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SummarySeveral ways to obtain pointwise 
on�den
e intervals 
orrespond-ing to logspline density estimation are studied. These methodsin
lude a variety of approa
hes based on estimation using free knotsplines, a 
ouple of approa
hes based on the bootstrap, and aBayesian approa
h. It is 
on
luded that a variation of the bootstrap,in whi
h only a limited number of bootstrap simulations are used toestimate standard errors that are 
ombined with standard normalquantiles, seems to perform the best, espe
ially when 
overages and
omputing time are both taken into a

ount.16.1 Introdu
tionGetting 
on�den
e intervals 
orresponding to fun
tion estimates that areobtained using an adaptive polynomial spline method is a notoriously hardproblem. After model sele
tion has been 
arried out, the estimated fun
tionhas a simple parametri
 form [12℄. However, treating the �nal model as a�xed parametri
 model, ignoring the large amount of model sele
tion thatmay have o

urred, yields 
on�den
e intervals with too low 
overage.Re
ently, Kooperberg and Stone [9℄ des
ribed an algorithm for logsplinedensity estimation with free knots. This is a modi�
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284 Kooperberg and Stonelogspline density algorithms [7, 8, 12℄, in whi
h the knots are not sele
tedby a greedy stepwise algorithm, but are viewed as additional parameters.Two reasons for studying logspline density estimation with free knot splinesare that (i) stepwise sele
tion algorithms 
an be seen as 
rude approxima-tions to the free knot algorithm and (ii) 
overages of (pointwise) 
on�den
eintervals based on the free knot algorithm may be more a

urate sin
e theyre
e
t un
ertainty in the knot pla
ement. It was 
on
luded that the 
ov-erages of nominal 95% 
on�den
e intervals using the free knot algorithm,while 
loser to 95% than the 
overages ignoring knot sele
tion, are still wellbelow 95%.In the 
urrent 
hapter we investigate alternative methods for obtain-ing 
on�den
e intervals 
orresponding to logspline density estimation. Inparti
ular, we investigate whether an expansion of the free knot intervalsimproves the 
overage, and we also dis
uss bootstrap and Bayesian methodsfor obtaining 
on�den
e (
redible) intervals.In Se
tion 16.2 we brie
y review logspline density estimation in generaland the pro
edure with free knots in parti
ular. In Se
tion 16.3 we dis
ussthe various approa
hes to obtaining 
on�den
e intervals. The approa
hesbased on expansion of the standard errors for free knot splines and onthe bootstrap are 
ompared in a simulation study in Se
tion 16.4. In Se
-tion 16.5, the various approa
hes are applied to a real example. We endwith a brief dis
ussion.16.2 Logspline density estimation with free knotsGiven the free knots �1 < L < 
1 < � � � < 
J < U < 1, set
 = (
1; : : : ; 
J) and let G 
 denote the spa
e of 
ubi
 splines on [L;U ℄
orresponding to the knot sequen
e 
 and satisfying the usual tail linear
onstraints. Thus a fun
tion g on [L;U ℄ is a member of G if and only ifit is twi
e 
ontinuously di�erentiable on [L;U ℄, its restri
tion to ea
h ofthe intervals [L; 
1℄, [
1; 
2℄, . . . , [
J�1; 
J ℄, [
J ; U ℄ is a 
ubi
 polynomial,g00(L) = 0, and g00(U) = 0. Observe that G 
 is a (J + 2)-dimensional lin-ear spa
e. Set p = J + 1, and let 1; B
1; : : : ; B
p be a basis of G 
 . Given� = (�1; : : : ; �p) 2 � = Rp , set�
(y;�) = �1B
1(y) + � � �+ �pB
p(y)� C
(�); L � y � U;where C
(�) = log�Z UL exp(�1B
1(y) + � � �+ �pB
p(y)) dy�:Note that exp �
(y;�) is a positive density fun
tion on [L;U ℄ for every 
and �.
