484 0456 0432 0412 0393
0750 0676 0604 0536 0478 0429 0387 0350 0318 0-288

2 0637 0610 0569 0527 0487 0451 0417 0386 0357 0330
0637 0613 0576 0538 0504 0475 0450 0428 0408 0-390
0629 0604 0559 0510 0465 0423 0386 0353 0323 0295

3 0562 0551 0527 0497 0465 0434 0404 0375 0347 0322
0570 0560 0-538 0512 0486 0462 0440 0420 0402 0-386
0-546 0-536 0510 0478 0443 0410 0378 0349 0322 0296

4 0510 0503 0487 0465 0439 0413 038 0360 0334 0309
0-523 0518 0504 0486 0467 0447 0429 0411 0395 0380
0478 0478 0465 0443 0418 0392 0366 0340 0316 0292

5 0467 0463 0451 0434 0413 0391 0367 0343 0319 0296
0487 0484 0475 0462 0447 0432 0416 0401 0387 0373
0423 0429 0423 0410 0392 0371 0350 0328 0306 0284

6 0429 0426 0417 0404 0386 0367 0345 0324 0301 0279
0458 0456 0450 0440 0429 0416 0403 0390 0378 0365
0378 0387 0386 0378 0366 0350 0332 0313 0294 0273

7 039% 0394 038 0375 0360 0343 0324 0304 0282 0262
0434 0432 0428 0420 0411 0401 0390 0379 0368 0357
0340 0350 0353 0349 0340 0328 0313 0297 0279 0260

8 0365 0364 0357 0347 0334 0319 0301 0282 0263 0243
0413 0412 0408 0402 0395 0387 0378 0368 0358 0349
0306 0318 0323 0322 0316 0306 0294 0279 0262 0243

9 0337 033 0330 0322 0309 029 0279 0262 0243 0226
0394 0393 039 038 038 0373 0365 0357 0349 0340
0275 0288 0295 0296 0292 0284 0273 0260 0243 0226

1 to 1-82, and the neighbour covariances and correlations from 0-75 to 1-33 and from 0-75
to 0-81, respectively. This approximation has the opposite effect to the previous one and
is therefore perhaps more satisfactory.

A third option is to impose periodic boundary conditions, identifying opposite edges
of the finite lattice. This has the advantage that the awkward inversion formula (2-8) is
replaced by a finite summation (Besag & Moran, 1975; Besag, 1977). We now find that
A==0-9957, with all variances and neighbour covariances being correctly matched.
However, the conditional distributions for variables at the boundary are highly erroneous
and lead to X,,’s at opposite ends of rows and columns also having correlation 0-75.
Because of their computational simplicity, periodic boundary conditions have been especi-
ally popular in large-scale image analysis, but they are inappropriate for small arrays,
such as those usually met in agricultural experiments.

Lastly, we examine how our new strategy fares. We maintain the simple neighbourhoods
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for interior sites but, for each boundary site, also include sites on the same edge that are
distance two away. Thus, corner and next-to-corner sites also have four neighbours but
the remaining boundary sites have five. The construction via Dempster’s algorithm ensures
that all variances and neighbour correlations are matched correctly. Otherwise, the worst
discrepancies are shown in Table 1, where the top and bottom rows provide the maximum
and minimum correlations for each lag. If required, an improved approximation could be
obtained by adding further to the neighbourhoods of the boundary sites.

When empirical autocovariances are used, the data tapers of Dahlhaus & Kiinsch (1987)
ensure positive definiteness, without sacrificing the consistency of unbiased estimation
(Guyon, 1982), although consistency is of questionable relevance in the present small-
sample context. Several authors have commented on the close agreement between the
numerical estimates of autoregressive parameters given by Besag (1974) and their own,
technically more correct, versions. The explanation is that, somewhat fortuitously, Besag
adopted less fashionable, but here more appropriate, unbiased autocovariances in his
calculations. For detailed discussion of parameter estimation and more on boundary
effects, see also Besag (1981), Kiinsch (1983), Ripley (1988, Ch. 2), Cressie (1991, Ch. 6, 7)
and Guyon (1992, Ch. 4).

