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We present a simple method to assign approximate P-values to gene expression changes detected with
Affymetrix oligonucleotide arrays and software. The method pools data for groups of genes and a small
number of like-to-like comparisons in order to estimate the significance of changes observed for single
genes in comparisons of experimental interest. Statistical significance levels are based on the observed
variability in the fractional majority of probe pairs that indicate increasing or decreasing differential
expression in comparisons of technical replicates. From this reference distribution or error model, we
compute the expected frequency for fractional majorities in comparisons for N>2. These computed
distributions are the source of P-value estimates for changes seen in the experimental comparisons. The
method is intended to complement the Affymetrix software and to rationalize gene selection for experimental

designs involving limited replication.

INTRODUCTION

The papers of the Hereditary Disease Array Group represent a
cooperative effort to learn more about neurodegenerative
diseases caused by expanded polyglutamine [poly(Q)] tracts
(1-4). These studies were begun with the hope that gene
expression profiling of mouse and cell line models would
reveal the earliest events in neural dysfunction, elucidate the
course of developing disease, and stimulate fresh hypotheses.
Choosing a common method for selecting differentially
expressed genes was an issue that had to be addressed before
results in different model systems could be compared.

In the few years that DNA microarrays have been available,
no method of identifying differentially expressed genes in two
populations has achieved general use and acceptance.
Application of standard statistical tests to determine differential
gene expression, such as z-statistics, has been hampered by the
fact that there are often few replicates, owing to constraints on
funding and samples. With few replicates, these tests have few
degrees of freedom and thus little power to discern differences
between groups. In place of statistical criteria, arbitrary
thresholds (whereby a gene is identified as differentially
expressed if the ratio of expression in one sample relative to
the other exceeds a certain magnitude) are commonly applied
(5,6). Ratio-based criteria are certainly not optimal because of

several well-known flaws. The relative error increases as the
signal decreases and fixed thresholds remove changes below
the limit from further consideration, thus negating the increased
power that one should derive from replicating experiments.

Another approach is to determine thresholds for differential
expression based on empirical observation. Here, spiking
experiments are performed in order to calibrate differential
expression in terms of the microarray’s sensitivity and
discrimination. Thorough use of this approach is beyond the
scope of individual laboratories using commercial arrays, so
researchers rely on empirical thresholds as determined by the
array manufacturer (7-9). The Affymetrix Microarray Suite
GeneChip 4.0 software comparison analysis provides this
empirically based assessment of differential expression as a
Difference Call. The Difference Call is generated in compari-
son analysis of two arrays, and consistent calls in comparisons
have been found to be a reliable indicator of differential
expression (10-12). However, no statistical significance
estimate is provided, and it is not clear how one should weigh
changes that are called in a fraction of the relevant
comparisons.

Statistical inference would select genes for further scrutiny by
the likelihood that their apparent changes did not occur by
chance. One reasonable way to create gene lists from different
experiments prior to comparing and contrasting the lists is to

*To whom correspondence should be addressed. Tel: +1 2066677808; Fax: +1 2066674142; Email: clk@fhcrc.org
"This paper is part of the Microarray Report Special Series. See, Orr H.J. (2002) Hum. Mol. Genet., 11: 1909—1910.



2208 Human Molecular Genetics, 2002, Vol. 11, No. 19

set a common threshold of statistical significance that each
gene must pass before it finds its way on to the final list. An
alternative method to use when selecting groups of genes is to
control the false-discovery rate (FDR) (13). The FDR can be
estimated by comparing the observed number of genes at a
given significance level with the number expected by chance.
However, standard #-statistics lack power in cases of limited
replication, which has led to the development of statistical tests
combining data on many genes to estimate the significance of
changes for individual genes (14-17).

We present a method for estimating the statistical significance
of gene expression changes measured with Affymetrix
oligonucleotide arrays and software. False-positive rates and
P-values are based on variability observed in comparisons of
replicate samples. This method uses output provided by
Affymetrix Microarray Suite (MAS) 4.0 GeneChip software.
The method augments the Affymetrix software in that it
accounts for replication and is most useful for experiments
involving small numbers of replicates, i.e. N=2,...,~6. The
approach can be easily adapted in order to accommodate
changes in the arrays, hybridization conditions or image
analysis software.

RESULTS

Background and rationale

The Hereditary Disease Array Group, a consortium investigat-
ing transcriptional dysregulation in neurodegenerative diseases,
generated a large number (>200 in the studies considered here)
of expression profiles of cerebral cortex, cerebellum, and
striatum from different poly(Q) disease mouse models (1-4).
The main experimental question of interest for each model was
how did the transgenic line carrying the expanded poly(Q) tract
differ from its non-transgenic siblings or transgenic lines
carrying normal-length poly(Q) tracts. If there were evidence of
abnormal expression profiles in different models, it would also
be interesting to compare the changes to see what was common
and unique to each model or tissue.

While in total there was a very large amount of data, each
experiment was done using a small number of replicates. As an
alternative to arbitrary thresholds or -statistics, we explored
error models of different quantities from the Affymetrix MAS
4.0 output in order to define differentially expressed genes.
Again, owing to limited replication, there were not enough data
to make truly useful experiment-specific error models; there-
fore, in order to effectively increase the number of degrees of
freedom available to analyze each small experiment, we made
tissue-specific error models by pooling data from comparisons
of replicates in the different experiments. With such a
reference, changes seen in the experimental comparisons of
interest could be related to how often similar or larger changes
were seen due to technical and normal biological variability.

In comparisons of technical replicates, no experimental
variables of interest are involved, and variables such as the age,
genotype, tissue and strain of the mice are held constant. To
control technical sources of variability, procedures had been
standardized. A single person had done all sample preparation,
and all arrays were processed at the FHCRC Array Facility.

Tissue-specific models can be rationalized, since in each tissue
some genes are uniquely expressed, and common genes are
expressed at different levels. Differences between mouse brain
tissues have also been shown to be more extensive than normal
variation within a tissue (18).

Affymetrix arrays and analysis

Affymetrix oligonucleotide arrays, data processing and empiri-
cal analysis algorithms have been described in detail elsewhere
(8,9). Briefly, each gene is represented by multiple 25-base
oligonucleotides called probes, synthesized in square tiles on
the surface of a silicon wafer. The probes come in pairs. One
probe, the Perfect Match (PM), is designed to be complemen-
tary to a reference sequence. The second probe, or Mismatch
(MM), is meant to control for cross-hybridization and contains
a homomeric mismatch at the central position. A biotinylated
cRNA derived from the mRNA population in a single sample is
hybridized to each array. The surrogate expression level for a
gene, its Average Difference, is measured by summing the
differences between the PM and MM signals and dividing that
sum by the number of probe pairs used in the calculation (9).
On the mouse arrays used in these studies, 20 probe pairs
typically represent genes.

