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ABSTRACT. The logarithm of the conditional hazard function of a survival time given one or
more covariates is approximated by a function having the form of a specified sum of functions of
at most d of the variables. Subject to this form, the approximation is chosen to maximize the
expected conditional log-likelihood. Maximum likelihood and sums of tensor products of
polynomial splines are used to construct an estimate of this approximation based on a random
sample. The components of this estimate possess a rate of convergence that depends only on 4
and a suitably defined smoothness parameter.
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1. Introduction

Let 7, C and X have a joint distribution, where T and C are non-negative random variables
and X is an M-dimensional random vector of covariates. In survival analysis, T and C are
referred to as the survival time (or failure time) and censoring time, respectively. Set
Y =min (7, C) and 6 =ind (T < C). Then the indicator random variable J equals 1 if failure
occurs on or before the censoring time (if 7 < C) and it equals 0 otherwise. The observable
time Y is said to be uncensored or censored according as d =1 or 6 =0. For identifiability,
T and C are assumed to be conditionally independent given X.

Let f(¢ | x) and F(¢ | x) denote the conditional density function and conditional distribu-
tion function, respectively, of T given that X = x € R™. The conditional survival, hazard and
log-hazard functions are defined by

F(t|x)=1—F(t]|x), At|x)=f(|x)/F(t|x) and oft|x)=logi(t|x), t>0.

Let F.(z | x) denote the conditional distribution function of C given that X =x, and set
Fo(t]|x) =1—Fc( | x).

A popular choice for the analysis of censored survival data with covariates is the
proportional hazard model a(f | x) = ao(#) + x" introduced by Cox (1972), where a,(-) is the
baseline hazard function and B eRM is a vector of parameters; see also Kalbfleisch &
Prentice (1980), Miller (1981), Cox & Oakes (1984), Fleming & Harrington (1991) and
Andersen et al. (1993). In practice it is more desirable to examine the covariate effects by
using smooth, non-linear functions. The generalized additive model

oz | X) = ag(8) + o (X)) + (%) + -+ + oy (xpr)

considered by Hastie and Tibshirani (1990), Sleeper & Harrington (1990) and Gray (1992)
is a refinement of Cox’s model. Here «,(-), a,(*), . . ., a,,(:) are smooth functions. In order to
examine the interactions between covariates and time-varying coefficients, the generalized
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additive model can further be refined. To motivate our approach, suppose x = (x;, x,) and
write

a(t | X) = o) + 0, (x,) + 5(%,) + gy (1, X,) + oo (1, X3) + ay5(xy, X5),

where oy("), @; ("), %,("), . . ., a;5(*) are smooth functions. Here oy(-), a;(-) and a,(?) are
referred to as main effects, a),(") is the interaction component and oy, (-) and ay,() are
components involving time-varying coefficients.

Given a random sample, consider an estimate

a(e | X) =do(8) + &, (x;) + 8,(x5) + doy (2, x1) + dop (8, X5) + dya(xy, X5) (L1.1)

having the same form, where each component is empirically orthogonal to the corresponding
lower order components. Such orthogonality will be defined precisely later in section 2. We
can think of d(- | -) as an estimate of the log-hazard function a(- | ). Alternatively, we can
think of it as an estimate of the corresponding best theoretical approximation

a*(t | X) =oad (@) +af(x;)) +aF(x,) +ad (4, x1) + ad, (2, x,) + af(x;, X5) (1.2)

to the log-hazard function, where best means having the maximum expected log-likelihood
subject to the indicated form and each component is theoretically orthogonal to the
corresponding lower order components. According to Stone (1994), the right sides of (1.1)
and (1.2) are referred to as the ANOVA decompositions of & and a*, respectively. If the
components of the ANOVA decomposition of a* are estimated accurately by the corre-
sponding ANOVA components of &, then examination of the components of the ANOVA
decomposition of & should shed light on the relationship of the survival time T to the
covariates X through the function a* and, to a lesser extent, through the function a.

