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Confidence Intervals for
Logspline Density Estimation

Charles Kooperberg and Charles J. Stone!

Summary

Several ways to obtain pointwise confidence intervals correspond-
ing to logspline density estimation are studied. These methods
include a variety of approaches based on estimation using free knot
splines, a couple of approaches based on the bootstrap, and a
Bayesian approach. It is concluded that a variation of the bootstrap,
in which only a limited number of bootstrap simulations are used to
estimate standard errors that are combined with standard normal
quantiles, seems to perform the best, especially when coverages and
computing time are both taken into account.

16.1 Introduction

Getting confidence intervals corresponding to function estimates that are
obtained using an adaptive polynomial spline method is a notoriously hard
problem. After model selection has been carried out, the estimated function
has a simple parametric form [12]. However, treating the final model as a
fixed parametric model, ignoring the large amount of model selection that
may have occurred, yields confidence intervals with too low coverage.
Recently, Kooperberg and Stone [9] described an algorithm for logspline
density estimation with free knots. This is a modification to previous
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logspline density algorithms [7, 8, 12], in which the knots are not selected
by a greedy stepwise algorithm, but are viewed as additional parameters.
Two reasons for studying logspline density estimation with free knot splines
are that (i) stepwise selection algorithms can be seen as crude approxima-
tions to the free knot algorithm and (ii) coverages of (pointwise) confidence
intervals based on the free knot algorithm may be more accurate since they
reflect uncertainty in the knot placement. It was concluded that the cov-
erages of nominal 95% confidence intervals using the free knot algorithm,
while closer to 95% than the coverages ignoring knot selection, are still well
below 95%.

In the current chapter we investigate alternative methods for obtain-
ing confidence intervals corresponding to logspline density estimation. In
particular, we investigate whether an expansion of the free knot intervals
improves the coverage, and we also discuss bootstrap and Bayesian methods
for obtaining confidence (credible) intervals.

In Section 16.2 we briefly review logspline density estimation in general
and the procedure with free knots in particular. In Section 16.3 we discuss
the various approaches to obtaining confidence intervals. The approaches
based on expansion of the standard errors for free knot splines and on
the bootstrap are compared in a simulation study in Section 16.4. In Sec-
tion 16.5, the various approaches are applied to a real example. We end
with a brief discussion.

16.2 Logspline density estimation with free knots

Given the free knots —co < L < 5 < -+ < 75 < U < o0, set
v = (71,...,7s) and let G, denote the space of cubic splines on [L, U]
corresponding to the knot sequence v and satisfying the usual tail linear
constraints. Thus a function g on [L,U] is a member of G if and only if
it is twice continuously differentiable on [L, U], its restriction to each of
the intervals [L,y1], [v1,72], ---, [v7=1,77], [17,U] is a cubic polynomial,
¢"(L) =0, and ¢"(U) = 0. Observe that G, is a (J + 2)-dimensional lin-
ear space. Set p = J + 1, and let 1, By1,..., By, be a basis of G,. Given
0=(0,...,0,) € ©=NR", set

777(?;’;0) :elel(y)+"'+9vap(y)_0'7(9): L<y<U,

where

C(0) = log ( /L ) exp(01By1(y) + -+ + 0, Byp(y)) dy)-

Note that expn, (y;0) is a positive density function on [L, U] for every ~
and 6.
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Let Y7,...,Y, be a random sample of size n from a distribution having
density f and log-density n = log f. Consider the log-likelihood

Let 4 and 0 denote the maximum likelihood estimates of ~ and 6, so that

[ = Zq(b\) = argmax {(0).

v

Observe that for the free knot procedure [9] the positive integer parameter
J must also be chosen. Let v, 0 7, and l 7 now indicate the dependence of
v, b\, and Z, respectively, on J. For choosing J, we will employ the Akaike
Information Criterion AIC;, = —2¢; 4+ (2J + 1)a [1], which depends on
the complexity parameter a. (Note that 4 ; has J free parameters and 0;
has p = J + 1 free parameters.) We select the value J of J that minimizes
AICj3. Set ¥ = 75 and 0= gj. We refer to n(y) = n.y(y;g) as the
maximum (penalized) likelihood estimate of the log-density n at y and to
f(y) = exp7(y) as the logspline estimate with free knots of the density f
at y.

Computing the maximum likelihood estimates with free knots is a highly
nontrivial numerical problem, as the likelihood function /5(8) is severely
multimodal, and degenerate solutions exist when too many of the knots v;
get close together.

