Polychotomous Regression
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An automatic procedure that uses linear splines and their tensor products is proposed for fitting a regression model to data
involving a polychotomous response variable and one or more predictors. The fitted model can be used for multiple classification.
The automatic fitting procedure involves maximum likelihood estimation. stepwise addition, stepwise deletion, and model selection
by the Akaike information criterion, cross-validation, or an independent test set. A modified version of the algorithm has been
constructed that is applicable to large datasets, and it is illustrated using a phoneme recognition dataset with 250,000 cases, 45

classes, and 63 predictors.
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1. INTRODUCTION

The multiple classification problem is well studied in
statistics. Typically, there is a qualitative random variable
Y that takes on a finite number K of values that we refer to
as classes. We want to predict Y based on a random vector
X € RM. Many methods have been proposed for this prob-
lem. (See Mardia, Kent, and Bibby 1979 for a discussion of
“classical” discriminant analysis methods.) One of the pop-
ular modern multiple classification techniques is classifica-
tion and regression trees (CART) (Breiman, Friedman, Ol-
shen, and Stone 1984), which approaches the multiple clas-
sification problem using recursive partitioning techniques
that have strong links to nonparametric regression. Hastie,
Tibshirani, and Buja (1994) introduced flexible discriminant
analysis. which combines nonparametric regression tech-
niques with discriminant analysis. Bose (1996) proposed
classification using splines, which uses least squares re-
gression and additive cubic splines. In computer science
and engineering, neural networks seem to be the method of
choice. (See Cheng and Titterington 1994 and Ripley 1994
for overviews.)

As is well known, the optimal classification rule predicts
Y to be arg max; P(Y = k|X). Most of the popular clas-
sification methods try to find arg max, P(Y = k|X) with-
out precise estimation of the conditional class probabilities.
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However, there are many problems in which direct classi-
fication does not suffice. For example, in Section 4.2 we
discuss the approach by Bourlard and Morgan (1994) to
the phoneme recognition problem, which requires accurate
estimation of the probability of a phoneme being in any par-
ticular class. Clearly, pure multiple classification methods
are no longer useful in such applications.

On the other hand, multiple logistic regression (i.e., poly-
chotomous regression) techniques have been used for a long
time (see Hosmer and Lemeshow 1989). In a polychoto-
mous regression model we obtain an estimate of all the con-
ditional class probabilities. (Bose [1992] attempted to esti-
mate conditional class probabilities using a logistic model
with additive cubic splines.) In this article we combine non-
parametric regression techniques similar to those used by
Friedman (1991) and Kooperberg, Stone, and Truong (1995)
with polychotomous regression to obtain a POLYCLASS
classification methodology that provides reliable estimates
for conditional class probabilities.

This article is organized as follows. In Section 2 we set up
the polychotomous regression model, describe its relation
to multiple classification, and discuss the estimation pro-
cedure. In Section 3 we discuss the model selection pro-
cedure, which uses piecewise linear splines and selected
tensor products as well as stepwise addition and stepwise
deletion of basis functions. In particular, in Section 3.3
we discuss a least squares approximation, POLYMARS, to
the model selection procedure that can dramatically speed
up the computations. POLYMARS is a customized mul-
tiresponse version of MARS (Friedman 1991) designed to
be able to deal with huge datasets. In Section 4 we apply
POLYCLASS to a small example involving simulated data
and to an example from the area of speech recognition in-
volving a dataset of 2,000 utterances (short sentences) that
yielded almost 250,000 cases. Each case represents 12.5 ms
of speech. The classes are the 45 possible phonemes that
may be spoken at any moment. The main goal in this exam-
ple is to estimate the conditional probabilities of each pos-
sible phoneme (not to classify the current phoneme) based
on 63 predictors, which are obtained from the audible spec-
trum of the sound. In Section 5 we give a few concluding
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remarks. We defer some technical details about the method-
ology to three Appendixes.

Versions of the POLYCLASS and POLYMARS pro-
grams, written in C and interfaced to S/S-PLUS, will be
made available via statlib in the near future.

2. POLYCHOTOMOUS REGRESSION MODELS

2.1 Polychotomous Regression and ANOVA

Decompositions

Consider a qualitative random variable Y that takes on a
finite number K of values. We can think of ¥ as ranging
over £ = {1,....K}. Suppose that the distribution of YV’
depends on predictors z1.. .., xp, where x = (z1,...,2p)
ranges over the subset X of R™. Now let x be distributed as
a random vector; that is, consider the random pair (X,Y’),
where X is an X'-valued random vector and Y is a K-valued
random variable. Suppose that P(Y = k|X = x) > 0 for
x € X and k£ € K and set

P(Y = k|X =x)

B(k|x) = log PY KX =x)’

xeX and ke K.

Then (K |x) = 0 for x € X and

expf(k|x)
expf(1ix) + - - - + expf(K|x)

xeX and keKk.

PY = kX =x) =

(1)

We refer to (1) as the polychotomous regression model;
when K = 2, we call it the logistic regression model.

The usual parametric approach to the polychotomous
regression problem is to use the linear, additive model
O(k|x) = Bko + Br1z1 + -+ + Bearzar, 1 < k < K. In prac-
tice, however, it may be desirable to model the predictor
effects by using smooth, nonlinear functions. A generalized
additive model (Hastie and Tibshirani 1990) for the poly-
chotomous regression problem is given by

O(k|x) = b1plz1) + Oa(x2) + - + Oprl(xar).

1<k< K. (2

To allow for interactions between predictors, the general-
ized additive model can be further refined.

To illustrate our approach, suppose that x = (z1, 22, 23)
and consider the form

O(klx) = Oor + 011(x1) + bor(x2) + Oai(x3)
+ Oror (21, 22) + O13x (71, 3)

1<k< K, 3)

+ O (2. 23),

where 614(-), ..., 03 (-) are smooth functions. Here 8y is
the constant term; 815 (-), O2x(-), and 83, (-) are referred to as
main effects; and 0125 (-), 613x(-), and 623%(-) are referred to
as two-factor interactions. Given a random sample, consider
the estimate

(kix) = o + O1x(z1) + Gar(22) + O35 (3)
+ Oyonlxy, 22) + Brae(z), T3)
1<k<K. (4)

+ é23k($2-.373):
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We can think of #(k|x) as an estimate of 6(k|x). Alterna-
tively, if 8(k|x) does not necessarily have the form specified
in (3), then we can think of §(k|x) as an estimate of the best
theoretical approximation

07 (klx) = O5x + 013 (x1) + O35 (x2) + 034 (w3)
+ 0o (x1, 22) + 0154 (1. 73)

1<k<K, (5)

to O(k|x), where “best” means having the maximum ex-
pected log-likelihood subject to the specified form.

