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Spatial-temporal decompositions of climatologic fields have been obtained using a range of techniques, including principal com-
ponent analysis (PCA) and principal oscillation patterns (POPS). PCA decompositions are forced to be correlated to the original
field, but they may not capture interesting aspects of temporal variation. On the other hand, POPS decompositions focus on tem-
poral variation but are not forced to correlate to the field. Here we introduce a hybrid of these methods that attempts to retain
desirable aspects of both PCA and POPS. The approach attempts to project the field onto a lower dimensional subspace with the
property that the average error associated with forecasting a future state of the field on the basis of the history contained in the
projection is minimized. A recursive algorithm for estimating a spatial-temporal decomposition based on this idea is developed.
The methodology is applied to a 47-year climatological record of the 5-day average 500-millibar-height anomaly field, sampled
on a 445 grid over the Northern Hemisphere extra-tropics. Some asymptotic properties of the estimation method for the new
technique are examined in a simple situation. Although the estimation method requires a consistent estimator of a certain spectral
density matrix, the target parameters are estimated at a parametric rate. Interestingly, the details of the nonparametric estimation
of the spectral density, such as the choice of the smoothing kernel, do not appear to affect the asymptotic variance of the target
parameters.
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1. INTRODUCTION

The study of fluid motion is of substantial interest in at-
mospheric science and oceanography (Chelton 1994; Panel
on Statistics and Oceanography 1994). Although physical
principles describing the small-scale or short-term evolu-
tion of the fluid are relatively well established (Holton 1992;
Wallace and Hobbs 1977), summary characterization of the
low-frequency behavior in terms of spatial and temporal
variation are less well understood. As a result, there has
been ongoing interest in empirical methods capable of sum-
marizing phenomenological aspects of fluid motion. One
thrust has been to separate spatial and temporal variation via
representations consisting of a limited number of fixed spa-
tial patterns, each pattern with its own characteristic tempo-
ral forcing. Such representations have been achieved using
a collection of statistical of techniques, including princi-
pal components analysis (PCA) (Barnett and Preisendorfer
1987; Wallace, Smith, and Bretherton 1992). A more re-
cent innovation in the atmospheric science literature is a
technique known as principal oscillation patterns analysis
(POPS) (Hasselmann 1988; Von Storch 1994; Von Storch,
Bruns, Fischer-Bruns, and Hasselmann 1988). This method
incorporates first order Markov modeling assumptions to
isolate spatial patterns with a strong temporal dependence.
The original motivation for our work was to develop an
alternative to POPS that would be less reliant on the first-
order Markov assumption.
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Let {z(t);t = ...,—1,0,1,2,...,} be a discrete mean
zero vector-valued real time series of dimension p repre-
senting the field under study. In an atmospheric science
setting, the components of x correspond to spatial locations
where the field is observed; see Section 3 for an example.
It is assumed that the measurements have been corrected
for nonstationary (temporal) trends and, perhaps by com-
plex demodulation, band-pass filtered to a range of temporal
scales of interest (Bretherton, Smith, and Wallace 1991; Von
Storch et al. 1988). The general form of the type of spatial-
temporal representations considered in the atmospheric sci-
ence literature and in this article is

K
£(t) = Ax(0) + 0 (1) = D0 Ayz(t) + 0" (1),

where A, is a vector of dimension p capturing a charac-
teristic spatial scale of variation and z,(t) is the associated
forcing function describing the temporal evolution of the
field at that spatial scale. The term 7% (¢) is the residual
error in the representation. Typically, K < p, so the rep-
resentation provides a valuable statistical summary of the
macroscopic features of the field.

In PCA the spatial patterns are derived from the spec-
tral decomposition of the marginal spatial covariance of
the field, ¥g = var z(¢). The temporal forcing z(t) are
obtained by a least squares regression of z(t) on the spa-
tial patterns. Although the first K principal components
are defined by the property that they define the closest K-
dimensional subspace to the p-dimensional marginal distri-
bution of the field (Mardia, Kent, and Bibby 1979), there is
no explicit constraint on the temporal structure of the as-
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sociated forcing functions, the z(t), because this definition
is in terms of the marginal distribution. This could be un-
satisfactory, because it means that the spatial patterns need
not reflect anything to do with the evolution of the field,
which is often of prime interest for modeling purposes.
The frequency domain application of principal components
analysis developed by Brillinger (1981) has the potential to
capture interesting temporal scales; however, because this
leads to separate spatial components corresponding to each
temporal frequency, some potential for understanding the
macroscopic behavior in terms of a simple parsimonious
representation is lost.

A real square matrix B of dimension p can be written as

P s
B=)" d—j R,L,
1=1

where R, and L, are the right and left eigenvectors corre-
sponding to the jth eigenvalue A, (which could be complex)
and d, = L)R,, with the * indicating the complex conju-
gate (see Rao 1973). The matrix >-"_, (1/d;)R,L; is an
expression for the identity matrix, and so x(¢) can be writ-
ten as

p p
1 *
Z i R,L7 » z(t) = ZR]u](t)a
J 9=1

7=1

with u, (t) = Lj=(t)/d,.

The POPS analysis is motivated by a first-order Markov
model, AR(1), for the field (Priestley 1987, chap. 9). If the
field follows the AR(1) model, then

z(t) =Bzx(t — 1) + (),

where e(t) is assumed to be a mean zero uncorrelated
(in time) process. With the foregoing decomposition of
B,u,;(t) would now satisfy a one-dimensional complex
model AR(1) with coefficient given by \;,

u,(t) = \u,(t—1) + Lie(t)/d,.