3. GAUSSIAN INTRINSIC AUTOREGRESSIONS
3-1. General formulation

It follows from (2-4) that, for the conditional autoregression (2-2), there is a boundary
in the parameter space where Q;, = 0 or, equivalently, ;. = 1, for all i. For the stationary
autoregression (2-5), the corresponding boundary is defined by # ., = 1. Moreover, it is
very often the case that no appreciable correlations occur unless the parameter values are
extremely close to these edges. We saw this for a simple lattice process in Example 2-2
and in the discussion that followed it. In image analysis, Cohen et al. (1991) use the
method of maximum likelihood to estimate the parameters of nine different textures on
a torus lattice and obtain values of ;. between 0-99484 and 0-99991. Indeed, alternative
estimators that do not take account of the determinant in the constant of proportionality
in (2-1) frequently produce invalid results. This holds both for coding (Besag, 1974) and
for pseudolikelihood (Besag, 1975) estimators, despite their asymptotic properties (Besag
& Moran, 1975; Besag, 1977, Geman & Graffigne, 1987).

Such considerations suggest we should examine limiting forms of standard Gaussian
conditional autoregressions, in which Q is well defined but Q1 =0, where 1 and 0 denote
appropriate vectors of 1’s and 0’s. We refer to such processes as intrinsic autoregressions,
following the infinite lattice terminology of Kiinsch (1987), which itself borrows from
closely related ideas in the geostatistics literature, e.g. Matheron (1973). Equations (2-2)
and (2-3) remain valid but positive definiteness of Q must now be replaced by positive
semi-definiteness and, of course, Q ~! no longer exists. Formally, we can write a pairwise-
difference ‘density’ for X, ‘proportional’ to

exXp {% Z Q,(xi — xj)2}~ (31)
i<j

This is required in Bayesian applications, where (3-1) may approximate prior beliefs about

a true x, and leads to a proper posterior distribution, subject to the usual care in hierarchi-

cal formulations; see the comment following Example 3-1. In the Bayesian context, an

equivalent representation is obtained if X; is replaced by u + X;, where u has a ‘uniform’
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vague prior and the X;’s have density (3-1), constrained to have mean X = 0. The latter
is a proper (n — 1)-dimensional density provided Q has rank n — 1. Note that equation (2-2)
becomes a stochastic interpolation rule, which in many practical contexts has independent
appeal. We return to this interpretation in § 3-3.

Marginally, intrinsic autoregressions have undefined means and infinite variances, but
usually all contrasts ¢ X, where ¢ is nonnull and ¢'1 =0, have proper distributions. The
simplest example is that of a one-dimensional random walk, with arbitrary level and
independent, identically distributed, Gaussian increments. This process has been used for
one-dimensional fertility adjustment in the analysis of agricultural field experiments, from
both frequentist and Bayesian perspectives (Besag & Kempton, 1986; Besag & Higdon,
1993; Besag et al., 1995). However, there is not generally an interpretation of intrinsic
autoregressions in terms of independent increments. See Kiinsch (1987) for a thorough
discussion of such issues with regard to infinite lattices. Below, we collect some useful
facts for finite n, in the form of a lemma and two corollaries.

LEMMA 3-1. Let X =(X, ..., X,)" denote a Gaussian vector with positive semi-definite
precision matrix Q of rank k, where 1 <k <n— 1. Let A denote a k x n matrix whose rows
span the same k-dimensional subspace of R" as the rows of Q. Define Y= AX. Then

(i) Y has a nonsingular Gaussian distribution with precision matrix Qy = ATQA, where
A is any generalised inverse of A;
(il) Q=A"Qy4;
(iii) V=AQy' A" is a generalised inverse of 0.

The proof is standard matrix algebra.

COROLLARY 3-1. If CX has a proper Gaussian distribution, then its density coincides with
that of CAY, so that the well-determined second-order properties of X match those of the
vector AY.

When k is not too large for the applicability of matrix methods, the corollary provides
a simple method of simulation, particularly useful if the only indeterminacy is the overall
level, as below.

COROLLARY 32. Let X =(X,, ..., X,)" denote a Gaussian intrinsic autoregression with
precision matrix Q of rank n— 1, so that the sole redundancy in Q is Q1 =0. Then any
linearly independent set of contrasts among the X;’s has a proper Gaussian distribution

Proof. The method is again standard but we supply explicit results for later use. Let
Y=X;—X,(i=1,...,n—1)so that A=(I| —1) and we can take A4 = (I|0)". Then Qy is
the upper left (n — 1) x (n — 1) submatrix of Q, so Y, and hence any linearly independent
set of contrasts among the X’s, has a proper Gaussian distribution. O

We note that the Y;’s in the proof satisfy
n—1
E(Y|y_)= z ﬁijyja var(Y;|y_;) =x;.
i=1
Indeed, this follows directly from the conditional means and variances in (2-2) and does
not require the X;’s to be conditionally Gaussian.