More generally, consider the approximation 6* to 6 hav-
ing the form of a specified sum of functions of at most d of
the variables z1, . ..,z and, subject to this form, chosen to
maximize the expected log-likelihood. Given a random sam-
ple of size n from the distribution of (X,Y), if maximum
likelihood and suitable (nonadaptive) sums of polynomial
splines and their tensor products are used to construct an
estimate # of §*, where # has the same form as 0*, then this
estimate can achieve the L, rate of convergence n P/ (2p+d),
Here p is a suitably defined smoothness parameter corre-
sponding to #*; in particular, p = 2 when linear splines and
their tensor products are used and the components of 8* are
twice continuously differentiable. Thus by choosing d = 1
as in (2) or d = 2 as in (3)<(5) instead of d = M, we can
ameliorate the curse of dimensionality. (Taking d < 2 is
similar to the common practice of ignoring interactions in-
volving three or more factors in a factorial design.) More
detailed discussions of theoretical rates of convergence in
this and related contexts have been provided by Hansen
(1994), Stone (1994), and Stone, Hansen, Kooperberg, and
Truong (1997).

In this article we restrict attention to d < 2 and use lin-
ear splines and their tensor products, but we choose these
splines in an adaptive way. In practical applications the re-
striction to d < 2 rarely worsens the accuracy of the fitted
model, but it improves its interpretability and speeds up
and simplifies the corresponding computer code. Although
our present code is limited to d < 2, the methodology we
describe could easily be extended to include interactions in-
volving three or more factors or, equivalently, tensor prod-
ucts of three or more polynomial splines.

+ 6;3k('r27 'r3)=

2.2 Linear Models

Let p be a positive integer and let G be a p-dimensional
linear space of functions on X’ with basis By. ..., B,. Con-
sider the model

P
O(k|x) = O(kix; 8) = > 3xB;(x),
j=1

x€X and ke K: (6)

here B, = (Bk1,... . 0kp) for 1 < k < K —1,8; =0,
and 3 is the p(K — 1)-dimensional column vector con-
sisting of the entries of 3,...., 3, _;, which ranges over
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B = RFE-1 Correspondingly, we set
P(Y = KX = x:3)
- exp(k|x; B)
expf(1]x: B) + - + expf(K |x; B)

=exp(0(kix:8) —c(x;8)). B€B,
xcX and keK,

(7
where
c(x: B3) = logexpf(1]x: B) + - - - + expd( K |x; 3)].
BeB and xe X.
Now
log Y = kX =x:8) = 0(k|x;: 8) — e(x;3),
3 € B, xeX and kek.
The first-order and second-order partial derivatives of log
AY = k|X = x:-) are easily obtained; in particular, the
Hessian matrix is negative semidefinite on B for x € X" and
ke K.
When using (7) to model the conditional class probabili-
ties, we need to resolve two issues: how to choose the linear

space (7 and. given G, how to estimate 3. The latter issue is -

treated here; a discussion of the first issue is postponed to
Section 3.2. Here it suffices to note that the basis functions
B; will all be piecewise linear functions in one variable or
tensor products of two piecewise linear functions in differ-
ent variables.

Let (X;.Y7)..... (X,.Y,) be independent random pairs,
with each pair having the same joint distribution as (X,Y").
The log-likelihood function corresponding to the finite-
parameter model (6) is given by

1B) =) [YilXi:B) - e(Xi:B).  BeB,

which is a concave function on B. (For numerical reasons,
we add a small penalty term to the log-likelihood function;
see App. C for details.) A
The maximum likelihood estimate 3 is given by {(3) =
maxﬁl(Bt), and the log-likelihood of the fitted model is

given by | = [(B). The corresponding maximum likeli-
hood estimates of #(k|x).x € X and k € K, are given by
é(lﬁx) = 0(kjx:B).x € X and k € K.

The maximum likelihood estimate 3 can be conveniently
computed by using a Newton-Raphson algorithm (with
step-halving) or by using a quasi-Newton approximation
of the Hessian, such as the Broyden—Fletcher—-Goldfarb—
Shanno (BFGS) inverse updating technique (Fletcher 1987).
Quasi-Newton methods are usually faster than Newton-
Raphson methods, because they do not require computation
of the full Hessian. However, the Rao statistics (see App.
A) based on this approximation of the Hessian turn out to
be too inaccurate. Thus in practice we alternate between
quasi-Newton and Newton—Raphson steps during the com-
putations, especially when (K — 1)p is large.

The Bayes multiple classification rule with unit costs is to
assign a case with X = x to a class & having the maximum
conditional probability P(Y = k|X = x) or, equivalently,
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having the maximum value of 6(k|x). The corresponding
POLYCLASS rule is to assign the case to a class having
the maximum value of 8(k|x).

3. MODEL SELECTION
3.1

When modeling #(k|x) with a linear model, the remain-
ing issue to be resolved is the choice of G. In this section
we describe an algorithm for determining G in an adap-
tive fashion, given a family G of allowable spaces G that is
assumed to have the following properties:

Allowable Spaces

* For each G € G, the space G has dimension p > Py,.

* There is only one G € G with dimension P;y.

+ If G € G has dimension p > Py, then there is at
least one subspace Gy € G of G with dimension p— 1.

» If Gy € G has dimension p, then there is at least one
space G € G with dimension p + 1 containing Gy as a
subspace.

We refer to G € G with minimal dimension P,;, as the
minimal allowable space.

Initially, we use the minimal allowable space to model
0(kix). Then we proceed with stepwise addition. Here we
successively replace the (p — 1)-dimensional allowable
space Go by a p-dimensional allowable space G contain-
ing Gy as a subspace, choosing among the various candi-
dates for a new basis function by a heuristic search designed
approximately to maximize the corresponding Rao (score)
statistic. (See App. A for details.)

Upon stopping the stepwise addition stage with p = Pax
basis functions according to a rule described in Appendix
C, we proceed to stepwise deletion. Here we successively
replace the p-dimensional allowable space G' by a (p — 1)-
dimensional allowable subspace Gy until we arrive at the
minimal allowable space, at each step choosing the candi-
date space Gq so that the Wald statistic (see App. A) for
a basis function that is in G but not in Gy is smallest in
magnitude.

The specific models considered in this article involve
splines and their tensor products. We confine our attention
to linear (rather than quadratic or cubic) splines because
these are easily interpretable in the context of classifica-
tion, as is clear from the examples presented in Section 4.
In the present context, it is convenient to define an allowable
space by listing its basis functions.