For a procedure with fixed knots we would have to specify a set of knots.
Rather than specifying a complete set in advance, we select knots by a
stepwise procedure. Such a procedure can be either a stepwise deletion
procedure or a stepwise addition and deletion procedure. For the former, we
initially position a large number of knots and remove the “least significant”
knot one at a time [8]. For the later we add knots one at a time, to increase
the log-likelihood as much as possible, until a maximum number of knots
is reached, after which we carry out a stepwise deletion procedure [12].
For either of the two stepwise procedures we use the AIC criterion with
a = logn, as in the Bayesian Information Criterion [10] to select the number
J of knots.

16.3 Confidence intervals

16.3.1 Free knot splines

In [9] we proposed obtaining confidence intervals for the density using a

“standard” maximum likelihood approach. In particular, let v J1(y) denote
the (2J + 1)-dimensional gradient of ny(y;0) at the maximum likelihood
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estimate, and let H; denote the (2J + 1) x (2J + 1) Hessian matrix of
the log-likelihood at the maximum likelihood estimate when there are J
free knots. Set Vr(y) = V sn(y) and H= H = The standard error in the
estimate 7)(y) is given by

SEGi() = v/ [V1)] " (- B) ™ 9n(y). (16.1)
This leads to the nominal 95% confidence interval
(exp (ity) — 196SE(A(Y))), exp (Aly) + LI6SEGI(w)))  (16.2)

for f(y).
The distribution function corresponding to f is given by F(y) =

~

[ expn(z)dz for L < y < U, which can be estimated by F(y) =
fLy exp7)(z) dz. The corresponding standard error is given by

SE(ﬁ(y))=\/[§F( )T(—H)"'VF(y),

where VF(y = [ Vn(z) expi(z) dz.

Slmulatlon studies were carried out, which suggested that the actual
coverage of nominal 95% confidence intervals using these standard er-
rors is about 87% for the density and 93% for the distribution function.
This coverage is, however, much better than when the uncertainty in the
knots is ignored. Let SEFX(m( )) and SEFX(F,(y)) be the standard er-
rors assuming that the knots are fixed (so that they make use only of
the (J; + 1) x (J; + 1) Hessian matrix for the coefficients). The coverage
of the nominal 95% confidence intervals using these standard errors was
only about 81% for the density and 92% for the distribution function. To
improve the coverage we will also investigate confidence intervals

(‘exp (i1(y) — 1.96aSE(())), exp (ii(y) +1.960SE@()) ), (16.3)

in which the standard errors are expanded by the factor a for some a >
1 and using similarly expanded confidence intervals for the distribution
function in this chapter.

16.3.2  The bootstrap

Alternatively, we can employ the bootstrap in combination with either the
stepwise knot deletion algorithm of [8] or the stepwise addition and deletion
algorithm of [12] to obtain confidence intervals corresponding to logspline
density estimates. In this chapter we use the former algorithm and examine
the coverage of bootstrap percentile intervals [3] for both the log-density
and the distribution function. That is, we take B (we used B = 1000)
samples Y1 with replacement of size n from the data Yi,...,Y,, and for
each sample Y we obtain the logspline density estimate. The 95% pointwise



16. Confidence Intervals for Logspline Density Estimation 287

confidence interval for 7(y) (F(y)) is then from the 2.5th to the 97.5th
percentile of the B bootstrap estimates for the log-density (distribution
function).

Clearly, the bootstrap is a computationally time consuming procedure
for getting confidence intervals, as we need to fit B logspline densities.
However, it is still slightly faster than using the algorithm developed in [9]
for fitting logspline densities with free knots.

A considerably cheaper approach is to hope that the logspline estimates
of the log-density and distribution function have approximately a normal
distribution, but that the estimates of the standard errors that are ob-
tained using standard techniques are too small. If so, we can get by with
a much smaller number B of bootstrap estimates (say B = 25) by us-
ing these estimates to obtain pointwise bootstrap estimates of SE” (7j(y))
and SE” (ﬁ(y)) and then using equation (16.2) or the equivalent to obtain
confidence intervals for n and F.

16.3.3 A Bayesian approach

Hansen and Kooperberg [6] describe a Bayesian approach to logspline den-
sity estimation, which involves a prior p(J) on the dimension of the model,
a prior p(y | J) on the location of the knots, and a prior P(@ | v,J) on
the coefficients. Given the data Yi,...,Y,, the posterior distribution of
(J,7,0) is explored using a reversible jump Markov chain Monte Carlo [5]
algorithm. At each step of the algorithm a new density is proposed by either
adding a knot, deleting a knot, moving a knot, or updating the coefficients.
This new proposed density is always accepted if the posterior probability
is higher than the previous density; otherwise it still has a positive prob-
ability of being accepted. The acceptance probability is governed by the
reversible jump algorithm. The algorithm of [6] for logspline density esti-
mation is similar to algorithms for univariate regression using polynomial
splines proposed by [2] and [11].