The POPS analysis is an expansion for the field in terms of
the right eigenvectors of an estimated AR(1) coefficient ma-
trix, B = DD Iy ! where ¥, is the lag-one autocovariance
matrix. The eigenvectors corresponding to the largest (in
modulus) K eigenvalues are used. The spatial patterns are
given by the vectors R,, and the temporal forcing functions
are given by Lixz(t)/d,:

14 K
z(t) = Y Rywi(t) + 0 (1) =Y Ayz(t) + 0" ().

Note that the spatial patterns and the forcing functions
may be complex. Although the POPS analysis focuses on
components with a strong temporal autocorrelation pattern,
there is no constraint that the forcing functions be highly
correlated to the original field. This complements the PCA
analysis in which the correlation between z(¢) and z(¢) is
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maximized, but there is no guarantee that 2(¢) has an inter-
esting temporal structure.

Alternative analysis of lag-one autocovariance or auto-
correlation matrices in terms of singular value decompo-
sitions and canonical correlations have also been proposed
(see Barnett and Preisendorfer 1987, Bretherton et al. 1991,
and Wallace et al. 1992). For simplicity, we limit the dis-
cussion to only PCA and POPS. The goal is to introduce
a representation in which the temporal dependence charac-
teristic of POPS and the high correlation pattern of PCA
are both explicitly considered. The approach is motivated
by considering the forecast error associated with using the
information contained in the forcing function to predict fu-
ture values of the field. The representation and estimation
methodology is developed in Sections 2 and 3. An illus-
tration with real data is given in Section 4. The dataset is
a 47-year National Meteorological Center (NMC) record
of 5-day average 500 hPa geopotential height field in the
Northern Hemisphere extra-tropics from 1946 onward. A
discussion indicating directions for future development con-
cludes the article. Some theoretical properties of the esti-
mation methods are provided in an Appendix.

2. PREDICTIVE OSCILLATION PATTERNS (PROPS)

2.1 Motivation: An Upper Bound on the Forecast Error

We first examine the error associated with the least
squares prediction of the future state of the field, based
on the information contained in the evolution of the field
(at a particular spatial scale) up to the present time. Let
A be an arbitrary p-dimensional unit vector describing a
spatial scale of interest. The one-step-ahead forecast error
associated with an optimal (in a least squares sense) fore-
cast for the field, based on the information contained in
the scale defined by A, can be developed as follows: let
e(t+1)=x(t+1)—Az(t+1) = [I - AA'|z(t + 1), where
z(t+1) = A’z(t +1). Then

z(t+1) — Elz(t + 1)|H;(A))
= e(t+1)+Az(t+1)
— Ele(t+1) + Az(t + 1)|H;(A)]
e(t+1) — Ele(t+ 1)[H,(A)]
+ A{z(t+1) — E[z(t + 1)|H:(A)]},

where H;(A) = {z(s) = A’z(s): s < t} is the history of
a process up to time t. Because [I — AA’]A = 0, the two
components of the forecast error are orthogonal, and so the
squared length of the forecast error is given by

[t + 1) — E[z(t + 1) H,(A)]|”
= |le(t +1) = Ele(t + 1)[H,(A)]|?
4 {2(t+1) — Blz(t+ 1)[H,(A)]}2

Thus the expected forecast error FE(A|z) is the sum of two
terms, which can be reduced as follows:

FE(A|z)
= E||z(t +1) — E[z(t + 1)[Hy(A)]|?
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= Elle(t+1) — Ele(t + 1)[H(A)]?
+ E{z(t+1) — E[2(t + 1)[H,(A)]}?
= Elle(t+1)|1* - E|[e(t + 1)[H(A)]]I*
+ E{z(t+1) — E[2(t + 1)|H,(A)]}?

— trace{Zo} — A’SoA — E||Ele(t + 1)[H,(A)]|2

1 ™
+ 2mexp {— / logg.,.(w) dw} ,
2 J_,

where X is the marginal covariance of the field and g (w)
is the spectral density of z(¢). The somewhat complicated
formula for the one-step-ahead forecast error of z(t) involv-
ing the spectral density has been given by Priestley (1987,
chap. 10) and follows under some regularity conditions, in-
tegrability of the logarithm of the spectral density being the
main condition.

Because of the way in which the history is restricted to a
projection of the process, we know of no simple expression
for the conditional expectation function Ele(t + 1)|H:(A)].
Things do not appear to simplify even in the case when one
restricts to a finite number of lag terms in the set H;(A).
Thus a workable form for the E||Ele(t + 1)|H,(A)]||* term
as a function of A is not available. In view of this, we in-
stead consider an approximate upper bound based on drop-
ping the complicating term. The motivation is that because
e(t + 1) is algebraically orthogonal to A, it seems reason-
able that by a suitable choice of A, one could make e(t+1)
small, and then the information about e(¢ + 1) contained in
the history H;(A) might be negligible. Thus we obtain

FET(A|z) = trace{Zo} — A'EoA
+2 € /Tr lo (W) dw
T €Xp o ). g 822 W
> Ellz(t + 1) — Efz(t + 1)[H,(A)]?

= FE(A|z).

In Section 2.3 we show that for a simplified example, this
upper bound is sharp; that is FET = FE. Better approxi-
mations to FE(A|z) would be worth future consideration.