More generally, in this paper we consider the approximation a* to « = log A having the
form of a specified sum of functions of at most d of the variables ¢, x,, . . ., x,, and, subject
to this form, chosen to maximize the expected conditional log-likelihood. Given a random
sample of size n from the distribution of (Y, §, X), maximum likelihood and sums of tensor
products of polynomial splines are used to construct estimates of a*. Its components are
shown to possess the L, rate of convergence n~7/??+<) where p is a suitably defined
smoothness parameter corresponding to a*. The problem of estimating the conditional
density and survival functions are treated similarly by observing that

F(t|x) = exp< - I' Au | x) du) = exp( — J’ exp (o(u | x)) du), >0,
o o

and

S(t|x) =exp (a(t | x)) exp < - Ir exp (o(u | x)) du), t>0.
0

The rest of the paper is organized as follows. Section 2.1 provides a preliminary discussion
of the ANOVA decomposition by introducing the relevant notation. The formula for the
expected log-likelihood function is derived in section 2.2. The existence of the ANOVA
decomposition of a specified form maximizing the expected log-likelihood is considered in
section 2.3. Maximum likelihood estimation based on a random sample is described and the
corresponding existence and rate of convergence results are stated in section 2.4. In section
2.5 we briefly discuss the closely related adaptive methodology in Kooperberg er al. (1995).
Section 2.6 contains a discussion of other work related to the current paper. Proofs of the
results in sections 2.3 and 2.4 are given in section 3.

© Board of the Foundation of the Scandinavian Journal of Statistics 1995.



Scand J Statist 22 L, convergence rate for hazard regression 145

2. Statement of results
2.1. Preliminaries

To prepare for the discussion of the ANOVA decomposition and its existence in the next two
sections, we begin with some notation. Given a non-empty subset s of {0, 1, ..., M}, let H,
denote the space of functions on [0, 0) x R that depend on the variable ¢ if 0 € s and on
the variable x; for jesn{l,..., M} and on no other variables. Let Hy denote the space of
constant functions on [0, c0) x R™. Let & be a non-empty collection of sub-sets of
{0,1,..., M}. It is assumed that & is hierarchical; that is, that if s is a member of & and
r is a sub-set of s, then r is a member of &. Let H denote the collection of functions of the
form a =%, a, with a, € H, for s € . For example, the functions given by (1.1) and (1.2)
can be described as a member of H by setting & = {@, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}} and

a(t|x)=Y 4 and o*(|x)= Y a¥,
sed sed

where dy and «f are constants, d and af, are functions of the variable ¢, d;;, and af;, are
functions of the variable x,, and so on.

2.2. Expected log-likelihood function
The conditional log-likelihood based on (Y, 4, X) is given by
log {[/(Y | X)IP[F(Y | X)]' =%} =8 log A(Y | X) + log F(Y | X)

=6 log (Y | X) —in(u | X) du.

Using integration by parts, we get that

E(jyl(u | X) du
o

Thus the expected conditional log-likelihood is given by

X= x) = J(Jl Mu | x) du)(FC(t | x) dF(t | x) + F(t | x) dF(t | X))
0

= Jl(t | X)Fe(t | X)F(t | x) dt.

E<5 log (Y | X) —Jyl(u |X)du)
0

= ffFC(t | x)(log Az | )/ (2 | x) — F(t | )A(t | X)) dt f(X) dx,

where fx(-) is the density function of the random vector X. The expected conditional
log-likelihood function A(-) is defined by

Ala) = JJFC(t | x)(a(t | x)f(t | x) — F(¢ | x) exp (a(t | X)) dt fx(x) dx, aeH.
Note that A(+) is maximized at « = log (f/F).

2.3. Existence

The first goal is to prove that A(-) has a maximum in H. Suppose the random vector X takes
values in a compact interval £ < R™. Let J denote a compact interval of the form [0, 7] for
some positive 7. Without loss of generality, we assume that 9 =[0, 1] and & = [0, 1]*.

© Board of the Foundation of the Scandinavian Journal of Statistics 1995.
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Condition 1
The joint density function of T and X is bounded away from zero and infinity on I x .
Moreover, the survival function F(t | x) is bounded away from zero on T x %.

This condition implies that F(1|x) =P(T>1|X=x)>0 on & and that |o(t |x)]| is
bounded away from infinity on J x %

Condition 2 ‘
P(Ce T |x) =1 for xe X and P(C =1|x) is bounded away from zero on .

This condition implies that F.(1 | x) is bounded away from zero on [0, 1) x Z. According
to this condition, censoring automatically occurs at time 1 if failure or censoring does not
occur before this time.

Theorem 1
Suppose conditions 1 and 2 hold. Then there exists an essentially uniquely determined function
o* e H such that A(«*) =max, ., A(a). If « € H, then a* = a almost everywhere.