For 1 <m < M, let K,,, be an integer with K,, > —1.
If K,, = —1, then there are no basis functions depend-
ing on z,,. If K,, = 0, then consider the basis function
Bno(zm) = zm. If Ky > 1, then consider the basis func-
tion Bopo(Tm) = Tm, let o, for 1 < k& < K, be distinct
real numbers, and consider the additional basis functions
Bmk(-rm,) = (xm - xﬂlk)-f— for 1 S k S A’m

Let G be the linear space having basis functions 1,
Bmk(zm) for 1 < m < M and 0 < k& < K,,, and per-
haps certain tensor products By;(z;) Bk () (With 1 # m)
of two such basis functions. If the indicated tensor prod-
uct is among the basis functions for some j > 1, then
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Biolx)) Brk{Tm) = 2Bk (rm) and hence z;z,, (if & > 0)
must be among the basis functions.

One reason for adding linear terms before knots and
adding main effects before interactions is to yield models
that ‘are simpler and easier to interpret. In particular, if a
covariate appears only linearly in the final model, then the
model is a traditional parametric model with respect to that
covariate (see the examples in Sec. 4). A second reason is
to reduce the variance associated with the overall modeling
procedure, and a third reason is to reduce the likelihood of
ending up with spurious terms in the final model. The re-
quirement of adding main effects before interactions is also
motivated by theoretical considerations regarding conver-
gence rates (see Sec. 2).

It is easy to check whether the collection G of such spaces
satisfies the aforementioned properties. In particular, the
minimal allowable space Gy, for the POLYCLASS model
is the space of constant functions. Thus the minimal model
for(6)hasp =1.B; = 1,and 6(k|x) = 3y for 1 <k < K-
1, so P(k|x) does not depend on the vector x of predictors.

Given the basis of an allowable space G as defined previ-
ously, it is easy to check whether any given basis function
can be deleted in one step.

Example. Let M = 4, B, = 1,By = z;,B; = (1 —
1)+,B4 = 1‘2,35 = 3. and B@ = T1X2. Then Bl,...,Bﬁ
span an allowable space G. In this example Bs, By, or Bg
could be removed and the remaining space would still be
allowable. If one of the basis functions By or B4 were re-
moved, however, then the remaining space would not be
allowable, because it would still contain Bg = By By (as
well as Bj in the case of removing B;). The constant basis
function B; can never be removed.

Let Gy be the allowable space having basis functions
1, Bk (xpm) for 1 <m < M and 1 < k < K,, and perhaps
certain tensor products of two such basis functions. To de-
cide which basis function to add to this model, we compute
the Rao statistic (a) for all spaces that can be obtained from
G by adding a basis function Bjg(z;) = z; to Go; (b) for all
allowable spaces that can be obtained from Gy by adding
a basis function to Gy that is a tensor product of two basis
functions By;(x;) and Bpi(zm ).l # m, that are in Gp; and
(c) for an allowable space that can be obtained from Gj
by adding a basis function based on a potential new knot
in predictor m for 1 < m < M, located using a heuristic
algorithm (see App. C). We choose the new space G to be
the one corresponding to the largest absolute value of the
Rao statistic among those candidates that are nonvacuous.

Example (Continued). Corresponding to (a), we can add
the basis function z; to the space in the example. Cor-
responding to (b), we can add B,Bs = xix3,B3Bs =
(z1 — 1) 42, or B4Bs = zox3 to the space. The basis func-
tion B3B; = (x; — 1).x3 cannot be added, because the
resulting space would not contain BsBs; = z12z3 and so
would not be allowable. Corresponding to (c), a basis func-
tion (.’2?1 - .’7,'1;(;)4_ with z1z ff—'/' 1, (IQ —.fgk)+, or (:L'g —;173k)+
could be added. No basis function of the form (x4 — z4x)+
could be added before z4 is added.
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3.2 Selecting the “Best” Model

During the combination of stepwise addition and step-
wise deletion, we get a sequence of models indexed by
v, with the vth model having (K ~ 1)p, parameters. For
POLYCLASS, the methods of selecting one model from
this sequence that we consider are the (generalized) Akaike
information criterion (AIC), an independent test set, and
cross-validation.

AIC. Let I, denote the fitted log-likelihood for the vth
model, and let AIC,, , = —2{,+a(K —1)p, be the AIC with
penalty parameter o for this model. We select the model
corresponding to the value of v that minimizes AIC, ,. In
light of work of Kooperberg and Stone (1992) and our ex-
perience in the present investigation, we recommend choos-
ing o = log n as in the Bayesian information criterion (BIC)
due to Schwarz (1978). (Choosing o = 2 as in classical AIC
tends to yield a model that is unnecessarily complex, has
spurious features, and does not predict well on test data.)
Our software allows the user to specify the penalty param-
eter.

Test set.  Consider an independent test set (XTS5, v,T5) 1
< i < nTS. Given estimates #(k|x), we can estimate the risk
(probability of misclassification) by RIS = 5~ ind(¥;™S #
Y, T3)/nT5. Given a finite number of estimates of the op-
timal classifier, we choose the model having the smallest
estimated risk. The minimum value of RIS is an estimate
of the risk for classifying a new object using the final POLY-
CLASS model. This estimate is slightly biased downward,
because the test set is used to minimize the risk.

Cross-Validation.  Alternatively, cross-validation can be
used to estimate the risk. Here we first randomly divide the
cases into ¢ > 2 approximately equal-sized subsets. Then
we carry out the following procedure for j = 1,...,c¢ (see
Breiman et al. 1984):

+ Fit a sequence of POLYCLASS models, as described
in Section 3.1, to all cases not in the jth subset.

» For each a > 0, select the model ;. that minimizes
AIC, ,.

+ For each o, compute the loss 7;(a) = > ind(Y; #
Y;), where the sum is over the cases in the jth subset
(which were not used to fit these models).

For every «, we now compute the cross-validated loss
R(a) = n7'37_, rj(a). Let & be the geometric mean of
the endpoints of the interval of values of o that minimize
R(a). We proceed by fitting a sequence of POLYCLASS
models to all data, using AIC with penalty parameter & to
select the model.

Note that min R(«) is a slightly optimistic (.e.,
downward-biased) estimate of the risk for classifying a new
object using the final POLYCLASS model.