Example 3-1. Let =1 in Example 2-1, so that E(X;|x_;) = X;, var(X;|x_,) = k/n;, and
Q has rank n— 1.

The above distribution has been used in geographical epidemiology to represent prior
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beliefs about the spatial component of log relative risk from a rare disease in each of n
contiguous regions (Besag, York & Mollié¢ 1991; Clayton & Bernardinelli, 1992). In that
context, k needs to be estimated and the extra term x "> must be included in (3-1). The
conventional vague prior for ¥ must be avoided, since it leads to an improper posterior;
this problem is not related to the impropriety of (3-1), but occurs in the simplest of
hierarchical formulations.

The distribution in Example 3-1 is somewhat unsatisfactory in that it does not arise as
the limit of an autoregression with equal variances and the same neighbour covariances;
or equivalently, equal Vs and the same W,/’s for i ~ j, where W;=var(X;— X;). As a
general approach, one might prefer to construct intrinsic autoregressions by specifying a
neighbourhood criterion and the W/’s for i~ j. Such a strategy again fixes the correct
number of parameters, with Q1 =0 ensuring infinite variances and the W/’s taking the
place of specified V;;’s. Below we describe a modification of the Dempster (1972) algorithm
which uses the new inputs to identify the B;;’s and x;’s in (21) and (2-2), provided such a
rank n — 1 autoregression exists. We first note that equating the Wjs for i ~ j fixes Q apart
from scale, and that a corresponding re-analysis of the epidemiological data sets given by
Besag et al. (1991) produces negligible changes in the point and interval estimates of
relative risk. Indeed, any other conclusion would have been very unsatisfactory in this
particular case.

3-2. Modified Dempster’s algorithm
THEOREM 3-1. Define J, to be the set of all in(n — 1) index pairs (i, j), for 1 <i<j<n,
and let (Jy, J,) be a particular ordered partition of Jo, with J, having m elements, say. Let
W* and Q* be fixed n x n matrices. Let A and A be as in the proof of Corollary 3-2. If there
exist symmetric n x n matrices Q and W such that:
(i) there is a positive definite (n— 1) x (n — 1) matrix Vy, with

VY=(/ITQZ)_1, (VY)ii+(VY)jj_2(VY)ij=VVi' (Lj<n), (Bu=W, (i<n),

(ii) W;= W4 for (i, j) e Jy, W, =0,
(iii) Qij: l*jfor (i, j)e T,
(iv) Q1=0,

then Q and W are unique.

The argument of Dempster (1972) extends to the current intrinsic case and leads to the
following Newton—Raphson algorithm for Q and W.

Algorithm 3-1. For any symmetric n x n matrix B, let ¢,(B) be the row vector whose
kth element is B;;, where (i, j) is the kth element of J,. Define ¢,(B) correspondingly with
respect to J, and write ¢(B) = (p;(B), ,(B)). Let Q¥ be any symmetric positive definite
matrix having properties (iii) and (iv) above. Then the following steps for I =0, 1, . .. will
converge to Q and W:

(a) set VY =(4TQVA)7Y;

(b) form the n x n symmetric matrix W with (i, j) element

(V(Yl))ii'i'(V(}))jj_z(V(lp)ij if i, j<n,
W3R =< (V) ifi<n, j=n,
0 ifi=n,j=n
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(c) form the m x m matrix D® with (k, k,) element
chl;kl =W, + WO — WO — WO, 2,

loiy Jo1 loJ1 Joi1
where (i, jo) and (iy, j;) are the koth and k;th elements of J,;
(d) obtain Q'*V, defined by

9:1(Q"" ) =01 (QP) + {1 (W*) — s (WORDD) 7L, 9,(Q7 V) = 0,(QY),
QU*V1 =0,

3-3. Regular arrays

As in § 2-3, we consider Gaussian variables satisfying (2-5) on the doubly-infinite rec-
tangular lattice but now suppose that (iv) gives equality when w; = w, = 0. The generalised
spectral density of this intrinsic process again follows from (2-7) and its behaviour in the
neighbourhood of the origin determines which contrast processes have proper stationary
distributions. Maximum likelihood estimation from a partial realisation is described
by Kiinsch (1987). The estimates are invariant to the addition of any constant to the
realisation, a property of particular interest in texture analysis.