Let f,;(w) denote the spectral density matrix of
7,8, (w) = A'fzp(w)A, and f fro(w) dw = 3. The ex-
pression for the upper bound on the forecast error can be
manipulated and reduced to the form

A'Y
FE" (A|z) = trace{Z¢} — ZA
1 " A'f,(w)A
1—expd — [ log 2zl
X [ exp{27r '/_1r og( AT A ) dw}], (1)

where £, = (1/27) [”_f,2(w) dw. The denominator in the
logarithmic term in Equatlon (3) cancels with A’¥(A to
reduce to the earlier form given for FET(A|z). By Jensen’s
inequality, the term in square brackets lies in the interval
[0, 1]. The lower extreme occurs when the spectrum is uni-
form; here z(t) is totally unpredictable (at least by linear
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methods) and is similar to white noise. As the spectrum
becomes more and more concentrated at a particular fre-
quency, z(t) is more predictable, and in the limit the term
in square brackets converges to unity.

2.2 Formal Definition

Minimizing the forecast error upper bound FE* (A|z) (1)
with respect to A forces A’XoA to be large (as in PCA) and
the associated forcing function z(¢) = A’z(¢) to be highly
predictable (as in POPS). Accordingly, the first PROP is
defined as

A, = argmin{FE" (A|z)}.
A

Higher order PROPS are obtained in a recursive manner.
Suppose that the first j PROPS have been defined and let
AJ be the matrix whose columns contain those vectors
{A1,As,...,A,}. Let r(t) be the process associated with
correcting x(t) for the information already contained in the
first j PROPS; that is,

r(t) = x(t) — Blx(t)|[H (A7),

where H;(A;) = {A/x(s);s < t}. The (j + 1)st PROP is
defined as the first PROP (1) of the process r(t),

A1 = argmin {FE*(A|r)}.
{(AALAT}

2)

Note that the constraint that A,;; be orthogonal to previ-
ous components is consistent with PCA. A total of p PROPS
can be defined in this manner. The K'th order PROPS rep-
resentation for x(t) is

K
o(t) =D Ayz(t) + 0 (),
Alx(t) and 0% (1) = x(t) — Y0y Az (1)

The quantity Z 1 Ajz (t) is the least squares projection
of z(t) onto the column space of the first X PROPS.

where z,(t) =

2.3 An lllustrative Example

Differences and similarities between the various decom-
positions can be highlighted by consideration of the situa-
tion in which x(¢) is assumed to follow a simple but peda-
gogically useful model,

(%) e(t).

Here z(t) is a scalar and e(¢) and U are vectors of length p.
It is assumed that z(¢) and e(¢) are independent stationary
processes. Assume that e(t) is mean zero and temporally
uncorrelated with the marginal covariance matrix X, and
that U is a fixed unit vector. Here we have

=Uz(t) +

o = UU0,,(0) + X,
3, = UUo,.(1)
and
fmm(w) - UU/gzz(w) + Lgea
2

where o, (k) is the lag-k autocovariance of z(t) and g (w)
is its spectral density.
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The 445-Point Half-Resolution NMC Grid.

Figure 1.

Letting H*(t) = {(2(s),&(s));s < t} be an ideal but
unobservable history, the expected squared one-step-ahead
forecast error for z(t) is bounded below by

Ellz(t+ 1) — E[z(t + 1)[H* (¢)]]?
= Ele(t+1)+Uz(t+1) — E[Uz(t + 1)[H'(1)]||?

trace{X:} + E||Uz(t + 1) — E[Uz(t + 1)[H* ()]|2

us

1
= trace{X.} + 2mexp {2— /
s

-7

S

< FE*(Alx),

provided that the logarithm of g, is integrable. From the
definition for FE*(A|z), we get that

FET(A|z)
= trace{3p} — A’SoA

1 us
+ 2mexp {7/ log(A'f,.(w)A) dw}
7r

—T

= 0,,(0) + trace{E.} — A'[UU0,,(0) + =.]JA

+ 27rexp{2i/ log(A’fm(w)A)dw}.
m

—T

If X, is not of full rank and .U = 0, then with A = U,
we have

T

FE*(Alz) = trace{S,} + 2r exp{ L /

-7

log gz (w) dw} :

which, in view of the lower bound above, is the minimum
value of the forecast error; that is, FE* = FE. Thus under
these conditions, A = U is seen to be the first PROP. It is
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easy to verify that U is an eigenvector of £;3;". In fact,

022(1)
022(0)

Thus if |0,,(1)| > 0, then the first POPS pattern of this
model will be U. However, it is not necessarily the case
that the series U’z(t) follows an AR(1) model.

Situations in which PCA and POPS may fail to recover
U are obtained as follows. Let A; be the largest eigenvalue
of X.; then (a) the first principal component will fail to
capture U whenever 0,(0) < A;; and (b) the first principal
oscillation pattern may fail to coincide with U whenever
|o22(1)] = 0. All decompositions are the same whenever
0,2(0) > Ay and |0,,(1)] > 0. On the other extreme, if
0..(0) < A\ and |o,,(1)|] = 0, then both POPS and PCA
can fail to extract U as the first component.