3.3 POLYMARS: A Least Squares Approximation of the
Addition Process

The stepwise addition process, as described in the pre-
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vious sections, is computationally too expensive for huge
datasets. We determined that for the phoneme recogni-
tion problem discussed in Section 4.2, for which n =
112,115, K = 45, M = 63, and Pn.x = 350, the com-
putations would require O(10'%) floating point operations
(flops), which would take several years of CPU time on the
SGI workstation that we used for most of our computa-
tions. (See App. B for details.) This computation led us to
consider the following least squares approximation to the
stepwise addition process when dealing with large datasets.
Let Z;,1 < i < n, be the column vector of length K, whose
kth element is ind(Y; = k). The estimates 3 of 3 is obtained
by minimizing

V(B) =" [Zu — 0(k|Xi: B)F,
i k

where 6(k|X;: 8) = Z’;:l 3k B;(X;). The selection of the
new basis function is carried out by minimizing V' (3), using
the same allowable spaces as in POLYCLASS (see Sec. 3.1).
The stepwise addition part of the model selection can now
be performed in a few hours for the phoneme recognition
problem. (See App. B for more details.) This least squares
version of the stepwise addition algorithm, referred to as
POLYMARS is similar to the MARS algorithm of Fried-
man (1991), but it is substantially faster.

The least squares problem just described eventually
yields P, basis functions. We now fit a POLYCLASS
model with these basis functions using the method de-
scribed in Section 2 and a quasi-Newton algorithm. The
stepwise deletion procedure remains the same as in Section
3.1, except that we use the quasi-Hessian for the computa-
tion of the Wald statistics. It has been our experience that
although the quasi-Hessian is not adequate for stepwise ad-
dition, it does give satisfactory results during stepwise dele-
tion. The idea for using POLYMARS as a preprocessor for
POLYCLASS was inspired by Bose (1996) and by Hastie
et al. (1994).

For our example, using the approximations described in
this section, the CPU time can be reduced to about 60 days.
Using a network of workstations, this was further reduced
to approximately 1 day. (See App. B for details.)

4. EXAMPLES

We used two datasets to compare the performance of
POLYCLASS to a variety of other classification methods,
including linear discriminant analysis (LDA), flexible dis-
criminant analysis (FDA) (Hastie et al. 1994), classification
using splines (CUS) (Bose 1996), and classification and re-
gression trees (CART) (Breiman et al. 1984). The first ex-
ample involves the artificial waveform data from the CART
monograph, and the second example involves real data from
the area of speech recognition.

LDA, a classical method that has been used for decades,
assumes that the predictors have multivariate normal dis-
tributions with different means, but the same covariance
matrix, for each class. The distributional parameters are
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estimated, and the resulting decision rule is linear in the
predictors. (See Mardia et al. 1979 for more details.)

When the assumptions underlying LDA are far from be-
ing satisfied, the method may perform poorly. This has mo-
tivated researchers to develop various alternative methods.
One such method is CART (Breiman et al. 1984), which
predicts the class membership of an individual based on a
binary decision tree. Each node of the tree splits the ranges
of individual predictors to separate the measurements from
different classes. CART also gives the option of splitting
the predictor space by linear combinations of predictors.

CUS (Bose 1996) uses an additive cubic spline model to
approximate the conditional class probabilities. However, in
contrast to POLYCLASS and like the procedure described
in Section 3.3, this model is estimated using least squares
regression. The model selection is carried out using a step-
wise deletion algorithm and cross-validation.

Breiman and Thaka (1984) observed that discriminant
analysis can also be performed by multiple-response linear
regression using optimal scaling to represent the classes.
Hastie et al. (1994) replaced linear regression by non-
parametric regression methods such as MARS or BRUTO
(Hastie 1989) and thus developed the FDA classification
method. Whereas MARS is based on linear (or cubic) re-
gression splines and their tensor products, BRUTO uses an
additive smoothing spline model. FDA follows a two-step
approach: The initial estimates are obtained by least squares
regression using MARS or BRUTO as described in Section
3.3, and then an optimal scoring step is performed to ob-
tain final estimates. Hastie et al. showed that the second step
(essentially LDA with the initial estimates treated as pre-
dictors) can provide error rates lower than those achieved
by the initial estimates.

4.1 Waveform Data

Our first example (a detailed description of which can be
found in Breiman et al. 1984) involves 3 classes and 21 pre-
dictors. Let, ki, ho, and h3 be the triangular “waveforms”
defined by k(i) = max(6 — |i — 7],0), ho(i) = hy(i — 8),
and h3(i) = h1(i —4) fori=1,...,21.

The distributions of the 21 predictors conditional on the
class of the observation are now defined by

xz; = uhq (1) + (1 —w)ho(i) +¢; for class 1,

z; = uhi(i) + (1 —u)hs(i) + & for class 2,
and

x; = uha(i) + (1 — u)hs(i) +; for class 3,

where « has the uniform distribution on (0, 1) and the &;
are independent random variables with a standard normal
distribution. Note that for fixed w, this problem would sat-
isfy exactly the conditions under which LDA is the optimal
classification procedure. Because w is random, this is no
longer the case; however, we may still expect LDA to work
quite well on this example.

A training set of size 300 was generated using equal
priors. For the POLYCLASS models, CUS and CART,
the model selection was performed using ten-fold cross-
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validation. In LDA no model selection was used, and in
FDA the model selection was done using a generalized
cross-validation criterion. After the models were fitted, the
classification was evaluated on an independent test set of
size 5,000 that was generated the same way as the training
set. The whole experiment was repeated 10 times.

Misclassification error rates on the training and test sets
based on the 10 repetitions are reported in Table 1. The typ-
ical standard errors ranged from .005 to .015. For the meth-
ods using cross-validation, the training column in this table
contains the resubstitution errors {(which thus can be com-
pared to the training set errors for LDA and FDA), and the
cross-validation column contains the cross-validation esti-
mate of the error rate. (Cross-validation is never used for
standard LDA, and the implementation of FDA that was
available to us did not allow for cross-validation.)

The results in Table 1 show that POLYCLASS per-
formed quite satisfactorily in this simple example. Except
for CART, the other methods performed about the same as
or a little better than LDA. POLYCLASS had error rates
very similar to those of LDA. FDA, using BRUTO for
the nonparametric regression, seems to have a slight edge
over the other nonlinear methods. Note that LDA, CUS,
and FDA with BRUTO or MARS (degree 1) use additive
models. In this example additive models are probably suf-
ficient, so that the other methods, including POLYCLASS,
are somewhat overly complicated, particularly because the
predictors are highly correlated. We note that POLYCLASS
performs better than the other nonadditive models.