The Affymetrix software can consider each array separately
or can directly compare two arrays. In a comparison, the
reference sample is called the baseline and the sample being
compared with the reference is the experiment. The size of the
gene expression change may be expressed as the averaged
difference in intensity units between the matching probe pairs,
the Average Difference Change, a relative Fold Change or,
perhaps best, as the logarithm of the ratio of Average
Differences. Changes judged significant based on empirical
thresholds of sensitivity and selectivity as determined by
Affymetrix are indicated by a Difference Call.

The MAS 4.0 empirical Difference Call is based on four
elements, three of which are related to the number of a gene’s
probe pairs that are deemed higher or lower in the experiment
than they are in the baseline. The cutoff for the probe pair
increase—decrease decision is called the Change Threshold.
This value is a dynamic number calculated from the noise or
pixel-to-pixel variation in the two images being compared.
Spiking experiments performed by Affymetrix informed the
magnitude of this threshold as it relates to the noise (7-9).

The Difference Call has been shown to be a reliable indicator
of differential gene expression, but it is not associated with any
particular significance level, thus limiting its usefulness. We
considered and rejected as too granular an error model based
on the Difference Calls. In our largest set of replicate
comparisons (32 comparisons), 45% of the genes were never
called and 25% received only one call. The fact that so few
genes receive calls and the binary nature of the Difference Call
make it difficult to establish a meaningful distribution for
estimating P-values. We then explored how the geometric mean
Fold Change, mean Average Difference Change and the
fractional majority of the probe pairs indicated as ‘increased’
or ‘decreased’ in the comparisons related to the Difference
Call. Figure 1 clearly shows that the latter has the strongest
correlation with the Difference Call.
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Figure 1. Relationship of the Affymetrix empirical Difference Call to various MAS 4.0 outputs. The number of Difference Calls for each gene from the DRPLA
65Q versus wild-type cerebellum comparisons were tabulated by converting each Decrease call to —1 and each Increase call to +1 and summing over the 16
comparisons (data from 3). These are plotted on the horizontal axis of each graph. Averaged values for other comparison analysis quantities are plotted on the
vertical axis. (A) Difference Calls versus mean (log, Fold Change). (B) Difference Calls versus mean Average Difference Change. (C) Difference Calls versus

mean (Increase Ratio — Decrease Ratio).

We illustrate some properties of the Average Difference as
determined by MAS 4.0 that also led us to consider other
quantities for modeling. Figure 2 shows the 16 PM values for a
randomly selected gene from the 36 different arrays, with data
from Sipione et al. (4). It is clear that some tiles are always high
or always low relative to the other tiles. The effect of taking
averages, as when computing the Average Difference, is that
tiles with low signals are effectively ignored. As the correlation
coefficients of the lowest 12 probes with the highest four
probes are usually very high (~0.9 for this gene; data not
shown), many weaker probes contain useful information.
Further evidence of how the Average Difference tends to be
dominated by the strongest probes is shown in Figure 3. The
horizontal axis in this plot is the average PM signal for the gene
shown in Figure 2 from the same 36 arrays, and shown on
the vertical axis is the average signal after randomly allotting to
each array the 12 tiles with the lowest values. Scrambling the
lower 12 out of 16 tiles has no effect on the ordering of the
arrays. In effect, the Average Difference for most genes is
based on a fraction of the available information.

Error model

Comparisons between replicate samples were used to assess the
variability of the number of probe pairs that increased and

decreased in the mouse brain gene expression profiles.
Specifically, we were interested in the difference of the
Increase and Decrease counts, which is essentially the majority
of the probe pairs that detected or ‘voted’ for a change due to
variability in sample preparation, arrays and normal gene
expression. In particular, 32 striatum, 18 cerebellum and 6
cortex like-to-like comparisons on Affymetrix Mul1K A and
MullK B oligonucleotide arrays were generated. These
comparisons all involved independent pairwise comparisons,
i.e. no sample was considered twice on a particular type of
array.

As we wished to make tissue-specific error models, genes
were ranked by their mean Average Difference so as to reflect
the gene expression profile of each tissue. Technical compo-
nents of variability, noise at the low end and saturation at the
high end, also depend upon signal strength. Figure 4 shows that
the number of probe pairs that changed, as determined by the
MAS 4.0 default settings, in the like-to-like comparisons
depended on the Average Difference. The numbers of
Increased, Decreased and Increased minus Decreased probe
pairs showed a similar, though less striking, dependence on the
Average Difference (not shown). To reduce this dependence,
genes were considered in bins. In a Bayesian procedure for
regularized t-tests for differential expression, genes were also
considered in bins after ranking by expression level (16).
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Figure 1B continued.

In binning, it is assumed that few genes normally behave in a
highly variable manner. This is an implicit assumption of
global image scaling, our standard procedure, and in most
spotted cDNA microarray normalizations (19). Microarray
studies of normal gene expression variability in yeast and mice
suggest this a reasonably valid assumption (20,21). In addition,
our analysis of the Difference Call frequency (a crude tissue-
and gene-specific error model) indicated that few genes varied
in a significant fraction of the comparisons. Most of these
variable genes were evenly distributed across the top 40% of
genes as ranked by their mean Average Difference. The effect
of these genes, if any, is to overestimate the true variation for
the majority of genes in the bin by a negligible amount. This in
turn leads to slightly conservative P-value estimates, so that in
the end fewer genes might be called significant.

Choosing the optimal number of bins is a traditional bias—
variance tradeoff that is similar to selecting the bandwidth for
kernel methods and local polynomial regression (22). Too
many bins will lead to highly variable estimates of the
P-values, while too few will lead to biased estimates. In
theory, the number of bins should depend both on the number
of technical replicates and on the number of genes on the array.
While bandwidths are sometimes selected using cross-validation,
such an approach is of little help in our situation. Theoretical
rate-of-convergence results suggest that the optimal number of
bins would increase only modestly as the number of replicates
increases.

P-value threshold curves for the striatum data using various
bin numbers are shown in Figure 5, which also provides further
motivation for why we did not develop a gene-specific error
model. Because 25 bins, each with ~260 genes, did not yield
smooth P-value estimates, clearly there were not enough data to
obtain stable estimates using single genes. A sliding-window
bin could have smoothed the P-value threshold curve but would
have required an order of magnitude more computation. We
chose 10 bins as a convenient number and reasonable
compromise between bias and variance.