23U =

3. ESTIMATION METHODOLOGY

The approach here consists of replacing the covariance
matrix ¥, and the spectral density f,,(w) in Equation (1)
by sample estimates to obtain the first PROP. A similar
approach is used for the higher order PROPS, with a least
squares autoregression used to estimate the residual term in
Equation (2). Suppose that the data consist of a finite record
{z(t),t =1,2,...T}. For simplicity, assume that T is even
and let n = T'/2. The discrete Fourier transform of z and
corresponding periodogram at frequency w, = 27j/T are

1 .
XJ(-T) - _T Zm(t)efzwjt
t
and
I (wy) = o= XX

for j = —(n+1),...,n. Smoothing the periodogram leads
to the mean squared consistent estimator of the spectral
density matrix of z(¢t) (Brillinger 1981; Priestley 1987). Us-
ing a kernel approach, the spectral density estimate is

f;g)(w) = Z kp(w — wJ)Ig; (wy),

where ky(s) = (2n/Th)k(s/h),h > 0, and k(-) is a kernel
that integrates to unity and satisfies desired moment con-
ditions (Priestley 1987; Silverman 1986). As h — O,fég)
reduces to the standard periodogram estimator of the spec-
tral density: a sum of delta-functions at the frequencies w,.

Replacing X, by the sample covariance 3, and the spec-

tral density matrix by £") and substituting into Equation
(1) gives an estimation criterion: The first PROP A; is the
maximizer of

A'SoA | 1 /”1 At (WA
ATA exp o | og A’ﬂ(;z)A w | -
3)

In our numerical implementation the integral in the expres-
sion is approximated by a simple trapezoidal rule based




Kooperberg and O’Sullivan: Predictive Oscillation Patterns

PCA 1 (8.9%, 3.8%)
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PCA 2 (7.3%, 2.4%)

PCA 3 (6.5%, 2.8%)

PCA 7 (4.7%, 2.1%)

Figure 2. The First Three and the Seventh Spatial Patterns Obtained by a Principal Component Analysis (PCA). The numbers above each figure
are the percent of variance explained and the reduction in the forecast error (as in Sec. 3.1) obtained by including the pattern in the prediction
model. The fields are dimensionless. The thick contour represents the zero-level, dashed contours are negative, and solid contours are positive.

on the values of the integrand at the frequencies w; for
j=(-n+1),...,n. It should be emphasized that smooth-
ing is a critical step in the estimation process. If z(t) is real,
then as h — 0,

2rTA'EM (W) A oc | A Z z(t) cos(w;t)
j .
2

+ A’ Z z(t) sin(wj;t)

J

= [A/CJ‘]2‘+ [AlSj]z.

So without smoothing, A can be chosen to be orthogonal to
C; and S, and then A’ £ (wj)A =0, leading to numerical
instability for the integrand of the term in square brackets
in Equation (3). Smoothing makes fg(gg) have full rank and
thus overcomes this problem.

For higher order PROPS, an estimate of the process r(t)
is required. This is obtained fronr a lag- L least squares auto-
regression,

L
#(0) = 2() = 3 (e — ),
=0

where, if we ignore all but the last L terms, the coefficient
matrices ¢ can conveniently be chosen to minimize the
sum of squares

T L
RSS[p] = > |a(t) =D dnz(t 1)
t=L+1 =0

and z(t) = (Ad)'z(t) with A9 = {A;, A,,...A;}. The or-
thogonality constraint requires A7*! to lie in the null space
of (A7)". This is conveniently implemented via the QR de-
composition (Golub and Van Loan 1989). The (j + 1)st es-
timated PROP is Aj+1 = Qu4, where Qg is the p x (p—j)
matrix whose columns span the null space of (A7)’ and &
is obtained as the unconstrained maximum of

QLS ™ 1 £(h)
(e} Q2 ()QQOZ. 1— exp i/ IOg & f'm: (w)a dw ;
oo 27 J_ . o ;{?)a
4
where fr(f ) is the spectral density of 7(t) = Q,7(t). Again, a

trapezoidal rule is used to numerically evaluate the integral
term.
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POPs 1 (2.9%, 1.5%)
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POPs 2/3 - real part (4.7%, 2.2%)

POPs 2/3 - imaginary part (2.2%, 2.7%)

POPs 6/7 - real part (4.9%, 1.8%)

Figure 3. The First Three and the Seventh Spatial Patterns Obtained by a Principal Oscillation Pattern Analysis (POPS). Percent variance and
forecast errors are indicated as in Figure 2. Note that some of the components come in complex pairs.

A steepest-descent algorithm is used to find the minimiz-
ers of the objective functions in Equations (3) and (4). The
procedure is initialized in terms of the eigenvectors of 33
or Q,3,Qs,. For each eigenvector, the objective function is
evaluated, and the eigenvector giving the minimum value
is used as the initial guess. The steepest-descent algorithm
requires only that the gradient of the objective function be
computed. Explicit formulas for these gradients are used.
In general, steepest-descent methods are more robust than
more sophisticated Newton based methods, even though
the local convergence characteristics of Newton methods
are superior (Dennis and Schnabel 1983). The most time-
consuming part of the computation is the calculation and
storage of the spectral density matrix estimates. In view of
this, the additional efficiency that one might achieve using
Newton methods is likely to be negligible. The objective
functions are likely not convex in a—all maxima occur at
least twice, because a and —« give identical values in Equa-
tion (4). Nevertheless, the steepest-descent procedure has
not been found to be particularly sensitive to initialization.
Indeed, in our experience with several hundred simulated

data sets and the real data set in Section 4, the result of
the algorithm found essentially the same value even when
the procedure was initialized with a uniform starting guess
for Ay; that is, a vector all of whose components are equal

to 1/,/p.