Figure 1 shows some plots related to one particular
POLYCLASS fit. This fit was based on a training set of
size 300. The selected model had 14 basis functions: the
constant function, nine linear functions, a knot for predic-
tor 13, a knot for predictor 16, an interaction between g
and g, and an interaction between ry3 and x14. This is not
the best POLYCLASS fit. Most POLYCLASS models se-
lected for different realizations of the waveform data were
linear, yielding smaller test set errors. However, we choose
this model to illustrate some features of POLYCLASS. In
particular, Figure la shows the decision boundaries as a
function of the value of predictors 13 and 16 when all other
predictors have the value 4. The other panels of Figure 1
show perspective plots of the probability estimates. We ob-
serve from this plot that large values of ;3 and 14 together
are associated with class 3 and that small values of z13 and
216 together are associated with class 2. This seems rea-

Table 1. Misclassification Error Rates for the Waveform Data
Method Training Test Cross-validation
POLYCLASS 135 .200 184
LDA 134 199
FDA (BRUTO) 107 174
FDA (MARS) 114 197
FDA (MARS, degree 2) .074 216
CcuUs 120 184 176
CART 192 315 .285
CART (linear combinations) 129 241 234

NOTE: These rates are based on 10 simulation runs.
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Figure 1. Classification Map (a) and Estimated Conditional Class
Probabilities (b} as a Function of Predictors 13 and 16. When All Other
Predictors are Equal to 4. Light gray: class 1; dark gray: class 2; black:
class 3.

sonable in light of the true measurement models for these
classes.

4.2 Phoneme Recognition

Our second example involves the Numbers93 database
taken from the area of speech recognition. The source of
this dataset is the Center for Spoken Language Understand-
ing in Portland, Oregon (Cole, Roginsky, and Fanty 1992;
Cole et al. 1994). The dataset involves 2,165 utterances
from telephone calls, numbers that typically are parts of ad-
dresses, zip codes, and street numbers. Each utterance was
processed by one or more listeners, who produced a time-
aligned phonetic description of the utterance. For example,
for one particular utterance, “303" (three-oh-three), it was
determined that the speaker produced phoneme T from 1
millisecond (ms) to 167 ms, followed by phoneme r from
167 ms to 193 ms, and so on. It should be noted that the per-
son who determined which phoneme was spoken was not
aware of the text of the utterance. The phoneme transcrip-
tion, which we obtained from the International Computer
Science Institute (ICSI) in Berkeley, California, is based on
the LIMSI phonetic alphabet (Gauvain et al. 1994).

The utterances were also processed to produce perceptual
linear predictive (PLP) features. Every 12.5 ms the audible
spectrum is determined from a concentric 25 ms piece of
sound. In our telephone data, which is sampled at the fre-
quency of 8 kHz, there are 200 observations of the sound
wave in such a 25-ms interval. A Hamming window was
applied to these 200 observations and the spectrum was es-
timated using the discrete Fourier transform. The estimated
spectrum was next transformed to yield a critical-band inte-
grated power spectrum with an equal-loudness preempha-
sis and a cube root nonlinearity to simulate the auditory
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Figure 2. Misclassification Rate (a) and Fitted Log-likelihood (b) Ver-
sus the Number of Basis Functions. The solid line represents the training
set; the dashed line, test set combined with final test set.

intensity—loudness relation. Then the eighth-order autore-
gressive all-pole mode!l of the transformed spectrum was
obtained. The coefficients of the Fourier transform repre-
sentation of the log-magnitude of this model are known
as its cepstral coefficients. The PLP features (Bourlard and
Morgan 1994; Hermansky 1990; Rabiner and Juang 1993)
that we used are the log-gain of the model (similar to the
variance) and the next eight cepstral coeflicients (similar to
autoregressive coefficients).

The goal in our analysis is to estimate the probability
distribution over all phonemes at intervals of 12.5 ms based
on the nine features available at that time point as well as
the ¢ time points, 12.5 ms apart, before and after the point
at which we want to estimate the phoneme distribution.

Such a probability distribution (or, more precisely, a like-
lihood obtained by weighting the estimated probabilities by
the empirically determined frequencies of the phonemes)
can be used as input to train (estimate) a hidden Markov
model, which in turn can be used for automatic speech
recognition (Bourlard and Morgan 1994). In the hybrid ap-
proach described by Bourlard and Morgan, a muitilayer per-
ceptron network (a type of artificial neural network) is used
to estimate these -probabilities.

There were 45 different phonemes, yielding 247,039
cases (12.5 ms intervals). We randomly divided the data
into a training set of about 110,000 cases and a test set and
final test set of about 65,000 cases each.

We used the vector of features at seven different time
points, so that ¢ = 3. The eight cepstral coefficients were
used exactly as we received them from ICSI. Because some
speakers speak more loudly than others, the log-gain in
itself is not an informative predictor of the phoneme be-
ing spoken. Differences in the log-gain may be more infor-
mative. If (i) is the log-gain at time instance ¢, we used
d(i) = e(i) — [e(i —3) + -~ + e(i + 3)]/7 instead of e(¢).

The POLYCLASS methodology described in Sections
2.1-3.2 would be practically impossible to apply to the
phoneme recognition data, for which K =45 M =9-7 =
63, and n = 112,115. Instead, we used the least squares
approximation for the stepwise addition procedure and car-
ried out the actual fitting of the model on a network of
workstations (see Sec. 3.3 and App. B). The largest model
that we fitted had 350 basis functions. This number is much
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larger than the default value of 193 (see App. C), but initial
analysis suggested that a larger model would yield much
better results. (See also the discussion of Fig. 2 in the next
paragraph.) This maximum number of 350 basis functions
was constrained by the computing resources available to us.
We believe that a larger number of basis functions would
give better resuits. Exhaustion of our resources also pre-
vented us from applying the stepwise deletion algorithm
on the largest model. However, intermediate results, not re-
ported here, suggest that the deletion of some basis func-
tions would not improve our results significantly.

Figure 2 reports the misclassification rate and the fitted
log-likelihood ", log P(Y = Y;|X = X;)/n for the train-
ing set and both test sets combined. From these graphs it
appears that the fit would continue to improve if we were
to increase the number of basis functions.

As mentioned earlier, in this particular application the es-
timation of conditional class probabilities is more important
than classification, because these probabilities can be used
as the inputs to the hidden Markov model for the approach
to speech recognition described by Bourlard and Morgan
(1994). POLYCLASS is particularly useful in this situation
because, unlike most other classification methods, it pro-
vides estimates of the conditional class probabilities that
are positive and add up to 1. Figure 3 plots the estimated
probability that a case is a particular phoneme grouped in
bins of size .01 on the horizontal axis and plots the frac-
tion of cases with that probability that corresponded to the
correct phoneme on the vertical axis. Note that every case
contributes 45 observations to this graph: one observation
per candidate phoneme. These graphs are extremely close
to the ideal straight line (fraction true class) = (estimated
probability) for both the test sets (Fig. 3a) and the training
set (Fig. 3b).