In each bin, all the (Increase — Decrease) values were
combined. For the striatum data, this gave ~21 000 realizations
per bin, since there are ~660 genes in each decile, and there
were 32 striatum like-to-like comparisons. After tabulating the
frequencies of the values in the bins, the exact sampling
distributions for various N were computed. This computation is
greatly facilitated by the fact that only a discrete number of
changes are possible, since virtually all genes have the same
number of probe pairs. To accommodate all genes on the array,
the changes were normalized by the usual number of probes per
gene so that (Increase — Decrease) becomes (Increase
Ratio — Decrease Ratio). The approximate P-values assigned
to the absolute value of the mean experiment-to-baseline
(Increase Ratio — Decrease Ratio) are based on these com-
puted sampling distributions.

The approximate P-values associated with (Increase
Ratio — Decrease Ratio) averages of different sizes in mouse
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Figure 1C continued.

striatum, cerebellum, and cortex are shown in Table 1. We
show values only for N=2 and 3. Tables for N=2,..., 6 are
available in the Supplemental Data (www.neumetrix.info).

In the striatum and cerebellum models, which were based on
larger samples of technical variability than the cortex model,
values within a bin associated with a given significance fall in a
narrow range. The similarity of the striatum and cerebellum
models along with the effect of increasing N are shown in
Figure 6. The more lenient thresholds of the cortex error model
reflect that small experiment’s low technical variability. The
cortex error model thresholds at a given P-value are also
somewhat flatter across all bins, while the striatum and
cerebellum model thresholds vary with the bin. In those two
models, genes with stronger signals have higher thresholds than
genes with lower signals.

Correspondence with MAS 4.0

In Figure 1, it was seen that the Difference Call is essentially a
function of the fractional majority of probe pairs that indicate a
change in a particular direction. The benefits of our method
over the Difference Call are that it accounts for replication and
provides statistical significance estimates. For example, using
data from Luthi-Carter et al. (3), in the R6/2 cerebellum
comparisons, a P-value <0.001 identifies 183 genes, and
captures 97% of the genes with four calls, 68% of those with

three, 10% of those with two, and a small fraction of the rest. It
could be argued that ad hoc ‘three out of four’ criteria, which
would have identified 170 genes, would have done as well as
our method in this situation. However, applying this ad hoc
cutoff to the DRPLA Q65 cerebellum experiment done at N=4
would seem to be much too conservative. The P-value
estimates identify 469 genes at P < 0.001. This cutoff captures
every gene that received >9 calls in the16 comparisons and the
majority of genes with 6-8 calls, and identifies 388 more genes
than a ‘three out of four’ criterion.

Confirmation of microarray results

Detailed descriptions of confirmation studies are given in
(1-4), so only summary data are presented here. Most of the
genes that have been selected for follow-up confirmatory
analysis by northern blot or quantitative RT-PCR have an
assigned significance of P < 0.001. Using this as our cutoff, we
display in Table 2 the number of probe sets at that level in the
different studies and the expected confirmation rate (1 — FDR).
Below the expected confirmation rate, the results of con-
firmatory assays are shown. If P-values were calculated for
northern or RT-PCR assays, then P <0.05 had to be met
before the gene was considered as confirmed.

In confirmatory studies, ~50 genes were examined in several
tissues and models, resulting in >70 tests to see if genes
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Figure 2. The Perfect Match (PM) values for a randomly chosen gene on 36 different arrays. Each line represents the signal from a particular PM tile on 36 separate
arrays (data from 4). Very few of the lines cross. This means that on each of the 36 arrays, the rank order of the PM signals is nearly the same. In addition, each line
looks quite similar to the other lines. Signal values for the lower, less strongly reporting PM tiles accurately reflect the more robust PM tiles, and can provide useful

information.

detected at P < 0.001 by microarray actually varied. The results
of these tests represent the most extensive examination of a
gene selection method of which we are aware. Genes that were
not confirmed as changing by northern blot or RT-PCR usually
showed a trend in the same direction suggested by the array
data, but failed to meet the P < 0.05 threshold. Overall, the
confirmation rates within experiments are essentially as
expected from the FDR estimates. Confirmation is worst where
there are few predicted changes, as in younger R6/2 mice (2)
and in the Aronin and YAC data (1). We note that the Aronin
and YAC studies and less statistically powerful studies on 12-
week-old R6/2 mice predict essentially the same numbers of
gene changes. This suggests that gene expression changes in
the Aronin and YAC mice are less severe in the examined
tissues than changes seen in the R6/2 model, and thus Aronin
and YAC changes are likely to be harder to detect by secondary
methods.

DISCUSSION

Every reasonable gene selection method captures different parts
of the true set of differentially expressed genes, while falsely
identifying or missing others. Statistical methods provide
means for controlling the effect that these two types of errors
have on the final list of genes. The method outlined here was
designed to assign approximate significance levels to differ-
ences observed in oligonucleotide microarray experiments
using statistics supplied by Affymetrix MAS 4.0 software.
We developed this method specifically for the microarray
experiments of the Hereditary Disease Array Group (1-4), but
the approach can be used with any set of Affymetrix microarray
data. Researchers with few replicates might pool data using the
same array type and biological material in order to make error
models. The confirmation studies conducted by the Hereditary
Disease Array Group consortium are the most thorough test of
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Figure 3. Scatterplot of the average PM signal for a gene on 36 arrays before and after randomizing the 12 lowest signal PM tiles. Using the same gene and 36
arrays from Figure 2 (data from 4), we plot on the horizontal axis the average PM signal from the actual data. On the vertical axis, we plot the average PM signal
after mixing the 12 lowest PM signals from all arrays and randomly reassigning them to different arrays. The correlation between the data before and after scram-

bling is 0.975. Thus the average is dominated by the largest PM values.

a method for selecting differentially expressed genes of which
we are aware, and show this method is as successful, if not
better, than other methods.

At first glance, our choice of statistic to model, the fractional
majority of probe pairs that indicate a change, seems somewhat
unusual. The net number of probe pairs that increase or
decrease provides little information as to the magnitude of the
change, and thus some information is lost. Intuitively, however,
the likelihood that a real difference is being detected should
strongly correspond with the number of probes that indicate the
difference. The most readily available quantities in the
GeneChip output that relate to the individual probe pair
changes in a comparison are the number that ‘increase’ or
‘decrease’ more than the Change Threshold. We have observed
that this is the statistic in the MAS 4.0 output that most strongly
correlates with the empirical Difference Call. Furthermore, the
fractional majority of probes is not easily influenced by one or
two outlying probe pairs. When determining differential gene
expression, quantities that more equitably combine information

from all of the probe pairs would seem preferable to quantities
that may be dominated by a few probe pairs. As the strongest
probes, both PM and MM, so often dominate the Average
Difference, the quality of the Average Difference and the
amount of information that we have lost are not entirely clear.
Magnitude information can always be considered after
differentially expressed genes have been selected.