3.1 Predictive Evaluation of the PROPS Representation
A Kth order PROPS representation for x(t) is

K
(t) =Y Ay5(t) + (),

Jj=1

where 2;(t) = Ajxz(t) and n¥(t) = z(t) — Y ) A;5(t).
The predictive value of the PROPS representation can be
evaluated in terms of an estimate of the one-step-ahead
forecast error. To obtain an honest estimate, the data are
split in two halves; the PROPS are estimated on the first
half of the data, and a corresponding forecast rule is also
estimated there. Then, this forecast rule is evaluated on the
second half of the data, providing an estimate of the pre-
dictive performance of the model.
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PROP - 1 (8.0%, 4.2%)

PROP - 3 (6.9%, 2.6%)
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PROP - 2 (6.1%, 2.4%)

PROP - 7 (4.7%, 1.4%)

Figure 4. The First Three and the Seventh Spatial Patterns Obtained by the Predictive Oscillation Pattern Analysis (PROPS). Percent variance

and forecast errors are indicated as in Figure 2.

In particular, we use multiple-response linear regression
of the true field on lagged versions of the fitted PROPS
representation of the field. The lags used were determined
by backward elimination (see Kooperberg and O’Sullivan
1994 for details).

Two parameters that potentially influence the predictive
value of a PROPS representation are the bandwidth (h) of
the spectral density estimate and the order of the lag (L)
used in defining the process #(¢). In our computations we
fixed these to A = 20 and L = 2. However, calculations not
reported here suggest that the influence of these parameters
is modest. For a further discussion of the bandwidth, see the
Appendix.

4. APPLICATION TO THE GEOPOTENTIAL HEIGHT
ANOMALY FIELD

The geopotential (500 hPa) height is the single atmo-
spheric quantity that best summarizes the low-frequency
dynamics of the atmosphere (Wallace and Gutzler 1981). As
such, the geopotential height field has been studied exten-
sively in the atmospheric sciences, both by itself and in rela-
tion to other variables, such as the sea surface temperature
(see, e.g., Dickson and Namias 1976, Horel 1981, Kush-
nir and Wallace 1989, and Wallace et al. 1992). We used a

47-year climatological record (January 1946-May 1989) of
Northern Hemisphere extra-tropical geopotential (500 hPa)
height, as projected onto a 445-point half-resolution Na-
tional Meteorology Center (NMC) grid based on daily op-
erational analyses from the NMC. The NMC grid is a point
octagonal superimposed on a polar stereographic projec-
tion of the Northern Hemisphere, extending to 20 degrees
north. Figure 1 (p. 1488) shows the location of the grid
points. Note that the projection in all of our figures shows
equal areas on the globe as equal areas in the figure. The
NMC grid is one of the commonly used grids for studying
large-scale dynamics of the atmosphere. An advantage of
the NMC grids is that each point corresponds to the same
area on the ground. (If different points represented different
areas, then one could argue that a weighting procedure was
needed.) The actual gridding is not very important, as the
patterns we are looking for are so large scale in space that
they should be similar on any grid.

Previously, methods such as PCA and POPS have been
applied to these data to derive insight into climatological
weather patterns (Wallace et al. 1992). Similar to these anal-
yses, the data were then time-averaged to produce 5-day
averages. Not surprisingly, there are strong seasonal trends
in the data. The series was made approximately stationary
by removing the mean field and the first three harmonics of



1492

1st pattern 2nd pattern

e
) 3
- =
o
[To I
o
- S
° w0
8 8
o o
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
3rd pattern 7th pattern
T
o |
21 e ||
o — |
[=)
IQ B
o
S
8 S
o 0
[
(<]
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

Figure 5. Spectra of the Temporal Forcing Functions (Normalized to
Have Unit Variance) Associated With the Spatial Scales of Variations
Shown in Figures 2, 3, and 4. The solid line represents PCA; the dotted
line, POPS; the dashed line, PROPS.

the annual cycle, separately for every grid point. This oper-
ation was carried out prior to time-averaging to produce the
5-day averages. Five-day averages are of interest, because
5 days seems to be the time lag for which statistical meth-
ods may be able to contribute to improved forecasting. In
particular, 1- and 2-day forecasts based on physical mod-
els have little room left for improvement, whereas forecasts
beyond, say, 8 days are only marginally correlated with the
actual field 8 days later.

In this article we examine the complete series of 3,467
5-day averages. The corrected data set is referred to as the
anomaly field. The data were divided into two parts, with
the first 1,700 records used for estimation and the remain-
ing half used for forecast evaluation (following Kooperberg
and O’Sullivan (1994). In Figure 2 we show the first three
patterns and the seventh pattern identified by PCA on the
first half of the data. The percentages above the figures are

Table 1. One-Step Prediction Variances for the
Spectral Densities in Figure 5
Method PCA POPS PROPS
Pattern 1 .56 .34 .48
Pattern 2 .63 47 47
Pattern 3 .55 .56 .59
Pattern 7 .75 .69 47
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the percentage of variance explained by the pattern within
the first half of the data and the forecast error obtained on
the second half of the data (see Sec. 3.1). It is assuring that
these PCA patterns appear to change little when the length
of the (5-day) averaging procedure is changed or when the
second half of the data is used. In particular, patterns for
the second half of the data are extremely similar to those
shown here. When 3-day averages were used, the same pat-
terns as in Figure 2 were still clearly recognizable, although
the first two patterns seemed to be swapped.