In the statement of theorem 1, “essentially uniquely determined” means that any two such
functions are equal almost everywhere. Note that uniqueness of the components of a* is not
required in this theorem.

To establish the rates of convergence, it is necessary to have a unique ANOVA decompo-
sition of a*, which will be considered next. We first define inner products and orthogonality
for functions on J x Z. Set

{ay,ay) = .L(.L a(y | xX)a,(y | x)f(y l X)Fc(y | X) dJ’>fx(x) dx

and |a|*=<a, a) for square-integrable functions a,,a,,a on I x &. For se &, let H?
denote the space of square-integrable functions in H, and set

H?={aeH?:alH? for r =5 with r #s};

here a Ll H? means that <{a,a,)> =0 for a,e H?. Observe that H3 = H} is the space of
square-integrable functions on 4 x & that equal some constant almost everywhere. Let H?>
denote the space of all functions of the form X, ., a,, where a, € H?> for s e%. Under
conditions 1 and 2, it can be shown that every function a € H?> can be written in an
essentially unique manner as X, , a,, where a, € H? for s € &; see lem. 3.1 of Stone (1994).
We refer to X, , a, as the ANOVA decomposition of a, and we refer to H?, s € &, as the
components of H?. Observe that ay=E(a |T < C). Given any non-empty set s €., it
follows from the orthogonality of Hj and HY that E(a, | T < C) =0.

Let #(s) denote the number of members of s, set d = max,_, #(s), and assume that d > 1.
The component H? is referred to as the constant component if #(s) =0, as a main effect
component if #(s) =1, and as an interactive component if #(s) > 2.

Suppose the function «* in theorem 1 is a member of H> Then it can be written in an
essentially unique manner in the form a* =X _, a* where a* € H? for s € &. The rate of
convergence in estimating a* depends on a smoothness condition on a*, s € &, which will
now be described.

Let 0 < f < 1. A function a on 7 x Z is said to satisfy a Holder condition with exponent
B if there is a positive number y such that |a(z) —a(z,)| < y|z — 2, for z,z,€ T x &; here
|z = =8 z? is the square of the Euclidean norm of z=(zy, zy, . . . , z4,). Given an (M + 1)-

J
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tuple i = (iy, i;, . . . , ip,) Of non-negative integers, set [i] =i, + i; + - - - + i), and let D' denote
the differential operator defined by
. ot
D=

0z - - - 0z’
Let m be a non-negative integer and set p =m + . A function @ on J x & is said to be
p-smooth if a is m times continuously differentiable on J x & and Dia satisfies a Holder

condition with exponent f for all i with [i] =m. In the following condition, it is assumed that
p>df2.

Condition 3
There are p-smooth functions a* € H?, se€ %, such that a*=3% _,a* e H and A(o*) =
max, . ; Ala).

2.4. Maximum likelihood estimation

Let K =K, be a positive integer, and let I, 1 <k <K, denote the sub-intervals of [0, 1]
defined by I, =[(k — 1)/K, k/K) for 1 <k <K and I, =[1—1/K, 1]. Let m and g be fixed
integers such that m >0 and m > ¢ > —1. Let S, denote the space of functions g on [0, 1]
such that

(i) the restriction of g to I, is a polynomial of degree m (or less) for 1 <k < K;
and, if g >0, then
(ii) g is g-times continuously differentiable on [0, 1].

A function satisfying (i) is called a piecewise polynomial, and it is called a spline if it
satisfies both (i) and (ii). Let B;, 1 <j < J, denote the usual basis of S, consisting of B-splines
(see de Boor, 1978). Then J=(m + 1)K — (g + 1)(K —1), so K+m < J <(m + 1)K. Also,
B; =20 on [0, 1], B; =0 on the complement of an interval of length (m + 1)/K for 1 <j < J,
and ¥, B;=1 on [0, 1]. Moreover, for 1<, <J, there are at most 2m + 1 values of

J'€{l,...,J} such that B;B; is not identically zero on [0, 1].
Let G, denote the space of constant functions on 7 x #. Given a sub-set s of
{0,1,..., M}, let G, denote the space spanned by the functions g on J x & of the form
gz =1 gi(z;), where z=(z0,z,...,2)) and g;€ S, for jes.

jes
Then G, has dimension J*©. Moreover, G, = G, for r = .