To make (pointwise) 95% credible intervals about the logspline density
estimate obtained from this Bayesian procedure, we use as endpoints the
2.5th and 97.5th percentiles of all Markov chain Monte Carlo simulations.
Credible intervals have a different interpretation from (frequentist) con-
fidence intervals. For confidence intervals we are 95% confident that the
confidence interval will cover the true value of the density; for a 95% credi-
ble interval, there is 95% (posterior) probability that the density falls within
the interval.

Hansen and Kooperberg [6] point out that, depending on how priors are
selected, a Bayesian procedure can be similar in performance to a greedy
stepwise procedure using AIC to select the number of knots when a ge-
ometric prior on the number of knots is used, or it can be similar to a
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smoothing spline approach when a uniform prior on the number of knots
and a particular multivariate normal prior on the coefficients are used.

16.4 A simulation study

In this section we augment the results of the simulation study in [9], in
which we generated 250 samples of size 250 and 250 samples of size 1000
from each of four distributions:

Normal 2 A mixture of two normal distributions, so that the true density
of Y is given by

1) = e(350) + 2 f2.) Jind(~4,9),

where Z; has a normal distribution with mean 0 and standard devi-
ation 0.5, Z> has a normal distribution with mean 2 and standard
deviation 2, ind(:) is the usual indicator function, and ¢ is the
multiplier to correct for the truncation to (—4, 8).

Normal 4 As in example 1, but the mean of 7, is 4 and Y is truncated
to (—2,10).

Normal 6 As in example 1, but the mean of 7, is 6 and Y is truncated
to (—1.5,12).

Gamma 2 A gamma distribution with shape parameter 2 and mean 1,
with ¥ truncated to the interval (0,9).

The Normal 2 density has one mode, but a clear second hump; Normal 4
has two, not very well separated, modes; Normal 6 has two well separated
modes; and the Gamma 2 density is unimodal.

In Table 16.1 we compare the coverages of four approaches for getting
confidence intervals using the free knot spline methodology. The first two
columns are taken from [9]. These columns are the coverages obtained by
using the regular SE (see equation (16.1)) or SEFX, for which it is assumed
that the knots are fixed. As can be seen from this table, the coverages are
well below the nominal 95% level. For the third and fourth columns, these
standard errors are expanded by a = 1.34 for SE and a = 1.55 for SEFX,
respectively (see equation (16.3)). These expansion factors were chosen so
that the average coverage over these eight simulations is exactly 95%; thus,
it could be argued that these columns do not provide a completely fair
comparison. The last two columns are using bootstrap samples for the
logspline density estimation procedure of [8]. The fifth column is based on
1000 bootstrap samples, and the confidence intervals are from the 2.5th
through the 97.5th (pointwise) percentiles. For the sixth column we gen-
erated only 25 bootstrap samples, computed the pointwise standard errors
for the log-density, and then used (16.2) to obtain the confidence intervals.
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Table 16.1. Coverages for six different approaches to obtaining confidence
intervals for a log-density, estimated using logspline.

Free Knot Standard Error
Nominal Expanded Bootstrap

Density SE SEFX 1.34SE 1.55SEFX | Percentiles SE
n = 250

Normal 2 | 84.0 77.4 91.9 91.9 97.4 95.2
Normal 4 | 88.8 825 95.5 94.9 974 96.4
Normal 6 | 89.0 84.0 96.9 97.2 96.5 94.6
Gamma 2 | 86.2  81.2 94.8 96.0 97.8 97.3
n = 1000

Normal 2 | 89.2  79.6 95.8 93.9 96.8 94.4
Normal 4 | 89.3  82.7 97.4 97.0 98.0 94.7
Normal 6 | 86.2 81.4 95.2 96.2 96.3 92.9
Gamma 2 | 84.0 77.3 92.6 92.8 974 954
Average | 87.1  80.7 95.0 95.0 97.2 95.1

It is clear from this table that the confidence intervals based on the free
knot spline standard error or the fixed knot spline standard error have too
low coverage. With an appropriate expansion factor it is possible to get the
coverage to be about 95%. With this approach the problem is, naturally,
to find the right expansion factor a. If we had chosen separate expansion
factors for each density and each sample size, we would have had factors
that for SE varied between o« = 1.2 for Normal 4 with n = 1000 to o = 1.63
for Normal 2 with n = 250. On the other hand, the expansion factor that
gives an overall coverage of about 95% for the four distributions being
studied essentially does not depend on n for the two sample sizes being
studied. Actually, there seems to be little advantage of the expanded SE
over the expanded SEFX in this case, except that the expansion factors are
larger for SEFX.