The first and second PCA’s are recognized as combi-
nations of the North American Oscillation (NAO) pattern
and the Pacific North American (PNA) pattern, which are
well documented in the climatology literature (Dickson and
Namias 1976). The patterns indicate a connection between
the behavior of the atmosphere over the North Pacific and
North America. The NAO pattern manifests itself as a sharp
peak and trough in the North Atlantic (as in the first PCA),
whereas the PNA pattern is recognizable by the sequence
of alternating high and low values over the North Pacific
and North America. These patterns appear in many differ-
ent analyses, using various different griddings of the atmo-
sphere.

To make computations manageable, the 445-dimensional
data were projected onto the first 50 principal components
(four of which are shown in Fig. 2). These components
explain in excess of 95% of the marginal variance. After
computing the PROPS on the p = 50 dimensional time se-
ries of principal component scores, the spatial patterns and
PROPS representation of the original 445-dimensional field
are defined as linear combinations of the principal compo-
nent vectors of the original. Other computations, not re-
ported here, suggest that the value of p has a negligible
effect on the patterns estimated by PROPS.

For the POPS analysis, the same projected data was used.
However, for POPS such a projection is needed as a method
to regularize the patterns (Von Storch et al. 1988). Similar
projections have been commonly used in other analyses of
such data sets (Barnett and Preisendorfer 1987; Wallace et
al. 1992).

Figures 3 and 4 show a subset of spatial patterns iden-
tified by the POPS and PROPS techniques. As in Figure
2, the percent variance explained and the percent forecast
error obtained on the second half of the data are also indi-
cated. The first PROP is very similar to the first PCA. The
second PROP is different from the second PCA (it looks
more like the third PCA), but the PNA pattern is still read-
ily recognizable. The first POPS pattern is not immediately
interpretable in terms of known climatological patterns; nei-
ther is it as spatially coherent (smooth) as the PNA or NAO
pattern. The other three patterns obtained by all methods
appear spatially coherent but are quite different from each
other. The closest two patterns are the second PROP and the
third PCA, both of which show a high degree of correlation
in the region associated with the Gulf Stream.

Figure 5 shows spectral density estimates of the temporal
forcing functions associated with each pattern in Figures 2—
4 (on a logarithmic scale). These estimates were computed
using an automated spectral density estimator developed
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by Kooperberg, Stone, and Truong (1995). In these graphs
the forcing functions have been normalized to have unit
variance so that all spectra integrate to the same value. This
allows a comparison of one-step prediction variances,

ag = 27rexp{%/_7r logh(w)dw} 5)
(see Priestley 1987, eq. 10.1.41). We evaluated the integral
in (5) numerically for each of the 12 spectral densities in
Figure 5; the results are summarized in Table 1.

It can be seen from Table 1 that the first POPS pattern
is the most predictable pattern (as is also evident from the
fact that the spectrum corresponding to the first POPS is the
most peaked pattern). However, because the POPS pattern,
which explains 2.9% of the variance in the field, is much
less correlated with the field than the first PCA pattern,
which explains 8.9% of the variance in the field, and the
first PROPS pattern, which explains 8.0%, the reduction in
forecast error achieved by the first POPS pattern (1.5%) is
still considerably smaller than the reduction in forecast er-
ror achieved by the first PROPS (4.0%) and the PCA (3.8%)
patterns. The first PROPS pattern is sufficiently more pre-
dictable than the first PCA pattern, so that, irrespective of
the fact that the first PCA is more correlated with the field,
the first PROPS achieves a higher reduction in forecast
error.

The PROPS patterns have a richer structure than that
of a simple AR(1) model. Fitting AR models to the forc-
ing functions lead to models with orders between 6 and
23, using an Akaike information criterion (AIC) model se-
lection criterion (Priestley 1987). The deviation from the
AR(1) structure potentially undermines the ability to ap-
peal to the elegant interpretation of POPS representations
developed by Von Storch et al. (1988). The forecast error
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Figure 6. Forecast Error Performance of the Alternative Decomposi-
tion Methods as a Function of the Number of Patterns Included. There
is only a slight improvement in the forecast error after 25 components;
hence these are not included. The solid line represents PCA; the dotted
line, POPS; the dashed line, PROPS.
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performance of the different methods are compared in Fig-
ure 6. The graph displays

z(t) — 2
Bror] = S

where i, (t) is the optimal linear forecast of z(t) based on
the information contained in the history of the first j com-
ponents of the representation under study (PCA, POPS, or
PROPS); that is, H;_1 (A7) = {(A?)'z(s); s < t}. Note that
Z(t) is computed on the first half of the data and the error
is computed on the second half of the data (see Sec. 3.1).
In terms of this performance criterion, the PROPS repre-
sentation is seen to be more favorable. It is important to
realize that the forecast error for all three methods is not
particularly good in absolute terms. The main reasons for
this are that although some of the earlier patterns (e.g., the
first and second PROPS patterns and the first POPS pattern)
by themselves are fairly predictable, these patterns explain
only a small percentage of the variance in the field.

PCA, POPS, and PROPS analyses yield distinctive rep-
resentations for the geopotential height field. Although the
forecast error criterion would favor the PROPS represen-
tation, the choice is not very clear cut. In any event, the
PROPS analysis provides alternative complementary rep-
resentation, which may be useful in developing an under-
standing of the climatology associated with this important
meteorological variable.

5. DISCUSSION

We have introduced a new approach to constructing
spatial-temporal decompositions of random fields. The
method explicitly retains desirable characteristics of both
PCA and POPS. We have numerically implemented the
method and applied it to a climatological data set, com-
paring the results to alternative decompositions.