Consider a random sample (7, C;,X,),. .\. ,(T,,C,,X,) from the distribution of
(T, C,X), and set ¥; =min (7}, C;) and 6, =ind (7; < C;) for 1 <i<n. Let {-,->, denote
the sample inner product defined by

{&1,80n = Z gl(YiIXi)gz(Yi|Xi)-

1
Risi=1

Given s € & let G? denote the space of functions in G, that are orthogonal (relative to
{-,>,) to G, for every proper sub-set r of s. Also, set

G={Z g,:8,€G? for se.sﬂ}_

sed

© Board of the Foundation of the Scandinavian Journal of Statistics 1995.



148 C. Kooperberg, C. J. Stone and Y. K. Truong Scand J Statist 22

The space G is said to be non-identifiable if there is a non-zero function g in the space such
that g(Y; | X;) =0 for every i e {1, ..., n} such that §, = 1; otherwise this space is said to be
identifiable. Suppose G is identifiable, and let g be a member of this space. Then g can be
written uniquely in the form X, ., g,, where g, € G for 5 € &; see lem. 3.2 of Stone (1994).

Condition 4
J* = o(n' % for some ¢ > 0.

It follows from conditions 1, 2 and 4 (see lem. 3.8 of Stone, 1994) that
P(G is non-identifiable) = o(1). 2.1
The likelihood corresponding to (Y, ¢,, X,), ..., (Y,, d,, X,,) is given by

T {UCY, | X 1F(Y, | X)),

and the log-likelihood is given by

z (5;' log A(Y; | X;) —J
o

i

Y

i/l(u {X,-)du).

For s € &, let #, denote the collection of ordered # (s)-tuples j,, / € s, with j,e (1, ..., J) for
les. Then #(#,)=J*9. For je #,, let B; denote the function on J x % given
by

st(y |x) = H Bj,(xl), X=(x,...,Xp) and x5 =y.
les
Then the functions By, j € #,, which are non-negative and have sum one, form a basis of G;.
Set I =%, #(#,). Given an I-dimensional (column) vector @ having entries 0, s € & and

i€ #,, set

gs(‘ | ;0) = Z esstj( |)9 Sey,
ie s

and

gt |0 =17 g(C| ;0.

sed

Then the log-likelihood function can be written as
Yi
lg)=lg( | ;0) =Y 8(Y;[X;;0) -} J exp (g(u | X;; 0)) du.
i i 0

Thus, by the identifiability of G, the log-likelihood function is strictly concave except on an
event whose probability tends to zero with n. Define 0 so that I(g(- |5 0)) = max,.. /(g), and
consider & = g(- |- ; 0) as the maximum likelihood estimate of a* in G. It follows from the
strict concavity of the log-likelihood function that the Newton—Raphson method can be used
to compute these maximum-likelihood estimates.

Theorem 2

Suppose conditions 1-4 hold. Then, except on an event whose probability tends to zero with n,
G is identifiable, the maximum likelihood estimate & in G exists, and it can be written uniquely
in the form X, &, with d,€ G? for se &.

© Board of the Foundation of the Scandinavian Journal of Statistics 1995.
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Theorem 3
Suppose conditions 1-4 hold. Then

& —aX || = 0p(J 2+ /J%n), se,

s0
& —o*|| = Op(J 2 + \/Tn).

Given positive numbers a,, and b, for n > 1, let a, ~ b, mean that a, /b, is bounded away
from zero and infinity.

Corollary 1
Suppose conditions 1-3 hold and that J ~n''®*+%_ Then

g, —oX || = Op(n=?lPP+D), se,
50

& — o*|| = O p(n-rlee+a),

The L, rate of convergence in corollary 1 depends on d, not on the dimension M of the
random vector X. This provides another non-trivial justification of the heuristic dimensional-
ity reduction principle discussed by Stone (1986). When d = M, the rate is optimal according
to Stone (1982) and Hasminskii & Ibragimov (1990).

Conditions 1 and 2 and the compactness of Z are required for the validity of theorem 3
and corollary 1 and, more generally, for the mathematical tractability of the estimates
studied in this paper. The closely related adaptive methodology in Kooperberg et al. (1995),
which is summarized in section 2.5, does not depend on these conditions for its applicability.
Also, in condition 3 it is assumed that the various components in the ANOVA decomposi-
tion of a* have the same smoothness parameter. If these components have different
smoothness parameters, then the rate of convergence of the corresponding estimates of these
components and of their sum o* is governed by the smallest such smoothness parameter.