Our proposal uses three approaches to determining differ-
ential gene expression with microarrays that have not
previously been combined. First, in choosing which MAS 4.0
statistic to use, we chose the fraction of probe pairs changed,
rather than the more commonly used ratio of Average
Differences. As noted above, this statistic is closely related to
the Affymetrix empirical Difference Call. While the changing
probe pair summary measure is non-parametric in spirit, we
should stress that we carry out a parametric test for this
quantity based on a reference distribution. Second, the
reference distribution was constructed by combining the data
from several like-to-like comparisons on the same tissue. As
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Figure 4. The number of probe pairs that change depends upon the signal strength. The data from the 32 striatum like-to-like comparisons were used to explore the
relationship between the Average Difference (signal strength) and the number of probe pairs that change more than the Change Threshold. For all of the ~13 000
Probe Sets or genes, the sum of the number of increasing and decreasing probe pairs in the 32 comparisons is plotted against the Probe Set’s mean Average Dif-
ference. There is a clear trend in the data. Probe Sets with lower signals tend to have more changing probe pairs. We interpret this to mean that signals with smaller
Change Thresholds are more prone to random fluctuations causing a probe pair to be scored as Increased or Decreased.

there were many more such like-to-like comparisons than
replicates in each individual experiment, this effectively
increased the number of degrees of freedom. Third, by
combining genes of comparable expression levels in a binning
procedure, we generated more data points for the reference
distribution. Having more data points allowed us to avoid
assuming normality for our summary measure, an assumption
that would have been impossible to verify, since such a
verification should be carried out for each gene separately.
Another approach to assessing the significance of gene
expression changes measured by Affymetrix arrays is proposed
by Li and Wong (23,24). Their dChip software models the
individual (PM — MM) differences using a multiplicative
model with gene-sample and gene—probe-pair effects. This
method also appears very attractive when a small number of
replicates are available. As such, we suspect that the dChip
approach is much more powerful than, for example, using
t-statistics on the log(Average Differences). The dChip

analysis, however, does not allow one to make use of a large
number of like-to-like experiments such as we had, in order to
establish a reference distribution. Conceivably, a hybrid of the
probe-pair model of Li and Wong with our approach to
building a reference distribution could yield an even more
powerful approach to testing for differential gene expression.
While this paper was in preparation, Affymetrix released a
new version of its analysis software, MAS 5.0. It reports for
each gene a ‘Change P-value’ for differences observed in a
comparison of two samples. These significance levels are based
upon a Wilcoxon signed-rank test of the signal differences from
the separate probe pairs (25). Thus, in its latest version of
microarray analysis software, Affymetrix also uses information
from the separate probe pairs to estimate the statistical
significance of the differences between samples. Our choice
of the probe pair increase and decrease count to determine
significance was made independently of and well before we had
knowledge of the new software. As the data on the individual
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Figure 5. Plots of sampling-distribution-based P-values for an Increase Ratio — Decrease Ratio >0.40 with different numbers of bins. The Increase Ratio — De-
crease Ratio values for each gene on the Mul1K A array from the 32 striatum like-to-like comparisons were alternately placed into b=35, 10, 25 or 50 bins. Bin
assignments were made after ranking the genes by their mean Average Difference on the 64 different arrays. Each bin contains ~32 x 6600/b realizations of (In-
crease Ratio — Decrease Ratio). For each of the bins, we compute the exact sampling distribution for the mean of N (in this case, N =2). Based upon this sampling
distribution, the calculated frequency, or estimated P-value, of values exceeding 0.40 is plotted for each bin.

probe pair’s signals is not part of the normal MAS GeneChip
4.0 output, we rely on a ‘vote’ of anonymous probe pairs
rather than standard non-parametric tests of ordinal values.
Despite this and the extensive differences between the old
and new Affymetrix software, our method gives results that are
very consistent with those obtained with the new MAS
GeneChip 5.0 software (data not shown). We are confident
that complete reanalysis of the data using the new software
would not fundamentally change our present view of the data
if the new Change P-value or Difference Call metrics were
selected as the standards for determining differential gene
expression.

No version of the standard Affymetix analysis software yet
accommodates experimental design involving replication. This
was a primary motivation behind our error model. In addition,
the MAS 5.0 Change P-values reported for single comparisons
are also often rather extreme, i.e. P <0.00001. This may be
because the Wilcoxon test assumes independent measurements

while the probe pairs are more accurately considered as
repeated measurements of a single sample. Very small Change
P-values are also caused by the Wilcoxon test being used on a
vector of differences comprising PM — MM and a PM —
Background correction, which causes the P-values to be more
extreme owing to the repetition of values. Affymetrix finds
through empirical testing that combining both quantities leads
to slightly more accurate data at high and low target
concentrations (E. Hubbell, Affymetrix, personal communica-
tion). Thus the Change P-values reported by MAS 5.0 probably
should not be literally associated with a false-positive rate due
to the non-standard dependence between values.

Issues of statistical significance versus biological significance
can arise when statistical criteria are used to select genes. In
addition, the ability to detect potential changes must be
considered in light of the resolution of the secondary method.
For these reasons, it may sometimes be advisable to apply other
criteria such as interest and the apparent magnitude of the
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Table 1. R, thresholds associated with approximate P-values

Mu 11K A array Striatum N =2

P-value Al A2 A3 A4 A5 A6 A7 A8 A9 Al0
0.05 0.225 0.200 0.200 0.225 0.225 0.225 0.225 0.250 0.225 0.250
0.01 0.300 0.275 0.275 0.300 0.325 0.325 0.325 0.350 0.350 0.400
0.005 0.325 0.300 0.325 0.325 0.350 0.350 0.375 0.400 0.400 0.450
0.001 0.400 0.350 0.400 0.400 0.450 0.450 0.450 0.475 0.500 0.550
0.0005 0.425 0.375 0.425 0.425 0.475 0.475 0.475 0.525 0.550 0.575
0.0001 0.475 0.425 0.500 0.525 0.550 0.550 0.550 0.600 0.625 0.675
0.00005 0.500 0.450 0.525 0.550 0.600 0.575 0.575 0.625 0.650 0.725
0.00001 0.550 0.500 0.600 0.600 0.650 0.625 0.650 0.700 0.750 0.825
Mu 11K A array Striatum N=3