Clearly, not all phonemes are correctly estimated with
the same probability. In particular, frequently occurring
phonemes are correctly classified more often than infre-
quently occurring ones. The 22 phonemes that occurred
fewer than 1,000 times in the test set and the final test
set had a total number of 4,412 cases, of which only 15.4%
were correctly classified. The 11 phonemes with between
1,000 and 5,000 cases in the combined test set had a to-
tal number of 35,609 cases, of which 52.2% were correctly
classified. The 12 phonemes with more than 5,000 cases in
the combined test set had a total number of 94,903 cases,
of which 71.3% were correctly classified.

Table 2 summarizes misclassification rates for various
methods on the phoneme data. We compare POLYCLASS
to LDA using the 63 features, POLYMARS (assigning a
case to the largest fitted value for the POLYMARS least
squares algorithm), and CART with and without linear com-
binations. Inspired by Hastie et al. (1994), who used a form
of discriminant analysis with predictors selected by MARS,
we also compare POLYCLASS to LDA using the 349 non-
constant basis functions selected by POLYMARS.

Table 2 shows that POLYCLASS has the best test set
error—4% better than the next best error rate (POLY-
MARS) and 13% better than LDA on the features. It is
interesting to note that least squares regression on the 349
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Figure 3. Fraction of Phonemes That Correspond to the True Class
Versus the Estimated Probability; (a) Training set; (b) Test Set Combined
With Final Test Set. The data have been binned in bins of size .01.

basis functions (POLYMARS) performs better than LDA
on these basis functions. The POLYMARS algorithm that
we use to estimate the basis functions gives us the POLY-
MARS classifier for free, whereas additional computations
must be carried out for LDA. Conceivably, both for LDA
on the basis functions and for POLYMARS, the error rate
would decrease further if we increased the maximum num-
ber of basis functions. (For the other methods, the graphs of
misclassification rate versus model size look very similar to
Figure 2a, except that the misclassification rates are higher.)
Because we did not use stepwise deletion here, the model
selection for POLYCLASS is independent of the test set.
Thus the difference in performance between the test set and
the final test set is due to random variation; the same is true
for all other methods but CART, which does use the test set
for model selection. The regular CART tree was formed by
using 100 as the minimum atom size for splitting and had
828 terminal nodes. When linear combination splits were
allowed for nodes of size at least 1,000, the resulting tree
had 515 terminal nodes.

Misclassification rates for neural networks in exactly this
dataset were not available from either Oregon Graduate In-
stitute (OGI) or ICSI. However, these institutes reported
to us informally that, using somewhat different features
and/or time periods, they got test set error rates of approx-
imately 25%. The higher misclassification errors of POLY-
CLASS could be attributed to the following factors:

1. The set of features that we considered as possible
predictors is far from optimal. Further examination of our
fit revealed that the most important information is obtained
from time points —3 (37.5 ms before the phoneme was spo-

Table 2. Misclassification Rates for the Phoneme Data

Training Test Final test
set set set

Sample size 112,115 67,731 67,193
POLYCLASS 30.68% 36.01% 35.06%
LDA (63 features) 47.85% 49.88% 48.95%
LDA (349 basis functions) 40.04% 42.79% 41.80%
POLYMARS (349 basis functions) 38.82% 40.68% 39.98%
CART 44.80% 53.30% 52.55%
CART (linear combinations) 40.77% 48.87% 47.81%
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ken), O (when the phoneme was spoken), and 3 (37.5 ms af-
ter the phoneme was spoken). After our analysis, we learned
that the actual times at which OGI and ICSI use the features
are chosen more optimally, based on considerable experi-
ence. As confirmation, when we used the times —7. —4, —2,
0, 2, 4, and 7 instead of —3.....3, the misclassification er-
rors for the two LDA-based methods and for POLYMARS
dropped by 4%-5%. To save computing resources, we did
not apply the other methods to this modified dataset.

2. A model with more than 350 basis functions would
likely have led to smaller misclassification errors, as is ev-
ident from Figure 3.

3. The computational tricks that we used (Sec. 3.3, App.
B) are insufficient to fit much larger POLYCLASS models
and try out many more sets of features.

We believe that much faster techniques for fitting huge
POLYCLASS models could be developed using the stochas-
tic gradient method as in the fitting of neural networks
(Boulard and Morgan 1994).

5. CONCLUDING REMARKS

In this article we have extended the polynomial spline
methodology already used in density estimation (LOG-
SPLINE; Kooperberg and Stone 1992), regression (MARS),
and hazard regression (HARE) to handle a categorical re-
sponse variable with any number of categories (classes) and
any number of continuous covariates. The methodology in-
volves maximum likelihood estimation, stepwise addition
and stepwise deletion of basis functions, and final model
selection using cross-validation, an independent test set, or
BIC. The main purpose of the methodology is to provide
accurate estimates of conditional class probabilities, which
can be used to obtain good estimates of optimal (Bayes)
multiple classification rules. As the application of the wave-
form data in Section 4.1 illustrates, POLYCLASS is com-
petitive with other multiple classification methodologies, in-
cluding those that do not provide estimates of conditional
class probabilities.

In POLYCLASS the number of unknown parameters is
the product of the number of basis functions and one less
than the number of classes. In the context of the phoneme
data discussed in Section 4.2, there are 45 classes and
there could easily be 400 or more basis functions, so there
could easily be 20,000 unknown coefficients. Also, there
are more than 100,000 cases in the training sample. The
LOGSPLINE, MARS and HARE algorithms and software
were designed to handle up to 50 basis functions and as
many unknown coefficients. The standard version of POLY-
CLASS can easily handle problems substantially larger than
the waveform example, but it is unusable on problems hav-
ing as many cases and, especially, unknown parameters as
the phoneme example. Similarly, most of the methods that
we used for comparison on the waveform example are not
directly usable on problems as large as the phoneme exam-
ple, and the ones that we could use were outperformed by
POLYCLASS.

Perhaps the main contribution of this work has been
the development of a modified version of POLYCLASS
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that is computationally feasible for much larger problems
than the standard version. To this end, we developed a lin-
ear least squares replacement for the nonlinear maximum
likelihood-based stepwise addition of basis functions. This
least squares stepwise addition procedure was in turn car-
ried out using POLYMARS, a modification of MARS that
we developed that is substantially faster when there are
many basis functions to be selected. Then, to obtain the non-
linear maximum likelihood fit to the full set of initial basis
functions, we used a quasi-Newton instead of the Newton—
Raphson method, sped up the fitting further by gradually
increasing the numbers of basis functions and cases used,
and parallelized the software to enable it to run efficiently
on a network of 64 workstations.