2.5. Adaptive methodology for hazard regression

The pragmatic importance of the theoretical results in section 2.4 is based on the principle
that, in the context of the present paper and in similar contexts involving (at least)
regression, generalized regression, density estimation, conditional density estimation and
spectral density estimation, the successful development of mathematical theory for non-adap-
tive procedures under mildly restrictive conditions implies that practically useful methodol-
ogy involving closely related adaptive procedures can be developed.

With this motivation, the authors of the present paper have used splines and their selected
tensor products to develop an adaptive methodology for estimating the conditional log-haz-
ard function. This methodology, referred to as HARE and described in Kooperberg et al.
(1995), is similar in spirit to MARS (Friedman, 1991).

The HARE approach can be described by introducing the notion of an allowable space.
Recall the description of the space G in section 2.4. A family ¢ of such spaces is said to be
allowable if it satisfies the following properties:

1. each G € % is a linear space having dimension p = p..in;
2. there is only one G € 4 with dimension p,;,;

© Board of the Foundation of the Scandinavian Journal of Statistics 1995.
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3. if Ge% has dimension p > p,;,, there is at least one sub-space G,€ % of G with
dimension p — 1,

4. if Gy € % has a dimension p, there is at least one space G € 4 with dimension p + 1 and
containing G, as a sub-space.

We refer to G,,,;,, € 4 with minimal dimension p,;, as the minimal allowable space.

In order to avoid numerical integration and other complications in the context of stepwise
knot addition, we use linear (rather than quadratic or cubic) splines. The allowable spaces
are constructed as follows. Let K, be a non-negative integer; if K, > 1, let £, 1 <k <K, be
distinct positive numbers, and consider the basis functions By, (1) =(t, — )., 1 <k <K,
where ¢, = max (¢, 0). Next, for 1 <m <M, let K,, be an integer with K,, > —1; if K,, >0,
consider the basis function B,(x,,) =x,,; if K, >1, let x,,, | <k <K,, be distinct real
numbers and consider the additional basis functions B, (x,,) = (x,, — X,u)+, | <k <K,,.

Let G be the linear space having basis functions 1, By (?) for 1 <k <K,, B,(x,,) for
1 <m < M and 0 <k <K,,, and perhaps certain tensor products of two such basis functions.
It is required that if B,,(x,,)Bo(f) be among the basis functions for some j>1, then
B,,.0(x,,)Boi () = x,, By (f) be among the basis functions. Similarly, it is required that if
Bj(x;)B,x(x,) be among the basis functions for some j>1, then By(x;)B,(x,) =
x;B,(x,) and hence x,x,, be among the basis functions. It is easy to check that the
collection ¢ of such spaces is allowable. In particular, the minimal allowable space G,,;, is
the space of constant functions given by a(r |) = oa(s | X; 0) =6,,7 =0 (that is, p =1 and
B, =1). The corresponding conditional distribution of T given X is exponential with mean
exp (—6,), which does not depend on X.

Initially, the minimal allowable space is used to model «(z |X). Then we proceed with
stepwise addition. Here we successively replace the (p — 1)-dimensional allowable space G,
by a p-dimensional allowable space G containing G, as a sub-space, choosing among the
various candidates for a new basis function by maximizing the absolute value of the
corresponding Rao statistic, see (6e.3.6) of Rao (1973).

When the number of basis functions reaches a specified number (the default being chosen
in light of the theoretical results presented in the current paper), we stop the stepwise
addition stage and proceed to stepwise deletion. Here we successively replace the p-dimen-
sional allowable space G by a (p — 1)-dimensional allowable sub-space G, until we arrive at
the minimal allowable space, at each step choosing the candidate space G, so that the Wald
statistic for a basis function that is in G but not in G, is smallest in magnitude.

In this process, we obtain a sequence of models indexed by v with the vth model having
p. parameters and fitted log-likelihood /.. The final model is selected from this sequence so
as to minimize (say) the Bayesian Information Criterion BIC, = _2[: + (log n)p,.

2.6. Other related work

An excellent discussion of the literature on the estimation of hazard and survival functions
from the counting process viewpoint is contained in Anderson et al. (1993); see also Fleming
& Harrington (1991). Here we discuss various approaches related to the theory developed in
the present paper.