Various directions for future development of this method-
ology might be considered. The incorporation of smooth-
ing constraints on the spatial scales of variation might be
approached by the addition of an appropriate roughness
penalty to the objective function. Incorporation of phase
effects into the PROPS representations, along the lines sug-
gested by Biirger (1993) for the POPS analysis, is also of in-
terest. Another generalization would be to develop analogs
of canonical correlations enabling the representation of cou-
pling between pairs of climatological fields (Von Storch et
al. 1988). More sophisticated approaches to constructing
spatial-temporal representations for a field might also be
considered. A natural approach would be to consider repre-
sentations in terms of a state-space or latent variable model
(Priestley 1987); for example, x(t) = Az(t) + e(t). With
stationarity assumptions for z and ¢, the spectral density
matrix of the field is

fxx(w) = Agzz(w)A/ = Nee,

where g,.. is the spectral density matrix of the K-
dimensional latent process z(t), A is a p x K loading ma-
trix, and h.. = (1/27)X. is the spectral density of the error
term &(¢). Thus in the frequency domain one might con-
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sider estimation of this factor analysis—type model using an
appropriate Whittle likelihood (Whittle 1962). Implemen-
tation of this approach poses a number of computational
as well as some theoretical statistical problems. In partic-
ular, because A and g, are more closely related, it is no
longer clear whether A can be estimated at a fully efficient
semiparametric rate.

Rapidly developing global databases from atmospheric
science and oceanography with high-resolution spatial and
temporal sampling, like the geopotential height field con-
sidered in this article, could well provide a valuable frame
of reference and source of stimulation for the further de-
velopment of applied statistical methodology related to the
analysis of random fields. The recent report of the Panel on
Statistics and Oceanography (Chelton 1994; Panel on Statis-
tics and Oceanography 1994; Von Storch 1994) indicates
many problems on which atmospheric scientists, oceanog-
raphers, and statisticians could cooperate.

APPENDIX: SOME ASYMPTOTIC
CONSIDERATIONS

From the study of semiparametric estimation problems, one
knows that there are situations in which the rate of estimation of
a finite-dimensional parameter is adversely affected by the estima-
tion of a nonparametric nuisance parameter (Bickel, Klaassen, Ri-
tov, and Wellner 1993; Engle, Granger, and Rice 1986; Speckman
1988). The PROPS estimation procedure involves using a kernel
smoother to approximate the spectral density. As a result, it is
not clear if the PROPS estimates converge to their true values at
a parametric rate. To examine this, we consider the estimation of
the first PROP and by one-step linearization consider convergence
characteristics when the length of the series 7' increases but the
dimension of the field p remains fixed. Up to the linearization, the
analysis shows that the proposed estimator converges at a regular
parametric rate. Furthermore, the asymptotic mean squared error
does not appear to be sensitive to the choice of the form of the
kernel. It would be of interest to study whether these properties
also hold under different situations; for example, when p and T
increase simultaneously. We do not pursue this issue here.

Let H[—m, 7| be a class of functions that map the interval
[—m, 7] to complex Hermitian matrices of dimension p. Consider
the real-valued functional [ : R? x H[—m, 7] — R,

fjﬂ a' f(w)adw

a’a

X [16){p{%/7r log(%) dw}} , (A1)

where f = (1/27) ffﬂ f(w) dw. This functional is of interest be-
cause the first PROP is its maximum with f = fég), whereas the
true value is defined as the maximizer with f = f,,. Let a[f]
denote a maximizer of the functional for a general f. Although
a[f] is not unique (I(a, f) = l(—a, f)), in the neighborhood of
a[f] when f is chosen sufficiently regular, there is a unique root
of the score equation d,1(a[f], f) = 0. A first-order Taylor series
expansion for the vector-valued function b(s) = a[f,. + s(f{% —
£.2:)] gives b(1) = b(0) +b(0), where b(0) = (db/ds)(s)|s=o0. Thus

Ula, f) =

a’[fyzl)] a[fzx} + a/[faz + 9(fz(z) - f:L’.’E)}S:O

Q

= alfys] + 0ralfes] (£ — £.2), (A.2)
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where the second term is the directional derivative of a[] at f,.
in the direction of the function (£{%’ — f,,). Differentiation of the
score equation O.l(a[f + sb], f + s§) = 0 with respect to s gives
the formula

afa[frt] (fvg};) - fma:)

= _agl(a'[fm:L fa':c)ilaa (8fl(a[f.7::u]7 fzz)(fq(;}zl) - fzz))
This is a consequence of the implicit function theorem (Rall 1969).
Here we have used the fact that the order of the differentiation
with respect to a and f can be interchanged, which follows from
the regularity of the functional /. Thus, to within the first-order
approximation of Equation (A.1), the expected squared error of
the first PROP in a direction defined by a vector u is
Bl (alt®)] — altea)))? = B[V 0.0 1(alfen], £00) (€0 — £0))]7,
where v = 9:1(alf,.], ) ~'u. From Equation (5), an expression
for the directional derivative of [ in the direction of a function §
is

fjﬂ a' §(w)adw

a'a

[1 — (3xp{2]7r /" log(a/(i(}f}a)a> dw}]

/_"w a' f(w)adw

a’a

exp 1 log ¢ f((f))a dw
2 | a' fa
1 T d'§(w)a a'da
— ——dw — — || .
x |i27r </—1‘r a' f(w)a “ a’fa)jl
The directional derivative of 9;l(a, f)§ with respect to a in the
direction of the vector v is v'9,9yl(a, f)é. In view of Equation