In this manner, we obtained a version of POLYCLASS
that could handle the phoneme problem. The error rates that
we obtained were better than those of the competing proce-
dures we examined and also better than those reported for
neural networks before the start of our project. Since then,
however, we have informally learned about still-better error
rates obtained by experts in the area of speech recognition
through the use of neural networks. This should not be sur-
prising in light of the extent of practical experience in im-
proving the computational efficiency in the fitting of neural
networks with large numbers of weight parameters and in
using such neural networks in the context of speech recog-
nition. Moreover, our results suggest that with the modifi-
cations discussed at the end of Section 4.2, POLYCLASS
would be competitive with neural networks in this context.

APPENDIX A: QUADRATIC APPROXIMATIONS TO
THE LIKELIHOOD

Here we give some motivation for the use of Rao and Wald
statistics in the stepwise model selection procedure described in
Section 3.

Rao Statistics.  Let S(3) denote the score at 3 (i.e., the p(K —
1)-dimensional column vector with entries 9.(3)/90k;), and let
H(3) denote the Hessian at 3 (i.e., the (K —1)p x (K — 1)p matrix
with entries 9% (8)/08k, j, 08kyj»)-

Let 3 be the maximum likelihood estimate of the coefficient
vector corresponding to a p-dimensional allowable space G, but
subject to the constraint that the estimates of #(k|x),1 < k < K —
1, are in a (p — 1)-dimensional allowable subspace Gy of G. Then
the Rao statistic for testing the hypothesis that §{k|x) is in G for
1 <k <K~ 1lisgivenby R = [S(B8)]T[L(B)]7'8(8'”),
where I([im)) = ~H(ﬁ(°)) with S{-) and H(-) corresponding to
G (see Rao 1973, eq. 6e.3.6).

Wald Statistics. Let 3 be the maximum likelihood estimate of
the coefficient vector corresponding to a p-dimensional allowable
space G. and let ¥ be the (K — 1)-dimensional vector of those
entries of 3 that correspond to the basis function that would be
deleted in going from G to a (p — 1)-dimensional subspace of Go.
Also, let J denote the (K — 1) x (K — 1) submatrix of [-H(3)] ™’
whose rows and columns correspond to these K — 1 coefficients.
Then the Wald statistic for testing the hypothesis that §(k|x) is a
member of Gy for 1 <k < K — 1 equals #1737

Motivation. Let Q be a quadratic polynomial on R? having
negative definite Hessian matrix H and set I = —H. Also, let 8
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maximize @ on R? and let 8y € R?. Then

0=VQ(3) = VQ(Bo) + H(B — Bu).
so B~ B = I7'VQ(Bo). Hence
Q(B) = Q(Bo) + (B~ Bo) VQ(Bo) + 1(B — Bo)TH(B — Bo)
= Q(Bo) + LVQ(B'T'VQ(Bo).
and therefore,
2[Q(B) - Q(Bo)] = IVQB))"T'VQ(Bo). (A1)

Suppose now that 3, maximizes Q(3) subject to the constraint
that A3 = 0, where A is an r x ¢ matrix having rank r. Then
ABD = 0. By the Lagrange multiplier theorem, there is a A € R”
such that VQ(B3:) = AT A. It follows from (A.1) that

2[Q(B) — Q(Bo)] = ATAT AT A (A2)

Moreover, 3— 8, = I TATA, s0 A8 = A(B-BO) =AI1ATA
Thus by (A.2),

2Q(B) — Q(Bo)] = (AB) (AT'AT) T (AB).  (A3)
Furthermore, A = (AI"*A7)"' A3, and hence
Bo=B-T"'AT(AT'AT) 'AB. (A4)

If @ is the quadratic approximation to the log-likelihood func-
tion at (3o. then the right side of (A.1) is the Rao statistic. If Q) is
the quadratic approximation to the log-likelihood function at 3,
then the right side of (A.3) is the Wald statistic. Also, (A.4) yields
a convenient starting value for the Newton—Raphson method in
the context of stepwise deletion.

APPENDIX B: LEAST SQUARES APPROXIMATION
B.1 The Stepwise Addition Process

When using the stepwise addition process as described in Sec-
tion 3.2, quasi-Newton updates for the Hessian matrix do not suf-
fice. Therefore, we need to compute the tu'l Hessian, which re-
quires O(K *p*n) flops, where K is the number of classes, p is the
number of basis functions, and n is the number of cases. Compu-
tation of a Rao statistic requires O(K *pn) flops, but for adding a
basis function to a model with p basis functions, we typically com-
pute approximately O(p) Rao statistics, so the computation of all
Rao statistics at that stage involves O(K?p?n) flops. If the largest
model has Pnax basis functions, then the total number of flops
required is O(K2P3,.n). For the phoneme recognition problem
discussed in Section 4.2, n = 112,115 and K = 45, while we used
Prax = 350. Thus O(10'®) flops would be required. We estimated
that this would take several years on the SGI workstation that we
used.

If we were to use a quasi-Newton (instead of a Newton—
Raphson) algorithm, then we would not have to compute any full
Hessians. However, the number of iterations needed is typically
larger using a quasi-Newton algorithm. The substantial costs of
computing the Rao statistics would not be reduced. Overall, we
can expect that a quasi-Newton algorithm would be approximately
60% faster than a Newton—Raphson algorithm, but at the expense
of less-accurate Rao statistics.

Using the least squares approximation described in Section 3.3,
we can carry out the stepwise addition part of the model selection
in O(50P2,,n) flops, or a few hours for the phoneme recognition
problem.

As part of the least squares approximation to POLYCLASS, we
need to solve many equations of the form 3, = (X7X)'X”7Y,
for 1 < k < K. Here XX is a p x p matrix having a previ-
ously inverted (p — 1) x (p — 1) submatrix. Inverting X” X now
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requires only O(p?) flops. Assuming that all necessary inner prod-
ucts among predictors and between predictors and responses are
known, computing all 3 requires O(p®K) flops.

In the context of deciding which basis function to enter next,
we need to compute numerous quantities of the form Qx(8x) =
—||'Y% — XB,]I?. To evaluate the corresponding Rao statistics, we
need to compute [VQx(Br0)!T 17 'VQr(Bro). Here I = X7 X and
VQr(Br) = 2X"(Yr — X3,). Only one entry of VQ(Bxo) is
nonzero, corresponding to the candidate basis function. Because
X Bro does not depend on the new basis function under consider-
ation, it can be assumed known. Thus to compute VQk(Bko), we
need to compute the component of X7 (Y, — X3, ) corresponding
to the candidate basis function.