In the absence of censored observations, the theory for additive and generalized additive
regression (d = 1) was considered by Stone (1985, 1986, 1989, 1990, 1991). The general
ANOVA decomposition and its corresponding rates of convergence in the context of
non-parametric regression, generalized regression, density estimation and conditional density
estimation were given in Stone (1994).
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Except for the estimation of the baseline hazard function, numerical procedures for
estimating main effects based on the generalized additive models were discussed by Hastie &
Tibshirani (1990), Sleeper & Harrington (1990) and Gray (1992) using smoothing splines.
Kooperberg & Stone (1992) consider logspline density estimation (without covariates) under
right, left and interval censoring. Time-dependent coefficient models have been discussed by
Zucker & Karr (1990) and Hastie & Tibshirani (1993) using penalized partial likelihood
method. Extensions of the present theory to handle time-dependent covariates as considered
by O’Sullivan (1993) and bivariate censored variables should be practically useful.

3. Proofs
3.1. Proof of theorem 1
Write

Aa) = Jj(al —exp (a))F-Ffy, acH.

According to condition 1, A(- | -) is bounded away from zero and infinity on J x &. Thus,
by elementary algebra, there are positive constants 4 and ¢ such that

al—exp(a) <A —¢lal, aeH.

It follows from conditions 1 and 2 (with ¢ appropriately redefined) that

Aa) <4 —¢ JJ‘Ianx, aeH.

Thus, if { [ |a|ffx = oo, then A(a) = —co. Moreover, the function A(*) is bounded above by
A. Hence, the numbers A(a), a € H, have a finite least upper bound L. Choose a, € H such
that A(a,) > — oo and A(ay) — L as k — 0. Observe that the numbers | [ |a, | ffx, k > 1, are
bounded.

Let o, and a, be functions in H such that A(x;) > — oo and A(x,) > —o0. For u €0, 1],
set «® = (1 — u)a, + ua, and ¥(u) = A(x™). Then, by the concavity of a®1 — exp (2™) as a
function of u, W(-) is a concave function. (Note that if «; and a, are bounded, then

¥(u) = _JJ(“z —)? exp («“)FcFfy.)

It follows from the argument of th. 4.1 in Stone (1994) that there is an integrable function
a* such that @, —»a* in measure as k — co. By lem. 4.1 of Stone (1994), we can assume that
o* e H. It follows from Fatou’s Lemma that A(q,) - A(a*) = L = max,_ 5 A(a) as k — oo.
Furthermore, if a € H and A(a) = A(a*), then it follows from the concavity described above
that a = o* almost everywhere. Hence the first statement of the theorem is valid. The second
statement follows from the fact that al — exp (a), as a function of a, has a unique maximum
at o =log 4.

3.2. Proof of theorem 2

Set ||g |l =sup;c 7 xe |g(t | X)|- Throughout this sub-section, it is assumed that conditions
1-4 hold.

Lemma 1
Let U be a positive constant. Then there are positive constants M, and M, such that
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—M, a —a*|? < A@) — A@@*) < — M, ||a —a*|?
Sor all a € H with ||a|,, < U.

Proof. Given a € H with |al|,, < U and given u €[0, 1], set ™ = (1 —u)a* + ua. Then

d
= Aa® =0
du (a ) u=0
and, by integration by parts,
1 d2
Aa) — A(a*) = J (1 —w)~— A@®) du.
o du

1
= —J (1—uw) Jj(a —a*)2exp (0 ) F Ffy du.
0
The desired result now follows from conditions 1 and 2. ]
The next result is lem. 4.3 of Stone (1994).

Lemma 2
There is a positive constant M such that |g|,. < M3J*?|g| for g € G.

Under conditions 1 and 2, by an argument similar to that used to prove theorem 1, there
is a unique function «} € G such that A(a}) = max, . A(g).

Lemma 3
||a: — 0(*"2 =0J %) and ”oc,",‘ - ac*”a0 = O(J9?-P).

Proof. By condition 3 and th. 12.8 of Schumaker (1981), there are functions g, € G for
n>1 and a positive constant M, such that |g, —a*|,.<M,J?. Consequently,
|g. —a*||* < M3J-%. By lemma 1, there is a positive constant M such that