When all contrasts in an intrinsic autoregression have proper distributions, the semi-
variogram (Matheron, 1973; Cressie, 1991, Ch. 2),

Vs =2var(X,,— Xoo) (hs=0,+1,...)
is well defined and satisfies, compare with (2-6),
Vis = _Kérs + Z Z nklvr+k,s+l'
k 1
Partial realisations, apart from an arbitrary level, can be generated by the spectral method
referred to in § 2-3.

Example 3-2. Consider the asymmetric version of Example 22,

E(Xul. - ) =100 - 10 T Xyt 10) + Mot (Xuo—1 + Xyp+1)5 (32)
but with 7,0 + #o; =3. Then,
Vps = —KOps + N10(Vr—15 + Vet 15) + o1 (Ves—1 + Ves+1)s (3-3)

and also
Cr—=1v, 1,1+ Cr+ v, g4 1=4rv,, (r=0,1,...)

compare with equation (3-4) of Besag (1981) inserting a missing factor of four on the
right-hand side.
It can be shown that,

K _41{ Mo 3 K _1{ No1 * K
Vo= —tan 1<—>, Vg = — tan 1(—), Vp=—">3=V_q;. (34)
10 TH10 Ho1 ot TtHo1 10 " “(’110’101)‘% i

Equations (3-3) also occur in two-dimensional simple random walk and it is well known

(Spitzer, 1976, p. 148) that, in the symmetric case, ;o = o1 = 3,

(11 LY o
Vio = Vo1 =K, v,,—v_,,—7r +3+5+"'+2r—1 r=12,...)

determining v, for all r and s via (3-3).
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The formulae for v, and vo; in (3-4), in conjunction with the modified Dempster’s
algorithm, are used by Besag & Higdon (1993, § 4) to carry out two-dimensional fertility
adjustment, including estimation of k and 7., in a fully Bayesian analysis of a variety
trial on spring wheat.

Here we consider a more complicated spatial model, in which diagonally adjacent sites
are included as neighbours, although in the simpler practical context of plots without
treatments.

Example 3-3. Kempton & Howes (1981, Table 2) provide the yields from a 28 x 7 uni-
formity trial on spring barley, carried out in 1979 at the Plant Breeding Institute,
Cambridge, U.K. The authors fit a four-neighbour auto-normal scheme by ordinary least
squares but note the invalidity of the resulting estimates for an infinite lattice model.
Alternatively, asymptotic maximum likelihood estimation in (2:5) gives 5, = 0-4848 and
Ho1 = 0-0132, so that #, , = 0-9960.

In this example, we might prefer an intrinsic autoregression, with coefficients chosen to
match the empirical v, for those r and s that correspond to neighbour pairs, reflecting
the asymptotic maximum likelihood theory of Kiinsch (1987). We consider an eight-
neighbour model, for which the relevant empirical values are v,, = 0-3516, vy, = 11735,
vy = 1:3395, v_;; = 1-1752; the small value for v,, reflects the particularly strong within-
column associations. We chose to average the two diagonal values and equate the corre-
sponding coefficients, although this does not simplify the computations. Table 2 shows
the resulting nonzero Q;;’s for each plot i = (u, v) in selected rows and the first four columns.
Thus, in plot i = (14, 4), the B;/s are obtained on division by —5-7631 and are 0-4829 for
column neighbours, 0-2039 for row neighbours and —0-0934 for diagonal neighbours,
although equality for left and right neighbours, for example, is not exact in general. The
negative diagonal terms suggest a curvature effect.

Table 2. Example 3-3: Q coefficients obtained using the modified Dempster’s algorithm
to fit an eight-neighbour intrinsic autoregression to the Kempton & Howes (1981) 28 x 7
uniformity data

u v=1 v=2 v=3 v=4
1 326 —096 —096 363 —095 —095 362 —-095 —095 362 —095
—277 048 053 -—-276 051 052 —276 0-52 052 —-277 0-52
2 =271 053 048 —276 052 051 —-276 0-52 052 —277 052
565 —112 —1-12 575 —114 —1-14 575 —115 —1-15 575 —115
-277 049 052 —276 051 053 277 052 053 277 0-53
3 =277 0-52 049 —276 0-53 051 —-277 0-53 052 —-277 0-52
564 —1-12 —1-12 575 —115 —1-15 575 —1-16 —1-16 575 —1-16

271 0-50 052 =277 0-52 053 —-277 0-53 053 =277 0-53

4 277 0-52 050 —-277 0-53 052 —-277 0-53 053 =277 0-53
564 —113 —1-13 575 —116 —116 576 —116 —1-16 576 —1-16
=277 0-50 052 =277 0-52 053 —-277 0-53 053 —-278 0-53