P-value Al A2 A3 A4 AS A6 A7 A8 A9 A10
0.05 0.167 0.167 0.167 0.167 0.183 0.183 0.183 0.200 0.200 0.200
0.01 0.233 0.217 0.233 0.233 0.250 0.250 0.250 0.267 0.283 0.300
0.005 0.250 0.233 0.250 0.267 0.283 0.283 0.283 0.300 0.317 0.333
0.001 0.300 0.283 0.300 0.317 0.350 0.333 0.350 0.367 0.383 0.400
0.0005 0.333 0.300 0.333 0.333 0.367 0.367 0.367 0.400 0417 0.433
0.0001 0.367 0.333 0.383 0.400 0.433 0.417 0.417 0.467 0.483 0.517
0.00005 0.400 0.350 0.400 0.417 0.450 0.433 0.450 0.483 0.500 0.550
0.00001 0.433 0.383 0.450 0.467 0.500 0.483 0.500 0.550 0.567 0.617
Mu 11K A array Cerebellum N=2

P-value Al A2 A3 A4 A5 A6 A7 A8 A9 Al0
0.05 0.200 0.200 0.200 0.200 0.225 0.225 0.225 0.225 0.200 0.225
0.01 0.275 0.250 0.275 0.300 0.300 0.300 0.325 0.325 0.325 0.350
0.005 0.300 0.275 0.300 0.325 0.350 0.325 0.375 0.375 0.375 0.400
0.001 0.375 0.350 0.375 0.400 0.425 0.400 0.475 0.475 0.450 0.500
0.0005 0.400 0.400 0.400 0.425 0.450 0.450 0.500 0.525 0.500 0.525
0.0001 0.450 0.500 0.450 0.500 0.525 0.500 0.575 0.600 0.575 0.625
0.00005 0.475 0.525 0.475 0.525 0.550 0.525 0.600 0.625 0.600 0.650
0.00001 0.525 0.575 0.525 0.575 0.625 0.575 0.675 0.700 0.675 0.775
Mu 11K A array Cerebellum N=3

P-value Al A2 A3 A4 AS A6 A7 A8 A9 Al10
0.05 0.150 0.150 0.167 0.167 0.167 0.183 0.183 0.183 0.167 0.167
0.01 0.217 0.200 0.217 0.233 0.233 0.233 0.250 0.267 0.250 0.267
0.005 0.233 0.233 0.250 0.250 0.267 0.267 0.283 0.300 0.283 0.300
0.001 0.283 0.283 0.300 0.317 0.333 0.317 0.350 0.367 0.350 0.367
0.0005 0.300 0.300 0.317 0.333 0.350 0.333 0.383 0.383 0.367 0.400
0.0001 0.350 0.367 0.350 0.383 0.400 0.383 0.433 0.450 0.433 0.467
0.00005 0.367 0.383 0.383 0.400 0.433 0417 0.467 0.467 0.450 0.500
0.00001 0.417 0.433 0.417 0.450 0.483 0.450 0.517 0.533 0.517 0.567
Mu 11K A array Cortex N=2

P-value Al A2 A3 A4 AS A6 A7 A8 A9 A10
0.05 0.200 0.175 0.175 0.200 0.200 0.200 0.200 0.200 0.200 0.175
0.01 0.250 0.250 0.225 0.250 0.250 0.275 0.275 0.275 0.275 0.275
0.005 0.275 0.275 0.250 0.275 0.275 0.300 0.325 0.325 0.300 0.325
0.001 0.350 0.300 0.300 0.325 0.350 0.350 0.400 0.425 0.400 0.425
0.0005 0.350 0.325 0.325 0.350 0.375 0.375 0.425 0.450 0.450 0.450
0.0001 0.400 0.375 0.375 0.400 0.425 0.425 0.475 0.525 0.525 0.500
0.00005 0.425 0.400 0.375 0.400 0.450 0.450 0.500 0.525 0.550 0.525
0.00001 0.475 0.425 0.400 0.450 0.500 0.500 0.550 0.600 0.600 0.600
Mu 11K A array Cortex N=3

P-value Al A2 A3 A4 AS A6 A7 A8 A9 A10
0.05 0.150 0.150 0.150 0.150 0.150 0.167 0.167 0.167 0.167 0.133
0.01 0.200 0.200 0.183 0.200 0.200 0.217 0.233 0.233 0.217 0.217
0.005 0.233 0.217 0.200 0.217 0.233 0.233 0.250 0.267 0.250 0.250
0.001 0.267 0.250 0.250 0.250 0.283 0.283 0.300 0.317 0.317 0.300
0.0005 0.283 0.267 0.250 0.267 0.300 0.300 0.333 0.350 0.333 0.333
0.0001 0.333 0.300 0.283 0.317 0.333 0.333 0.367 0.383 0.400 0.383
0.00005 0.350 0.317 0.300 0.317 0.350 0.350 0.400 0.417 0.417 0.400
0.00001 0.367 0.333 0.333 0.350 0.400 0.400 0.433 0.450 0.467 0.467
From each array and tissue type, sampling distributions of the Increase Ratio — Decrease Ratio for each decile were assembled for N=2,...,6. The threshold

values in each bin corresponding to a frequency P were then tabulated. The results for N=2 and N=3 are shown. Complete tables can be found in the
Supplemental Data (www.neumetrix.info).
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Table 1. continued

Mu 11K B array Striatum N=2

P-value B1 B2 B3 B4 BS B6 B7 B8 B9 B10
0.05 0.175 0.200 0.200 0.200 0.200 0.200 0.225 0.225 0.250 0.275
0.01 0.250 0.250 0.250 0.275 0.275 0.300 0.325 0.350 0.375 0.425
0.005 0.275 0.275 0.300 0.300 0.300 0.325 0.350 0.400 0.425 0.475
0.001 0.350 0.350 0.350 0.375 0.375 0.425 0.450 0.500 0.525 0.575
0.0005 0.375 0.375 0.400 0.400 0.400 0.450 0.475 0.525 0.550 0.625
0.0001 0.450 0.475 0.475 0.475 0.475 0.500 0.550 0.600 0.625 0.725
0.00005 0.475 0.500 0.500 0.500 0.500 0.525 0.600 0.650 0.675 0.800
0.00001 0.525 0.550 0.550 0.575 0.550 0.600 0.675 0.750 0.775 0.900
Mu 11K B array Striatum N=3

P-value Bl B2 B3 B4 BS B6 B7 BS B9 B10
0.05 0.150 0.150 0.150 0.150 0.167 0.167 0.183 0.183 0.200 0.217
0.01 0.200 0.200 0.200 0.217 0.217 0.233 0.250 0.267 0.283 0.317
0.005 0.217 0.217 0.233 0.233 0.250 0.267 0.283 0.300 0.317 0.367
0.001 0.267 0.267 0.283 0.283 0.300 0.317 0.350 0.383 0.400 0.433
0.0005 0.300 0.300 0.300 0.317 0.317 0.333 0.367 0.400 0.417 0.483
0.0001 0.350 0.350 0.350 0.367 0.367 0.400 0.433 0.467 0.500 0.567
0.00005 0.367 0.383 0.367 0.383 0.383 0.417 0.450 0.500 0.517 0.600
0.00001 0.400 0.417 0.417 0.433 0.433 0.467 0.517 0.567 0.600 0.667
Mu 11K B array Cerebellum N =2