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e Intervals for Logspline Density Estimation 285Let Y1; : : : ; Yn be a random sample of size n from a distribution havingdensity f and log-density � = log f . Consider the log-likelihood`
(�) = nXi=1 �
(Yi;�) = pXj=1 �p nXi=1 B
j(Yi)� nC
(�):Let b
 and b� denote the maximum likelihood estimates of 
 and �, so thatb̀= `b
(b�) = argmax
;� `
(�):Observe that for the free knot pro
edure [9℄ the positive integer parameterJ must also be 
hosen. Let b
J , b�J , and b̀J now indi
ate the dependen
e ofb
, b�, and b̀, respe
tively, on J . For 
hoosing J , we will employ the AkaikeInformation Criterion AICJ;a = �2b̀J + (2J + 1)a [1℄, whi
h depends onthe 
omplexity parameter a. (Note that b
J has J free parameters and b�Jhas p = J + 1 free parameters.) We sele
t the value bJ of J that minimizesAICJ;2. Set b
 = b
 bJ and b� = b� bJ . We refer to b�(y) = �b
(y; b�) as themaximum (penalized) likelihood estimate of the log-density � at y and tobf(y) = exp b�(y) as the logspline estimate with free knots of the density fat y.Computing the maximum likelihood estimates with free knots is a highlynontrivial numeri
al problem, as the likelihood fun
tion `b
(b�) is severelymultimodal, and degenerate solutions exist when too many of the knots 
jget 
lose together.For a pro
edure with �xed knots we would have to spe
ify a set of knots.Rather than spe
ifying a 
omplete set in advan
e, we sele
t knots by astepwise pro
edure. Su
h a pro
edure 
an be either a stepwise deletionpro
edure or a stepwise addition and deletion pro
edure. For the former, weinitially position a large number of knots and remove the \least signi�
ant"knot one at a time [8℄. For the later we add knots one at a time, to in
reasethe log-likelihood as mu
h as possible, until a maximum number of knotsis rea
hed, after whi
h we 
arry out a stepwise deletion pro
edure [12℄.For either of the two stepwise pro
edures we use the AIC 
riterion witha = logn, as in the Bayesian Information Criterion [10℄ to sele
t the numberJ of knots.16.3 Con�den
e intervals16.3.1 Free knot splinesIn [9℄ we proposed obtaining 
on�den
e intervals for the density using a\standard" maximum likelihood approa
h. In parti
ular, let brJ�(y) denotethe (2J + 1)-dimensional gradient of �
(y;�) at the maximum likelihood



286 Kooperberg and Stoneestimate, and let bHJ denote the (2J + 1) � (2J + 1) Hessian matrix ofthe log-likelihood at the maximum likelihood estimate when there are Jfree knots. Set br�(y) = br bJ�(y) and bH = bH bJ . The standard error in theestimate b�(y) is given bySE(b�(y)) =q�br�(y)�T �� bH��1 br�(y): (16.1)This leads to the nominal 95% 
on�den
e interval� exp �b�(y)� 1:96SE(b�(y))�; exp �b�(y) + 1:96SE(b�(y))�� (16.2)for f(y).The distribution fun
tion 
orresponding to f is given by F (y) =R yL exp �(z) dz for L � y � U , whi
h 
an be estimated by bF (y) =R yL exp b�(z) dz. The 
orresponding standard error is given bySE( bF (y)) =q[brF (y)T ℄(� bH)�1 brF (y);where brF (y) = R yL br�(z) exp b�(z) dz.Simulation studies were 
arried out, whi
h suggested that the a
tual
overage of nominal 95% 
on�den
e intervals using these standard er-rors is about 87% for the density and 93% for the distribution fun
tion.This 
overage is, however, mu
h better than when the un
ertainty in theknots is ignored. Let SEFX(b�i(y)) and SEFX( bFi(y)) be the standard er-rors assuming that the knots are �xed (so that they make use only ofthe ( bJi + 1) � ( bJi + 1) Hessian matrix for the 
oeÆ
ients). The 
overageof the nominal 95% 
on�den
e intervals using these standard errors wasonly about 81% for the density and 92% for the distribution fun
tion. Toimprove the 
overage we will also investigate 
on�den
e intervals� exp �b�(y)� 1:96�SE(b�(y))�; exp �b�(y) + 1:96�SE(b�(y))��; (16.3)in whi
h the standard errors are expanded by the fa
tor � for some � >1 and using similarly expanded 
on�den
e intervals for the distributionfun
tion in this 
hapter.16.3.2 The bootstrapAlternatively, we 
an employ the bootstrap in 
ombination with either thestepwise knot deletion algorithm of [8℄ or the stepwise addition and deletionalgorithm of [12℄ to obtain 
on�den
e intervals 