A(g,) — A@*) = —MsJ . 3.1
Let b be a positive constant. Choose g € G with ||g —a*|? =5J~%. Then
lew — &1 <2(g, — a* 7+ [ — g ) < 206 + MDI>.
Since p > d/2, it follows from lemma 2 that, for J sufficiently large,
lele < g = gl + g0 — a*l. + el <1+ |*]..
Thus by lemma 1, there is a positive constant M, such that, for J sufficiently large,
A(g) — A(@*) < —MbJ =% for all g € G with |g —a*|>=bJ 2. 3.2)
Let b be chosen so that b > M3 and Mb > M. By (3.1) and (3.2), for J sufficiently large,
A(g) <A(g,) for all geG with |g —a*|2=bJ"%.
Therefore, A(*) has a local maximum on |g —a*||> <bJ~%, and by its concavity,
ok —a*|2<bJ %
for J sufficiently large. It follows from lemma 2 and |a} — g, ||> = O(J~%) that
ok —gu [l = O>~7).
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Consequently, |ja} —a*||,, = O(J¥>~?). 0

Suppose condition 4 holds. Let 7,, 1 = 1, be positive numbers such that J9t2 = O(1) and
J%log n = o(nt2). Let 0* be given by

X |)=g(| ;0% = Zygs(‘ |-50%).

Lemma 4
Given b >0 and ¢ > 0, there is a ¢ > 0 such that, for n sufficiently large,
P(‘l(.g) —l(t)

—[Ag) — A(})]
n

> erﬁ) <2exp(—cnt?)
for all g e G with |g —a} | <br,.

Proof. Write

=1 (A~ Al =n " 5 W, ~ BV

where

Y
W, =0(Y;| X;;0) —j exp (g(u | X;; 0)) du
o

Y;
—0.8(Y; | X;; 0% + J exp (g(u | X;; 0%)) du.
0

By lemma 2, |g(- |- ;0) —g( | ;60%)|, = O(J¥?t,) for g(- |- ; 0) satisfying |g — o} | <br,.
Thus there is a positive constant M, such that

Y; Y;
f Jexp (8 | X;: 0)) — exp (g(u | X,; 0%)| du < M, J lg k|
0 (]

for g(- |- ;0) satisfying ||g —a¥| <br,. It now follows from condition 1 that |W,|=
O(J4?%,). It also follows from this condition that

Y; 2 1
E(J |g—oc,’f|) SE(J |g—a:‘|2)<(br,,)2
0 0

E{[6,8(Y; | X;; 0) — 0,g(Y; | X;; 0%))%} < E{[g(T; | X;; 0) —&(T; | X;; 0%)]%} = O(z7)

and

for g(- |- ;0) satisfying |g — o} || <bt,. Hence var (W) = O(t3). The desired result now
follows from Bernstein’s inequality (see (2.13) of Hoeffding, 1963). O

Define the diameter of a set & of functions on 4 x Z by

sup {[|g; — 22]|.: &1, 82€ 6}
The next result is essentially that of lem. 4.8 of Stone (1994).

Lemma 5
Given b >0 and ¢ >0, there is a Mg > 0 such that, for n sufficiently large,

{g:geGand ||g — o} | <b1,}
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can be covered by O(exp (MgJ?log n)) sub-sets each having diameter at most ct2.

Lemma 6
Let b > 0. Then, except on an event whose probability tends to zero with n, I(g) < l(a¥) for all
g €G such that g — o} || = b,
Proof. Choose g € G such that ||g —a} || = bt,. By lemma 2,
lg —a¥.. = 0" |g —a¥|) = OU,) = O(1).
Thus by lemma 3, |g||,, = O(1). Hence

I —1
e M) g, ) and A1)~ e = Ollgs 1)

for g, =g(-|-;0,)and g, =g(- |- ;0,) € G such that ||g, — «} || < b1, for i =1, 2. The desired
result follows from lemma 1, with a* replaced by a} and H by G, and lemmas 4 and
5. 0

Lemma 7
The maximum likelihood estimate 6 € G of o = log A exists and is unique except on an event
whose probability tends to zero with n. Moreover, ||& — a¥ | =o0p(1).

Proof. The set Gy ={g € G: |g —a} | <bt,} is compact with boundary {g € G: ||g — o ||
= b1, }. By lemma 6, the log-likelihood function has a local maximum in the interior of G,.
It follows from condition 2 and the formula for the Hessian of the log-likelihood function
(see (3.3) below) that the log-likelihood function is strictly concave except on an event whose
probability tends to zero as n — oo. Consequently, |d& — a¥ | = 05(z,), so we conclude from
lemma 2 that |[d —a} ||, = 0p(J%,) = 0p(1). O

The proof of theorem 2 now follows from lem. 3.2 and 3.8 of Stone (1994) and lemma 7.
3.3. Proof of theorem 3
The proof of the next result is similar to that of lem. 5.3 of Stone (1994).