P-value B1 B2 B3 B4 BS B6 B7 B8 B9 B10
0.05 0.200 0.200 0.200 0.200 0.200 0.200 0.225 0.225 0.225 0.225
0.01 0.250 0.275 0.250 0.275 0.275 0.275 0.300 0.325 0.350 0.375
0.005 0.300 0.300 0.300 0.300 0.300 0.325 0.325 0.375 0.400 0.425
0.001 0.350 0.350 0.350 0.350 0.375 0.400 0.400 0.475 0.500 0.525
0.0005 0.375 0.375 0.375 0.375 0.375 0.425 0.450 0.500 0.550 0.575
0.0001 0.425 0.425 0.425 0.425 0.425 0.475 0.500 0.575 0.625 0.650
0.00005 0.450 0.450 0.450 0.450 0.450 0.500 0.525 0.600 0.650 0.700
0.00001 0.500 0.500 0.500 0.500 0.500 0.575 0.600 0.675 0.750 0.825
Mu 11K B array Cerebellum N=3

P-value Bl B2 B3 B4 BS B6 B7 BS B9 B10
0.05 0.150 0.167 0.150 0.167 0.167 0.167 0.167 0.183 0.183 0.183
0.01 0.200 0.217 0.217 0.217 0.217 0.217 0.233 0.267 0.267 0.283
0.005 0.233 0.233 0.233 0.233 0.250 0.250 0.267 0.283 0.300 0.333
0.001 0.267 0.283 0.267 0.267 0.283 0.300 0.317 0.350 0.383 0.400
0.0005 0.300 0.300 0.300 0.300 0.300 0.317 0.333 0.383 0.400 0.433
0.0001 0.333 0.333 0.333 0.333 0.350 0.367 0.383 0.433 0.467 0.500
0.00005 0.350 0.350 0.350 0.350 0.367 0.383 0.417 0.467 0.500 0.550
0.00001 0.383 0.400 0.400 0.383 0.400 0.433 0.450 0.517 0.567 0.617
Mu 11K B array Cortex N=2

P-value Bl B2 B3 B4 BS B6 B7 B8 B9 B10
0.05 0.200 0.200 0.200 0.200 0.200 0.200 0.225 0.200 0.200 0.175
0.01 0.300 0.300 0.300 0.275 0.275 0.300 0.300 0.275 0.300 0.300
0.005 0.350 0.350 0.325 0.325 0.325 0.325 0.350 0.300 0.325 0.375
0.001 0.450 0.425 0.425 0.400 0.400 0.425 0.425 0.375 0.400 0.475
0.0005 0.500 0.475 0.475 0.425 0.425 0.450 0.450 0.400 0.425 0.500
0.0001 0.575 0.525 0.550 0.475 0.475 0.525 0.525 0.450 0.500 0.575
0.00005 0.600 0.575 0.575 0.500 0.500 0.550 0.550 0.475 0.525 0.600
0.00001 0.675 0.650 0.650 0.575 0.575 0.625 0.625 0.500 0.575 0.725
Mu 11K B array Cortex N=3

P-value B1 B2 B3 B4 BS B6 B7 B8 B9 B10
0.05 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.150
0.01 0.233 0.233 0.233 0.217 0.217 0.233 0.233 0.217 0.233 0.233
0.005 0.267 0.267 0.267 0.250 0.250 0.250 0.267 0.233 0.250 0.283
0.001 0.350 0.333 0.333 0.300 0.300 0.317 0.333 0.283 0.317 0.350
0.0005 0.367 0.350 0.367 0.317 0.333 0.350 0.350 0.300 0.333 0.367
0.0001 0.433 0.417 0.417 0.367 0.367 0.400 0.400 0.350 0.383 0.433
0.00005 0.467 0.433 0.450 0.400 0.400 0.417 0.433 0.367 0.400 0.467

0.00001 0.517 0.500 0.500 0.433 0.433 0.467 0.483 0.400 0.450 0.550
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Figure 6. R, cutoffs associated with P < 0.001 for the striatum and cerebellum MullK A array models and different N. The Mul1K A array R, thresholds asso-
ciated with P <0.001 for each of the 10 bins are plotted for the cerebellum and striatum error models. The lines for each model are quite close together for
N=2,..., 6. The increased power conferred by replication is seen in the diminishing thresholds as N increases.

change to guide the choice of genes to be examined in
confirmatory studies.

Our method may not be the best means of assessing
significance or identifying interesting genes when the experi-
mental question of interest is not a simple comparison of two
populations. A time series is one example of a more complex
experimental design. Larger sample sizes also make this
method unwieldy, but as sample size increases, standard #-
statistics can be applied. The advantages of probe pair level
analysis like ours are greatest in the event that there are few
replicates. But even in other instances, information about the
individual probe pairs might allow the development and
application of more powerful statistical tests than tests based
on single-value averages such as the Average Difference.

Because genes were binned in the error models to get stable
P-value estimates, each array essentially turned into a generic
array of 10 ‘genes’ independently of biological identity and
experimental detail. Thresholds derived for the striatum, for
instance, can reasonably be used on the cortex data as a more
conservative estimator of P-values. This leads to the question
of how general are the thresholds we determined. The issue
here is relating the technical variability of one experiment to
that of another. If the arrays and samples are more variable than
the data used to construct the tables, then too many false
positives would be labeled significant; alternatively, if the
samples were less variable, then the table values would be
conservative. Fine-tuning thresholds for individual studies or

extrapolation of our numbers to other studies might be possible
if one could relate the variability of one experiment to another.
As a practical matter, merely repeating the P-value assignments
using tables for larger or smaller N approximates fine-tuning,
since this raises or lowers the P-value cutoffs.