Surprisingly, the coverages for the bootstrap percentile intervals are con-
sistently too high. It is our impression that this is due to some instability in
the stepwise logspline algorithm when there are many repeat observations,
causing the intervals to be occasionally too large. That is in line with what
we will see for the income data in the next section. Interestingly, the cover-
ages in the sixth column of Table 16.1, corresponding to the bootstrap SE
approach, not only are very close to 95% on average, but have considerably
less variation than those in columns 3 and 4 based on expanded SE’s.

For the distribution function all approaches yielded somewhat better
results (coverage closer to nominal, less variation between different distri-
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Figure 16.1. Comparison of the expanded free knot spline pointwise confidence
intervals and bootstrap pointwise confidence intervals for the income data. The
solid lines are estimate and confidence bounds for the free knot procedure, the
dashed line is the estimate for the stepwise procedure and the grey area are the
bootstrap intervals (left side percentiles, right side SE).

butions) than for the (log-)density, except for the bootstrap SE approach,
for which the average coverage was down to 93.6%. This is not surprising,
since the logspline estimate of the distribution function is presumably not
approximately normal in the tails. A logistic transformation may improve
the results here.

16.5 An example

In this section we further analyze the income data, which was also dis-
cussed in [9] and [6]. In Figure 16.1 we show the 95% free knot (pointwise)
confidence intervals, expanded by a = 1.34 as in the previous section, to-
gether with the corresponding logspline density estimate (solid lines for
the estimate, the lower and upper confidence bounds). We also show the
stepwise logspline density estimate with knot deletion (dashed line) along
with the 95% bootstrap percentile confidence intervals (left side, grey area)
and the 95% bootstrap confidence intervals using 25 samples to estimate
the standard error (right side, grey area). As can be seen from these plots,
the bootstrap SE approach and the bootstrap percentile approach yield
intervals that are approximately the same size as the expanded free knot
approach, but which are slightly less smooth. Averaged over the region
shown, the average size of all three intervals are within 5% of each other.
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Figure 16.2. Comparison of the expanded free knot spline pointwise confidence
intervals and Bayesian pointwise credible intervals for the income data. The solid
lines are the same as in Fig. 16.1, the dashed lines are the estimates for the
Bayesian procedures and the grey areas are the corresponding credible intervals.

Overall, these intervals agree with the conclusion from the previous section:
the bootstrap SE approach yields reasonable confidence intervals at a com-
puting price that is mush smaller than free knot splines or a full bootstrap
approach.

In Figure 16.2 we show the same expanded free knot intervals as in Fig-
ure 16.1, but this time we added 95% credible intervals from the Bayesian
algorithm described in [6] (dashed lines and grey area). The algorithms
shown have a uniform prior for the number of knots and a multivariate nor-
mal prior on the coefficients. The variance of this later prior (proportional
to the A parameter indicated in these plots) plays a role as a smoothing
parameter. The results shown in this figure are based on a run of 100,000
MCMC iterations, which takes a cpu time that is comparable to the boot-
strap percentile approach, and which is considerably larger than what is
needed to obtain good point estimates. The estimates with A = 1/n were
the ones with the largest value of A\ that gave a reasonable estimate for
the height of the peak, as argued in [6]. The corresponding 95% credible
intervals are still considerably smaller than the 95% expanded free knot
intervals, suggesting that the coverages of the former intervals may be sig-
nificantly under 95%. Even when A = 1/y/n, so large that the height of
the peak gets reduced to about 0.86, rather than the “correct” height of
between 1.00 and 1.10, the credible intervals still appear too small.
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16.6 Discussion

Several ways for obtaining confidence or credible intervals for logspline
density estimates were studied here. Free knot and fixed knot confidence
intervals that are not expanded yield substantially too low coverages.
These intervals can be expanded to give reasonable coverage, but it is
not obvious how well the expansion factors used in the simulation study
reported here would work for other choices of the underlying density or
sample size. Bayesian credible intervals for density estimates that look
reasonable appear too small, while those intervals that are wide enough
seem to correspond to density estimates that smooth too much. Boot-
strap percentile intervals appear ragged, suggesting that very large numbers
of bootstrap samples are needed, and their coverages are too high. The
bootstrap SE approach—estimating the standard error based on a limited
number of bootstrap estimates and using “1.96” to obtain 95% confidence
intervals—seems to have the best performance. The coverage is about right,
the computational expense is low, and the pointwise confidence intervals
are fairly smooth. This performance came as a pleasant surprise to us
and suggests that the bootstrap SE approach deserves a more thorough
investigation.
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