orresponding to logsplinedensity estimates. In this 
hapter we use the former algorithm and examinethe 
overage of bootstrap per
entile intervals [3℄ for both the log-densityand the distribution fun
tion. That is, we take B (we used B = 1000)samples Yi with repla
ement of size n from the data Y1; : : : ; Yn, and forea
h sampleYi we obtain the logspline density estimate. The 95% pointwise
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on�den
e interval for b�(y) (F (y)) is then from the 2.5th to the 97.5thper
entile of the B bootstrap estimates for the log-density (distributionfun
tion).Clearly, the bootstrap is a 
omputationally time 
onsuming pro
edurefor getting 
on�den
e intervals, as we need to �t B logspline densities.However, it is still slightly faster than using the algorithm developed in [9℄for �tting logspline densities with free knots.A 
onsiderably 
heaper approa
h is to hope that the logspline estimatesof the log-density and distribution fun
tion have approximately a normaldistribution, but that the estimates of the standard errors that are ob-tained using standard te
hniques are too small. If so, we 
an get by witha mu
h smaller number B of bootstrap estimates (say B = 25) by us-ing these estimates to obtain pointwise bootstrap estimates of SEB(b�(y))and SEB( bF (y)) and then using equation (16.2) or the equivalent to obtain
on�den
e intervals for � and F .16.3.3 A Bayesian approa
hHansen and Kooperberg [6℄ des
ribe a Bayesian approa
h to logspline den-sity estimation, whi
h involves a prior p(J) on the dimension of the model,a prior p(
 j J) on the lo
ation of the knots, and a prior P (� j 
; J) onthe 
oeÆ
ients. Given the data Y1; : : : ; Yn, the posterior distribution of(J; 
;�) is explored using a reversible jump Markov 
hain Monte Carlo [5℄algorithm. At ea
h step of the algorithm a new density is proposed by eitheradding a knot, deleting a knot, moving a knot, or updating the 
oeÆ
ients.This new proposed density is always a

epted if the posterior probabilityis higher than the previous density; otherwise it still has a positive prob-ability of being a

epted. The a

eptan
e probability is governed by thereversible jump algorithm. The algorithm of [6℄ for logspline density esti-mation is similar to algorithms for univariate regression using polynomialsplines proposed by [2℄ and [11℄.To make (pointwise) 95% 
redible intervals about the logspline densityestimate obtained from this Bayesian pro
edure, we use as endpoints the2.5th and 97.5th per
entiles of all Markov 
hain Monte Carlo simulations.Credible intervals have a di�erent interpretation from (frequentist) 
on-�den
e intervals. For 
on�den
e intervals we are 95% 
on�dent that the
on�den
e interval will 
over the true value of the density; for a 95% 
redi-ble interval, there is 95% (posterior) probability that the density falls withinthe interval.Hansen and Kooperberg [6℄ point out that, depending on how priors aresele
ted, a Bayesian pro
edure 
an be similar in performan
e to a greedystepwise pro
edure using AIC to sele
t the number of knots when a ge-ometri
 prior on the number of knots is used, or it 
an be similar to a
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h when a uniform prior on the number of knotsand a parti
ular multivariate normal prior on the 
oeÆ
ients are used.16.4 A simulation studyIn this se
tion we augment the results of the simulation study in [9℄, inwhi
h we generated 250 samples of size 250 and 250 samples of size 1000from ea
h of four distributions:Normal 2 A mixture of two normal distributions, so that the true densityof Y is given byf(y) = 
�13fZ1(y) + 23fZ2(y)�ind(�4; 8);where Z1 has a normal distribution with mean 0 and standard devi-ation 0.5, Z2 has a normal distribution with mean 2 and standarddeviation 2, ind(�) is the usual indi
ator fun
tion, and 
 is themultiplier to 
orre
t for the trun
ation to (�4; 8).Normal 4 As in example 1, but the mean of Z2 is 4 and Y is trun
atedto (�2; 10).Normal 6 As in example 1, but the mean of Z2 is 6 and Y is trun
atedto (�1:5; 12).Gamma 2 A gamma distribution with shape parameter 2 and mean 1,with Y trun
ated to the interval (0; 9).The Normal 2 density has one mode, but a 