14 —-277 0-52 050 —277 0-53 052 =277 0-53 053 —278 0-53
562 —1-14 —1-14 576 —117 —1-17 576 —1-18 —1-18 576 —118
—276 0-52 052 —278 0-53 053 —-278 0-54 054 —-278 0-54
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3-4. Examples of prior distributions on regular arrays

When #,, =1, =1, the interpolation (3-2) can be thought of as the least squares fit of
a plane to the values at the four neighbours of (1, v). When dealing with large arrays, as
for example in image analysis, one would often prefer to use a larger neighbourhood and
a more sophisticated local representation of the underlying true surface. In particular, we
assume here that the surface is perceived to be locally quadratic, although the ideas are
not restricted to polynomial representations. We now encounter intrinsic autoregressions
with more than a single deficiency in rank. In one dimension a locally quadratic prior
corresponds to independent second differences and is used for ordinal factors in logistic
regression by Berzuini, Clayton & Bernardinelli (1993) and by Besag et al. (1995).

Example 3-4. Define the neighbours of each i = (u, v) on the doubly-infinite rectangular
lattice to be its eight nearest sites. Then the least-squares locally quadratic fit generates
the intrinsic autoregression for which

E(Xuvl' . ) =%(xu—lu + Xu+1v +xuu—1 + xuv+1)

—a(Xu— 101 F Xut 1041 F Xum 1041+ Xut 10-1)- (3-5)
The corresponding generalised spectral density is inversely proportional to
(1 —cosw;)(1 —cos w,),

so that simple differences no longer have proper distributions and it is necessary instead
to consider genuine two-dimensional contrasts, such as

Yuv=Xuv_Xu+1v_Xuv+1+Xu+1v+1' (36)

It is easily checked that the Y,,’s in (3:6) are independent N(0, 4x) random variables and
that the notional density (3-1) is invariant to the addition of constants to any rows and
columns.

The above degeneracy suggests that (3-5) may be useful in two-way tables, as a prior
distribution that accommodates arbitrary row and column effects. Furthermore, the
restriction of the process to a finite array, {(u,v):0<u<p, 0<v<gq}, is very easy to
handle exactly. For example,

E(X00|...)=X10+XO1_X11> Var(Xool...)=4K,
EXyol...) =Xy +3(u—10+ Xus10— Xuo11 — Xy411),  VAr(Xyol...)=2k (0<u<p),

with corresponding results at other corners and edges. In terms of Lemma 3-1, Q has a
deficiency in rank of order p+ g — 1 and the Y;’s can be taken as in (3:6). In frequentist
terms, (3-6) resembles a fertility model adopted by Cullis & Gleeson (1991), in which first-
differencing in each direction produces independence, and can be interpreted as the limiting
case of the separable stationary autoregressions advocated by Martin (1979, 1990) in the
same context.

However, the degeneracy with regard to row and column effects make (3-5) unsuitable
as a prior for a slowly varying surface. This defect can be remedied by expanding the
system of neighbours for each site.

Example 3-5. Define the neighbours of each i = (u, v) on the doubly-infinite rectangular
lattice to be its twelve nearest sites. Then the least-squares locally quadratic fit generates
the intrinsic autoregression for which

E(Xuvl' . ) =%(xu—lv + Xu+1v + Xup—1 + xuu+1) +%(xu—lv—1 + Xu+1v+1 + Xu—1v+1 + xu+1v—1)

1
_§(xu—20 + Xut20 + Xpp—2+ xuv+2)'
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The generalised spectrum is now inversely proportional to
(1 —cos wy)(1 — cos m,) + (cos w; — cos w,)>

Again, simple differences do not have proper distributions but now any second difference
process of the form Y,, = X, —2X, 4 ,+1 + Xu+ 21,0+ 21, Where k and [ are positive integers,
is stationary, as is any genuinely two dimensional contrast process, such as that defined
in (3-5). Note that, for example, X,, — 2X, 1, + Xu+1,+1 does not have a proper distri-
bution, because of invariance to the addition of a plane, although not to the addition of
arbitrary constants to rows and columns.

We do not envisage that such a detailed model is likely to be useful on small arrays
but it has been applied successfully to larger problems in surface reconstruction, where a
slowly varying image is contaminated by blur and/or noise. For an example involving
noise, see Kooperberg (1993).
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