(A.2), it is easy to appreciate that the expression for this quantity is
rather elaborate. It suffices to consider some representative terms,

dsl(a, f)§ =

X

X

(A.3)

go(&f)'/ [a’ §(w)a] dw
and
gi(a, f)- / [V §(w)a + a’ §(w)v]ga(wla, f(w)) dw,

where go(a, f) and gi(a, f) are independent of § and v and
g2(wla, f(w)) is either the function 1/(a’f(w)a) or the constant
function. Focusing on these terms, it can be seen that the asymp-
totic squared error characteristic of the estimator is determined by
the behavior of random variables of the form

g _ / ") (@) — Fra () 6(w) o,

™

where 1 and + are fixed vectors and 8(w) = g2 (w|a[fez], fuz (w)) is
a fixed real-valued function possibly depending on 1/(a’f..(w)a).

Separating 3) into its systematic and stochastic components
gives
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g =
»

If the kernel function integrates to unity and has zero first mo-
ment and second moment equal to unity (Silverman 1986), and if
(w) has a continuous second derivative, then as h — 0,

/fw k (“*h“’f) 0(w) dw

(w— WJ)2

5
Substituting into the expression for the systematic component of

™ and using the approximation Fl;;(w,) ~ fz5(w,) (Brillinger
1981; Priestley 1987) gives

27 -
B~ T > e (w)nb(w,)

J=—n+1

- / o B (w0 B() oo

2w = , . K2
+ T Z Y fxr(wj)ne(wj) )
J=—n+1

O(T™) 4+ O(h?)

as ' — oo and h — 0. The order of the approximations can be
verified provided that the spectral density is smooth; for exam-
ple, has a continuous second derivative (Brillinger 1981; Priestley
1987).

For the stochastic component, we have

2 - h?

") T {9(“-’]) +6(w;) 7} Y [Lza (w;) — fow(wy)]n.
J=—n+1

The second-order behavior of the periodogram has been well stud-

ied (Brillinger 1981; Priestley 1987), and so one has under the

usual regularity conditions that

= (%) 3 wervie) +onh)

J=-n+l1
_2m
T

where v(w,) = E|~'[W, — EW,|n||* and W, follows a
complex Wishart distribution with 1 degree of freedom and
scale matrix foo(w;). Therefore, if h = ¢T° for s < —1.
then E[3")? AT™', where A is independent of the
kernel.

Note that under second-order smoothness assumptions for the
spectral density, the familiar O(T~%/%) rate of convergence for
the mean integrated squared error of the smoothed periodogram
is achieved with h = O(T~*/®) (Brillinger 1981; Priestley 1987).
Thus it is apparent that the parametric rate of convergence for the
first PROP is obtained by using an undersmoothed estimate of the

E[BM)?

/ﬂ 0(w)*v(w) dw + O(T™) + O(r") | ,

-7
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/ " EED (@) — £y () n0(w) dr + / ") () — BED ()nb(w) d

+ i

spectral density. Note, however, that the spectral density estimate
can still be mean squared consistent; for example, a bandwidth on
the order of h = O(T~'/?) is fine.

A.1 NUMERICAL ILLUSTRATION

A rigorous development of the foregoing heuristics would be of
some interest, but we shall not pursue that here. Instead, we end
this section by reporting on a simple numerical study reinforc-
ing the main conclusion from the first-order linearization argu-
ment. We consider a model in which z(¢) has p = 7 components
independent of each other. Components 3-7 are white Gaussian
processes with mean zero and variance 1.0. The second compo-
nent is also Gaussian white-noise but with variance 4.0. The first
component is a fourth-order moving average process defined by

z1(t) = —.3e(t — 1) — .6e(t — 2)
—.3e(t — 3) + .6e(t — 4) + e(t),

where e(t) is a standard Gaussian white-noise process. From Sec-
tion 2.3, the first PROP (and POP) of this model is the unit vector
A = (1,0,0,0,0,0,0)". Repeated data sets were generated from
the model, with lengths 7" ranging from 256 to 4,096. A total of 40
replications for each value of 7" were considered. The first PROP
was computed for each data set and compared to the true value,
after appropriate adjustment of the sign.

Asymptotic Error Characteristic

Number of observations (T)

512 7f|38 1024 15|36 20148 30172 4096
I 1 1

Logarithm of the squared error

T

T T T T
5.5 6.0 6.5 7.0 7.5 8.0

Logarithm of the number of observations (T)

Figure A.1. The Relation Between the Squared Error of the First
PROP and the Number of Observations (see Sec. 5.1). Forty replications
were oblained at each value of T; the median (M), upper (U), and lower
quantiles (L) are shown. The line is a least squares fit to the logarithm of
the squared error as a linear function of the logarithm of T. A parametric
rate of convergence would have a slope of —1.0.
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Figure A.1 shows the squared error difference between the true
and estimated PROP as a function of 7" From the theoretical de-
velopment we expect a linear logarithmic relation with slope of
—1.0. Figure A.l confirms this intuition. The estimated relation
has a slope of —1.06 with a standard error of .04, consistent with
the theoretical analysis. A fixed bandwidth was used in this anal-
ysis. Interestingly, varying the bandwidth did not appear to affect
either the slope or the intercept.

[Received August 1994. Revised February 1996.]
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