lear se
ond hump; Normal 4has two, not very well separated, modes; Normal 6 has two well separatedmodes; and the Gamma 2 density is unimodal.In Table 16.1 we 
ompare the 
overages of four approa
hes for getting
on�den
e intervals using the free knot spline methodology. The �rst two
olumns are taken from [9℄. These 
olumns are the 
overages obtained byusing the regular SE (see equation (16.1)) or SEFX, for whi
h it is assumedthat the knots are �xed. As 
an be seen from this table, the 
overages arewell below the nominal 95% level. For the third and fourth 
olumns, thesestandard errors are expanded by � = 1:34 for SE and � = 1:55 for SEFX,respe
tively (see equation (16.3)). These expansion fa
tors were 
hosen sothat the average 
overage over these eight simulations is exa
tly 95%; thus,it 
ould be argued that these 
olumns do not provide a 
ompletely fair
omparison. The last two 
olumns are using bootstrap samples for thelogspline density estimation pro
edure of [8℄. The �fth 
olumn is based on1000 bootstrap samples, and the 
on�den
e intervals are from the 2.5ththrough the 97.5th (pointwise) per
entiles. For the sixth 
olumn we gen-erated only 25 bootstrap samples, 
omputed the pointwise standard errorsfor the log-density, and then used (16.2) to obtain the 
on�den
e intervals.
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hes to obtaining 
on�den
eintervals for a log-density, estimated using logspline.Free Knot Standard ErrorNominal Expanded BootstrapDensity SE SEFX 1:34SE 1:55SEFX Per
entiles SEn = 250Normal 2 84.0 77.4 91.9 91.9 97.4 95.2Normal 4 88.8 82.5 95.5 94.9 97.4 96.4Normal 6 89.0 84.0 96.9 97.2 96.5 94.6Gamma 2 86.2 81.2 94.8 96.0 97.8 97.3n = 1000Normal 2 89.2 79.6 95.8 93.9 96.8 94.4Normal 4 89.3 82.7 97.4 97.0 98.0 94.7Normal 6 86.2 81.4 95.2 96.2 96.3 92.9Gamma 2 84.0 77.3 92.6 92.8 97.4 95.4Average 87.1 80.7 95.0 95.0 97.2 95.1It is 
lear from this table that the 
on�den
e intervals based on the freeknot spline standard error or the �xed knot spline standard error have toolow 
overage. With an appropriate expansion fa
tor it is possible to get the
overage to be about 95%. With this approa
h the problem is, naturally,to �nd the right expansion fa
tor �. If we had 
hosen separate expansionfa
tors for ea
h density and ea
h sample size, we would have had fa
torsthat for SE varied between � = 1:2 for Normal 4 with n = 1000 to � = 1:63for Normal 2 with n = 250. On the other hand, the expansion fa
tor thatgives an overall 
overage of about 95% for the four distributions beingstudied essentially does not depend on n for the two sample sizes beingstudied. A
tually, there seems to be little advantage of the expanded SEover the expanded SEFX in this 
ase, ex
ept that the expansion fa
tors arelarger for SEFX.Surprisingly, the 
overages for the bootstrap per
entile intervals are 
on-sistently too high. It is our impression that this is due to some instability inthe stepwise logspline algorithm when there are many repeat observations,
ausing the intervals to be o

asionally too large. That is in line with whatwe will see for the in
ome data in the next se
tion. Interestingly, the 
over-ages in the sixth 
olumn of Table 16.1, 
orresponding to the bootstrap SEapproa
h, not only are very 
lose to 95% on average, but have 
onsiderablyless variation than those in 
olumns 3 and 4 based on expanded SE's.For the distribution fun
tion all approa
hes yielded somewhat betterresults (
overage 
loser to nominal, less variation between di�erent distri-
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0.2 0.4 0.6 0.8 1.0 1.2Figure 16.1. Comparison of the expanded free knot spline pointwise 
on�den
eintervals and bootstrap pointwise 
on�den
e intervals for the in
ome data. Thesolid lines are estimate and 
on�den
e bounds for the free knot pro
edure, thedashed line is the estimate for the stepwise pro
edure and the grey area are thebootstrap intervals (left side per
entiles, right side SE).butions) than for the (log-)density, ex
ept for the bootstrap SE approa
h,for whi
h the average 
overage was down to 93.6%. This is not surprising,sin
e the logspline estimate of the distribution fun
tion is presumably notapproximately normal in the tails. A logisti