We also need to compute the lower-right entry of 17!, having
already computed the inverse of the (p — 1) x (p — 1) submatrix
corresponding to the existing basis functions. For each k, this re-
quires O(p?) flops once the p entries (inner products) correspond-
ing to the new basis functions are determined. Thus the number
of flops required for each candidate basis function is O(p>K).

If Puax is the largest number of basis functions that we consider,
then there are K Prax inner products between basis functions in
the model and the responses and %P,%ax between basis functions in
the model. If we fix the number of candidate knots in each variable
at Ng, then the number of candidate basis functions {(knots and
interactions) remains limited, because typically only a few new
interactions are candidates after an addition. In our experience,
the total number of candidates is approximately NgPmax. Thus
approximately NoPuax X (Pmax + K) inner products need to be
computed between candidate basis functions and basis functions
in the model and responses. Note that each inner product requires
n operations.

In the phoneme recognition problem, the computation of the
inner products involving candidate basis functions is dominant.
When n = 112,115, K = 45, Punax = 350, and Ny = 50, this
yields O(10'2) flops, which took about 1 day of CPU time on our
SGI workstation.

It should be noted here that our dedicated implementation
POLYMARS of MARS is now much faster than the standard
version (Friedman 1991). In particular, we generated a subset of
the phoneme data with 10,000 cases, 2 classes and 63 predictors,
and applied both POLYMARS and Friedman’s program. When the
maximum number of basis functions was set equal to 40 in both
programs, our program took 177 seconds of CPU time, and Fried-
man'’s program took 2,196 seconds on the same machine. With 80
basis functions, the corresponding CPU times were 474 seconds
and 12,636 seconds. We save considerable CPU time by storing
old inner products, which MARS does not and must recompute.
Note that the standard version of MARS takes O(M NP3 .. flops
{Friedman 1991, p. 127), whereas POLYMARS (in the case that
K = 2) takes O(Ny N P2,,) flops. Because Ny (about 50) and M
(63) are comparable in size, the computations are reduced by ap-
proximately a factor of Pu.x. Our illustrative CPU results agree
with this order-of-magnitude comparison.

There are other differences between POLYMARS and standard
MARS. The stepwise addition schemes are different: In POLY-
MARS we add first a linear term and perhaps later a knot, whereas
in MARS we add two basis functions, essentially corresponding to
a linear function and a knot, at the same time. In MARS, but not
in POLYMARS, a piecewise cubic approximation to the piecewise
linear function is applied after a basis function is added.

B.2 Speeding up POLYCLASS After POLYMARS
Fitting the largest POLYCLASS model with basis functions pro-
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vided by MARS (see App. B.1) is a major problem. This model
has Pyax (K —1) parameters. In the phoneme recognition problem,
this amounts to approximately 15,400 such parameters. Although
the least squares approximation does provide us with useful ba-
sis functions, it does not give us usable starting values for the
maximum likelihood fit.

Our current approach to fitting the largest POLYCLASS model
is to introduce the basis functions one at a time. The estimates for
the previous model with p — 1 basis functions can then be used
as starting values for the current model with p basis functions.
However, when we fit this model with p(K — 1) parameters, we
use only 5p(K — 1) cases. We use quasi-Newton updates for the
Hessian matrix, and we stop iterating at the current model when
the difference between two consecutive log-likelihoods is less than
10, which yields a very rough convergence criterion. On comple-
tion of the sequential addition process, we fit the largest model
using all data with increased precision. This method of gradually
increasing the number of cases provides us with good starting val-
ues as well as a decent initial guess for the quasi-Hessian, with a
tolerable computational cost.

In fitting the sequence of models, the most time-consuming
steps are computations of the score statistic and the log-likelihood,
each of which requires O(pKn) flops. (Thus for ail models from
p = 1 to p = Punax basis functions, the computations require
O(P2..Kn) flops.) Typically, we may need 200 such computa-
tions for a model with p < Punax basis functions for a large prob-
Iem like the phoneme recognition data, and we need approximately
1,000 of them for the model with p = Pna.x. The computations
require O(10'*) flops for the phoneme recognition data, which
would take 60 days of CPU time on our SGI workstation—a ma-
jor improvement compared to the several years for POLYCLASS
without the least squares approximation.

However, 60 days is still not realistic. Instead, we carried the
computations out on 64 workstations from a network of 400
RS6000 workstations with a high-speed communications network
at the Maui High-Performance Computing Center. We parallelized
our computations by sending é of the data and 6—13 of the columns
of the quasi-Hessian to each of 63 workstations, while the 64th
“master” workstation coordinated the computations. On this net-
work the computations took 24 hours: 8 hours on the “master”
and 16 simultaneous hours on each of the 63 “slaves.”

APPENDIX C: NUMERICAL ISSUES
Numerical Stability

For numerical reasons, we add a small penalty term to the
log-likelihood function. Specifically, set

K
L(B)=1B) —eY > uk,
1 k=1
where
1 K
i = (k| 8) — 5 Z oK' X:;8), kek.
k=1

The penalized log-likelihood function, in which we have typically
used £ = 1077, is guaranteed to have a finite maximum. Without
the penalty term, however, it is possible that when the likelihood
function is maximized, some Bkj equals +oo. This can happen,
for example, if B;(X;) = 0 for all ¢ such that Y; = k.

The effect of this penalty term is negligible when \(S’kji < oo for
all j and k; that is, in our experience the estimates of the param-
eters with and without the penalty parameter are extremely close,
and the estimates of the conditional class probabilities are indis-
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tinguishable. Actually, we choose £ as small as possible subject to
providing numerically stable estimates.

Maximum Number of Basis Functions

Unless we use the least squares approximation to the stepwise
addition procedure, we stop the addition of basis functions when
one of the following three conditions is satisfied:

* The number p of basis functions equals Pp,ax, whose default
value is min(4n'/%, n/(2K), 30)

o =l < 5(p — q) — .5 for some ¢ with ¢ < p — 3, where
I, is the log-likelihood for the model with ¢ parameters (so

the addition of more basis functions is not likely to improve
the fit)

* The search algorithm yields no possible new basis function.

Optimizing the Location of a New Knot

The algorithm for finding the location of a potential new knot for
the POLYCLASS model when the model selection is not carried
out using the least squares approximation discussed in Section 3.3
is identical to the algorithm for finding a new knot in a covariate
that was used in HARE (Kooperberg et al. 1995, sec. 11.3).

[Received Mav 1995. Revised May 1996.]
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