METHODS

Calculation of error model based P-values

To simplify the calculations, we tabulate frequencies for probe
pair counts, compute the expected frequencies for various N,
where N is the number of replicates, and then normalize the
counts by dividing by N times the predominant number of
probes per gene. Let fi(x) be the fraction of times that we
observe an (Increase — Decrease) score of x in a bin in
the replicate comparisons. On the Mul 1K mouse arrays, 20
probe pairs typically represent genes, and for convenience we
ignore the few probe sets with other numbers when performing
the calculations. Thus x ranges from —20 to 20.
To calculate frequencies for N> 2, set

20
6= fificale—y) fori=2,....N and

y=-20
x = —(i x 20), ..., (i x 20),



Table 2. The number of genes with an approximate P-value < 0.001 in the different brain tissues and models and the results of confirmation studies

Model Striatum Cerebellum Cortex
R6/2 Number of replicates N=2 N=2 N=2 N=2 N=2 N=3 N=3 N=3
Age (weeks) 2 4 6 12 12 2 6 12
P <0.001 7 1 29 147 183 25 62 182
1 — FDR 0.00 0.00 0.55 0.91 0.93 0.48 0.81 0.93
Confirmation 0of2 Not done 30f3 9 of 10 13 of 16 0of2 30f3 12 of 12
DRPLA Number of replicates N=2 N=2 N=2 N=4 N=4 N=4
Comparison Q26 vs WT Q65 vs WT Q65 vs Q26 Q26 vs WT Q65 vs WT Q65 vs Q26
P <0.001 24 36 29 100 469 448
1 — FDR 0.46 0.64 0.55 0.87 0.97 0.97
Confirmation Not done Not done Not done Not done 90of9 Not done
N171 Number of replicates N=2 N=2 N=2 N=4 N=4 N=4
Comparison 18Q vs WT 82Q vs WT 82Q vs 18Q 18Q vs WT 82Q vs WT 82Q vs 18Q
P <0.001 15 13 42 73 165 224
1 — FDR 0.13 0.00 0.69 0.82 0.92 0.94
Confirmation Not done Not done Not done Not done 7 of 7 Not done
YAC Number of replicates N=2 N=5
Expression level and age Low, 12 months Low, 12 months
P <0.001 16 84
1 — FDR 0.19 0.85
Confirmation 2 0of 3 1of3
Aronin Number of replicates N=6 N=6
Comparison Mild vs WT Severe vs WT
P <0.001 174 77
1 — FDR 0.93 0.83
Confirmation 0of3 0of 4

The number of genes assigned an approximate P-value <0.001 from each mouse model is shown. We score the confirmation of the genes labeled at this significance level. More complete descriptions of
confirmation of microarray data are given in (1-4). Random chance would have ~ 13 genes at this level on the two Mul 1K arrays. The False-Discovery Rate (FDR) is equal to 13 divided by the number of

observed genes. The comparisons for the R6/2 and YAC mice are all with age- and sex-matched control or wild-type (WT) mice. The cortex numbers reflect the application of the striatum error model
thresholds to the cortex data. This was done because the number of striatal specimens was more appropriate for generating an error model, and that model has more conservative thresholds (Fig. 6). Application
of the more lenient cortex model results in 62, 85 and 238 genes being labeled at 2, 6 and 12 weeks. There is a trend in the R6/2 striatal and cortex profiles for more gene expression changes as the mice age.
Another general trend is the expected finding that more genes are labeled as significant as the number of replicates increases, this is shown most clearly in the DRPLA and N171 models where the striatum
experiments were performed with N=2 and the cerebellum experiments with N =4.
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with f;_1(x — y)=0 if |x — y| > (i X 20). The quantity f(x) is
the fraction of times that the sum of NV independent counts is x.
Set

g(x) =Y fi(») fori=1,...,N and

y=x

x = —(i x 20), ..., (i x 20).

The quantity g,(x) is the fraction of times the sum of N
independent counts is smaller than x. Computing g;(x)/(N x 20)
provides P-values.

Assigning P-values to experimental differences

The algorithm can be summarized as follows.

1. For each gene g, let D, be the mean Average Difference
over all arrays, and assign a bin, or decile, to each gene based
on its mean signal. Our convention is that bin 1 contains the
lowest-signal genes and bin 10 the highest.

2. For each gene g, let R, be the average over all experiment-
to-baseline comparisons of the Increase Ratio minus the
Decrease Ratio.

3. There are separate tables for each tissue, type of array and
N. To assign a P-value for R,, select the appropriate table and
bin for gene g. Cutoff values for R, are found in this column.
Approximate P-values are found by reading across to the
leftmost column. To illustrate, if a striatum gene in bin A10
N=2 on the MullK A array has R,=0.51, then a P-value
range of 0.001 <P <0.005 is assigned. A computer script to
map the P-value estimates to the data is in the Supplemental
Data (www.neumetrix.info).

If the number of experiment and baseline samples is
different, then using the smaller of the two numbers as N will
assign more conservative P-values. When determining what
P-value to use as a cutoff for selecting interesting genes, one
should keep in mind that approximately a fraction P of all
genes would be indicated as significant at a particular level. For
example, if 0.05 were chosen as the P-value cutoff, then
0.05 x 6600 or 330 genes would be expected to appear
significant by chance alone on each Mul 1K array. If at this
significance level 500 genes are observed, then a false-
discovery rate of 330/500=0.66 would be expected. In
general, it is recommended that one use a more conservative
P-value than 0.05. To be very conservative, a multiple
comparison correction, such as the Bonferoni or Westfall-
Young (26) can be applied. A less conservative P-value can
be used when selecting a group of genes for further analysis.
The false-discovery rate (13) as described above can now guide
the choice of P-value.

When applying the algorithm to real data for small N, R, is
typically calculated by averaging over all possible combina-
tions of experiment (E)-to-baseline (B) comparisons. The
rationale behind this is to minimize the effects of experimental
bias due to a single outlying array or sample and not discard
data in cases where the experiment and control samples have
different numbers of replicates. Formally, the reference
distribution is valid for the average of E1 — Bl and
E2 — B2. However, the correlation between this average and
the average of E1 — B2 and E2 — B1 is usually very high
(~0.9). If anything, inclusion of the additional comparisons

leads to P-values that are slightly on the conservative side. For
these analyses, if N<4, we performed all the possible
comparisons and averaged. If N> 5, we selected and compared
arbitrary pairs of samples and averaged. The exceptions were
with sets of replicates that were generated at different times,
since it was observed that technical variance began to
contribute more than desired to the observed differences. In
those situations, only comparisons between experiments and
baselines generated in parallel were used in the computations.

Sample preparation and image analysis

Sample preparation and array processing were done per
manufacturer’s specification (9). Prior to analysis, normali-
zation was performed by global scaling, setting the target
intensity of each array to 1000 arbitrary intensity units, with all
other parameters at the default levels.

ACKNOWLEDGEMENTS

We thank Mark Aronszajn for writing computer script, Cassie
Neal and Jeff Delrow of the FHCRC array facility for expert
technical assistance and helpful discussions, Third Millennium
for database development, and the Hereditary Disease Array
Group. These studies were funded by the Hereditary Disease
Foundation Cure HD Initiative (J.M.O.) and the National
Institutes of Health (NS42157 to JM.O. and CA74841 to
C.K)).