Lemma 8
Suppose conditions 1-4 hold. Then

ok —a¥|?=0p(J~2>+J%n), se.
Recall that the log-likelihood function is given by
Y;
lg) =Y 0:8(Y,[X;;0) =Y J exp (g(u | X;; 0)) du
i i 0

and that / =X, #(¢,). Let

S0) =2 I(g)

~o0¢

denote the score at @; that is, the /-dimensional vector with entries

ol Yi
Dy B %) - % j By | X,) exp (g | X,: ) d
i 0

sy i i
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Let
2’l(g)
00 00T
denote the Hessian of /(g); that is, the 7 x I matrix having entries
0%l(g) Yi
00 =2 | By ([ X)B, (| X;) exp (g(u | X;; 0)) du. (33)
s1i1 7 Vs2)2 i Jo

The maximum likelihood equation S(f) = 0 can be written as

J‘ 4 S(0* + u(f — 0%)) du = —S(6*).
o du

This can further be written as D(§ — 0%) = —S(0*), where D is the I x I matrix given by

1 02
D= L 30907 I} + u(@ — af)) du.

It follows from the maximum likelihood equation that
@ — 05D —0*) = —(6 —0*)TS(0*).

We claim that
(SO = 0,(n)

and that there is positive constant M, such that
(6 —0%)TD(B — 0%) < —MynJ 90 — 0%

except on an event whose probability tends to zero with n. Since
(6 — 6%)™S(6%)| < | — 0% [S(6%)],

it follows from (3.4)—(3.6) that |§ — 0*> = O,(J?¢/n) and hence that
|6, — ok |2 = 0s(J%n), se,

and
& — ot |2 = 0p(sm)

Theorem 3 follows from (3.7), (3.8) and lemmas 3 and 8.

Proof of (3.5). By the definition of 6*, we have

ollay)\
£ 7o) -0

Hence

1

a()\? v
E( 0 ) =var D 0,B,(Y, [X) =% | By |X,) exp (glu | X,; 6%)) ).
sy i 0

Since
Yi
D) var(aiBﬁ(Yi 1X,) ~ J By(u | X,) exp (g(u | X,; 0%) du)= o),
se¥ je g 0

we conclude that E|S(8*)|” = O(n) and hence that (3.5) is valid.
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Proof of (3.6). It follows from (3.3) that

r 0°I(g) v,
B TB=-2 | &%|X;B)exp(gu|X;0) du. (3.9)
06 00 7 Jo
By lemmas 3 and 7, there is a positive constant U such that
lim P(|ja¥ |, < U and ||d|, < U) =1. (3.10)

It follows from (3.9) and (3.10) that there is a positive constant M,, such that, except on an
event whose probability tends to zero with n,

BB < —Myo ). rigz(u | Xi; B) du. (3.11)

By conditions 1 and 2, there is a positive constant M;, > 0 such that
P(Y>1|X=x)>M, forxeZ. (3.12)

Let I, ={i:1<i<n, Y, >1}. Write g(- |- ; ) =Z,. 4 &,( | ; ) with peR’ chosen such
that g.(- | - ; B) € G? for s € #. Let ©® = R’ be the set of all such p. According to lem. 3.7 of
Stone (1994), there is a positive constant M, such that, except on an event whose probability
tends to zero with n,

Y g%u|X;; B) =nM,Eg’(u |X;;p), Be®and 0<u<l. (3.13)

iel,

Hence there is a positive constant M5 such that

Yi 1
zj X s | T g2 | X B du
i 0

0 iel,

1
;anZ‘[ Eg*(u | X,; B) du
0

>M,3nf J gxu|x; p)dudx, BeO. (3.14)
T JT

According to conditions 1 and 4 and lem. 3.6 in Stone (1994), there is a M, > 0 such that,
except on an event whose probability tends to zero with n,

j j 2 | x; B) dudx > My T J f e
T JT SESL JT JT

It follows from the basic properties of B-splines that, for some C >0,

x; B dudx, Be®. (3.15)

jjgf(u|x;[f)dua’x>CJ‘*“)Zﬁfj, se¥ and peO,
X JT J

and hence that

) [ J g2(u|x; p) dudx > CJ|B|>, BeO. (3.16)
sed JX JT
Equation (3.6) follows from (3.11)-(3.16) applied to g = 6 — 0*. This completes the proof
of theorem 3. 0
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