 transformation may improvethe results here.16.5 An exampleIn this se
tion we further analyze the in
ome data, whi
h was also dis-
ussed in [9℄ and [6℄. In Figure 16.1 we show the 95% free knot (pointwise)
on�den
e intervals, expanded by � = 1:34 as in the previous se
tion, to-gether with the 
orresponding logspline density estimate (solid lines forthe estimate, the lower and upper 
on�den
e bounds). We also show thestepwise logspline density estimate with knot deletion (dashed line) alongwith the 95% bootstrap per
entile 
on�den
e intervals (left side, grey area)and the 95% bootstrap 
on�den
e intervals using 25 samples to estimatethe standard error (right side, grey area). As 
an be seen from these plots,the bootstrap SE approa
h and the bootstrap per
entile approa
h yieldintervals that are approximately the same size as the expanded free knotapproa
h, but whi
h are slightly less smooth. Averaged over the regionshown, the average size of all three intervals are within 5% of ea
h other.
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Figure 16.2. Comparison of the expanded free knot spline pointwise 
on�den
eintervals and Bayesian pointwise 
redible intervals for the in
ome data. The solidlines are the same as in Fig. 16.1, the dashed lines are the estimates for theBayesian pro
edures and the grey areas are the 
orresponding 
redible intervals.Overall, these intervals agree with the 
on
lusion from the previous se
tion:the bootstrap SE approa
h yields reasonable 
on�den
e intervals at a 
om-puting pri
e that is mush smaller than free knot splines or a full bootstrapapproa
h.In Figure 16.2 we show the same expanded free knot intervals as in Fig-ure 16.1, but this time we added 95% 
redible intervals from the Bayesianalgorithm des
ribed in [6℄ (dashed lines and grey area). The algorithmsshown have a uniform prior for the number of knots and a multivariate nor-mal prior on the 
oeÆ
ients. The varian
e of this later prior (proportionalto the � parameter indi
ated in these plots) plays a role as a smoothingparameter. The results shown in this �gure are based on a run of 100,000MCMC iterations, whi
h takes a 
pu time that is 
omparable to the boot-strap per
entile approa
h, and whi
h is 
onsiderably larger than what isneeded to obtain good point estimates. The estimates with � = 1=n werethe ones with the largest value of � that gave a reasonable estimate forthe height of the peak, as argued in [6℄. The 
orresponding 95% 
redibleintervals are still 
onsiderably smaller than the 95% expanded free knotintervals, suggesting that the 
overages of the former intervals may be sig-ni�
antly under 95%. Even when � = 1=pn, so large that the height ofthe peak gets redu
ed to about 0.86, rather than the \
orre
t" height ofbetween 1.00 and 1.10, the 
redible intervals still appear too small.
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ussionSeveral ways for obtaining 
on�den
e or 
redible intervals for logsplinedensity estimates were studied here. Free knot and �xed knot 
on�den
eintervals that are not expanded yield substantially too low 
overages.These intervals 
an be expanded to give reasonable 
overage, but it isnot obvious how well the expansion fa
tors used in the simulation studyreported here would work for other 
hoi
es of the underlying density orsample size. Bayesian 
redible intervals for density estimates that lookreasonable appear too small, while those intervals that are wide enoughseem to 
orrespond to density estimates that smooth too mu
h. Boot-strap per
entile intervals appear ragged, suggesting that very large numbersof bootstrap samples are needed, and their 
overages are too high. Thebootstrap SE approa
h|estimating the standard error based on a limitednumber of bootstrap estimates and using \1.96" to obtain 95% 
on�den
eintervals|seems to have the best performan
e. The 
overage is about right,the 
omputational expense is low, and the pointwise 
on�den
e intervalsare fairly smooth. This performan
e 
ame as a pleasant surprise to usand suggests that the bootstrap SE approa
h deserves a more thoroughinvestigation.Referen
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