REFERENCES

1. Chan, E.Y.W., Luthi-Carter, R., Strand, A.D., Solano, S.M., Hanson, S.A.,
DeJohn, M.M., Kooperberg, C., Chase, K.O., DiFiglia, M., Young, A.B.
et al. (2002) Increased huntington protein length reduces the severity of
polyglutamine-induced gene expression changes in mouse models of
Huntington’s disease. Hum. Mol. Gen., 11, 1939—1951.

2. Luthi-Carter, R., Hanson, S.A., Strand, A.D., Bergstrom, D.A., Chun, W,,
Peters, N.L., Woods, A.M., Chan, E.Y.W., Kooperberg, C., Young, A.B.
et al. (2002) Dysregulation of gene expression in the R6/2 model of
polyglutamine disease: parallel changes in muscle and brain. Hum. Mol.
Gen., 11, 1911-1926.

3. Luthi-Carter, R., Strand, A.D., Hanson, S.A., Kooperberg, C., Schilling, G.,
La Spada, A.R., Merry, D.E., Young, A.B., Ross, C.A., Borchelt, D.R. ef al.
(2002) Polyglutamine and transcription: gene expression changes shared
by DRPLA and Huntington’s disease mouse models reveal context-
independent effects. Hum. Mol. Gen., 11, 1927-1937.

4. Sipione, S., Rigamonti, D., Valenza, M., Zucato, C., Pritchard, J.I.,
Kooperberg, C., Olson, J.M. and Cattaneo, E. (2002) Early transcriptional
profiles in huntington-inducible striatal cells by microchip analysis. Hum.
Mol. Gen., 11, 1953-1965.

5. DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, PS., Ray, M.,
Chen, Y., Su, Y.A. and Trent, J.M., (1996) Use of a cDNA microarray to
analyze gene expression patterns in human cancer. Nat. Genet., 14,
457-460.

6. Iyer, VR., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C.,
Trent, J.M., Staudt, L.M., Hudson, J., Jr, Boguski, M.S. et al. (1999) The
transcriptional program in the response of human fibroblasts to serum.
Science, 283, 83-87.

7. Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V,

Che, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H. ef al.
(1996) Expression monitoring by hybridization to high-density oligonu-
cleotide arrays. Nat. Biotechnol., 14, 1675-1680.

8. Lipshutz, R.J., Fodor, S.P, Gingeras, T.R. and Lockhart, D.J. (1999) High

density synthetic oligonucleotide arrays. Nat. Genet., 21(Suppl.), 20-24.



11.

13.

14.

. Affymetrix Microarray Suite User Guide Version 4.0 (2000) Affymetrix,

Santa Clara, CA.

. Luthi-Carter,R., Strand, A., Peters, N.L., Solano, S.M., Hollingsworth, Z.R.,

Menon, A.S., Frey, A.S., Spektor, B.S., Penney, E.B., Schilling, G. ef al.
(2000) Decreased expression of striatal signaling genes in a mouse model
of Huntington’s disease. Hum. Mol. Gen., 9, 1259-1271.

Olson, J.M., Asakura, A., Snider, L., Hawkes, R., Strand, A., Stoeck, J.,
Hallahan, A., Pritchard, J. and Tapscott, S.J. (2001) NeuroD2 is necessary
for development and survival of central nervous system neurons. Dev. Biol.,
234, 174-187.

. Porter, J.D., Khanna, S., Kaminski, H.J., Rao, J.S., Merriam, A.P,

Richmonds, C.R., Leahy, P, Li, J., Guo, W. and Andrade, FH. (2002) A
chronic inflammatory response dominates the skeletal muscle molecular
signature in dystrophin-deficient mdx mice. Hum. Mol. Genet., 11,
263-272.

Storey, J.D. (2002) A direct approach to false discovery rates.

J. R. Statist. Soc. B, 10, 479-498.

Lonnstedt, I. and Speed, T.P. (2001) Replicated microarray data. Statist.
Sinica, 12, 31-46.

. Tushner, V., Tibshirani, R.J. and Chu, C. (2001) Significance analysis of

microarrays applied to ionizing radiation response. Proc. Natl Acad. Sci.
US4, 98, 5116-5121.

. Baldi, P. and Long, A.D. (2001) A Bayesian framework for the analysis of

microarray expression data: regularized 7-test and statistical inferences of
gene changes. Bioinformatics, 17, 509-519.

. Kooperberg, C., Sipione, S., LeBlanc, M.L., Strand, A.D., Cattaneo, E. and

Olson, J.M. (2002) Evaluating test statistics to select interesting genes in
microarray experiments. Hum. Mol. Gen., 11, 2223-2232.

18

19.

20.

2

—_

22.

23.

24.

25.

26.

Human Molecular Genetics, 2002, Vol. 11, No. 19 2221

. Novak, J.P, Sladek, R. and Hudson, T.J. (2002) Characterization of
variability in large-scale gene expression data: implications for study
design. Genomics, 79, 104—113.

Yang, Y.H., Dudoit, S., Luu, P. and Speed, T.P. (2001) Normalization for
c¢DNA microarray data. In Bittner, M.L., Chen, Y., Dorsel, A.N. and
Dougherty, E.R. (eds), Microarrays: Optical Technologies and Informatics.
Proceedings of SPIE, San Jose, CA, vol. 4266, p. 31.

Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R.,
Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D. et al. (2000)
Functional discovery via a compendium of expression profiles. Cell, 102,
109-126.

. Pritchard, C.C., Hsu, L., Delrow, J., Nelson, P.S. (2001) Project Normal:
defining normal variance in mouse gene expression. Proc. Natl. Acad. Sci.
US4, 98, 13266-13271.

Fan, J. and Gijbels, 1. (1996) Local Polynomial Modeling and its
Applications. Chapman & Hall, London.

Li, C. and Wong, W.H. (2001) Model-based analysis of oligonucleotide
arrays: expression index computation and outlier detection.

Proc. Natl Acad. Sci. USA, 98, 31-36.

Li, C. and Wong, W.H. (2001) Model-based analysis of oligonucleotide
arrays: model validation, design issues and standard error application.
Genome Biol. 2001, 2, RESEARCHO0032.

Affymetrix Microarray Suite User Guide Version 5.0 (2001) Affymetrix,
Santa Clara, CA.

Dudoit, S., Yang, Y.H., Callow, M.J. and Speed, T.P. (2002) Statistical
methods for identifying differentially expressed genes in replicated cDNA
microarray experiments. Statist. Sinica, 12, 111-139.



