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A randomization procedure to evaluate the significance level and the false-discovery rate in complex
microarray experiments is proposed. A related graph can be used to compare different test statistics that can
be used to analyze the same experiment. This graph is closely related to receiver operator characteristic
(ROC) curves. The proposed method is applied to a subset of the data from a cell-line experiment related to
Huntington’s disease. A small simulation study compares the effectiveness of the proposed procedure with
the significance analysis of microarrays (SAM) procedure.

INTRODUCTION

DNA microarray experiments make it possible to study the
variation of expression for many genes simultaneously. The
most common types of microarray experiments are either
unstructured, in which a large number of biological samples are
compared with each other (1), or situations in which two
groups of samples are compared (2). For the former type of
experiments, the most common methods used for analysis
are clustering and related methods (3.,4); for the latter types,
common methods involve #-statistics and variations thereof (5,6).
ANOVA models are discussed in (7).

In this paper, we are concerned with more complicated
designs: designs in which more than one experimental factor
varies, and some of those factors (including the main one of
interest) may have more than two levels. In traditional statistics,
the most common way to analyze such data is to build a
regression or ANOVA model and to test for the appropriate
effects. When there is no clear best model, different models are
often examined and compared using (graphical) model
diagnostics or summary measures, such as the Akaike
Information Criterion (AIC) (8), which compare how different
models fit the data.

Many of these techniques would be quite appropriate if genes
would be analyzed one at a time. Some techniques (e.g. ANOVA
models, t-tests, F-tests) can easily be carried out for many genes
simultaneously, since the design matrix is typically the same for
all genes. Model selection and diagnosis, however, translate less
easily to microarray experiments, since these methods often

involve visual inspection of modeling results, which is
impractical when there are more than a few genes.

Even after selecting a model, a complication with #-tests and
other procedures yielding P-values is that multiple comparison
corrections need to be made, since many tests are carried out
simultaneously. The most common multiple comparisons
correction is the Bonferoni correction. Dudoit ez al. (9) discuss
a variety of other multiple comparison corrections. An entirely
different approach is advocated by Storey (10). Rather than
adjusting P-values for individual genes, he suggests to control
the false-discovery rate (FDR), which is the fraction of false
positives among the genes that are called changed. The relation
of the proposed approach to the FDR is discussed further in the
Methods section.

In this paper, a graphical tool based on randomization to
compare various test statistics (or model summaries) for
analyzing complicated microarray experiments is proposed.
This tool has similarities to receiver operating characteristic
(ROC) curves (11) and is related to the FDR.

RESULTS

Data and questions

The proposed methodology is illustrated on a subset of a
microarray study of cell line experiments (12) related to
Huntington’s disease. In this paper, data on three cell lines
that have been engineered with a construct encoding the first
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N548 amino acids of the Huntington gene and an expansion
in the polyglutamine tract (13) are used. In particular, we use
data on the cell lines HD12(Q67), HD40(Q118) and
HD43(Q105). [The complete data set used in (12) contains
data on several additional cell lines.] For each cell line, all
experiments were carried out independently twice.
Potentially, activation of the Huntington gene can increase
or decrease the expression of other genes (14,15). Let s=0
be the time that the gene is induced. For each of the six
experiments, there are measurements using gene chips (16)
at times s=-—6, 0, 12, 24, 48 and 72 hours. We are
interested in identifying genes that change their expression
pattern over time. There are a number of caveats in carrying
out a standard analysis. First, as HD12(Q67), HD40(Q118)
and HD43(Q105) lines expressing the mutant HD constructs
were independently constructed and the experiments of each
line were independently carried out, it was expected that
some gene expression changes would represent generalizable
findings (changes in more than one experiment) whereas
others would represent changes that are specific to a single
cell line. The changes in expression pattern should, however,
be consistent among both experiments carried out with the
same cell line. Ideally, we should like to have the same
effect each time an exogenous gene is inserted in a cell.
However, these clonal cells could respond in different ways
to an exogenous stimulus. As such, the requirement that the
(small) changes in a gene be observable in all three cell lines
may be too stringent. In general, we should like to see a
similar pattern in at least two of the cell lines, to prevent
identification of changes that are not reproducible. Second,
not all changes in the expression pattern necessarily happen
at time s=0: some genes may only change in expression
after, say, 12 or 24 hours; the expression patterns of other
genes may change smoothly; potentially the timing may be
different between cell lines. For these two reasons, a
standard statistical model may not be appropriate, and
various modeling options need to be considered.

In the Methods section, we describe an approach to assess the
significance of a test statistic that is associated with a model for
the expression of a single gene. An example of such a model is
discussed at the beginning of the Methods section. As set out in
the Introduction, for a microarray experiment with a
complicated design, like the one we are considering in this
paper, it is not always clear which model to use. Thus, we must
choose a model from a set of competing models, after which we
may want to choose a cutoff for the test statistic to control the
FDR. Model selection using the true-discovery plot is an
iterative process. Thus, we shall present models based on #-tests
and regression-type models for the cell line data, and
compare the result as one might in an interactive modeling
session.

Randomization

For each of the models that we considered, we made inference
using randomization, for which we randomly permuted all time
points. We report results using only 100 permutations to
evaluate test statistics. While this is a small number for
computing extreme P-values accurately, it is ample for the
comparison of different test statistics; in fact, results based on

25 permutations are virtually indistinguishable from those
shown here.

Modeling using #-tests

We define two functions that are used to select among a few
test-statistics. Let

max;{|#|}
—max;{|#]}

L . if max;{|¢|} = max;{t;},
Pl =1, ’1)_{ otherwise,
and let

if |med;{x;}| = med;{|x;|},
otherwise.

[med;{x;}|

¢(Xi,i=l,2,3)={0

The function p(-) selects the absolute largest from a set of test
statistics, keeping the original sign, and ¢(-) selects the median
of the absolute value of three test statistics, provided that the
signs of the test statistics are consistent.

Let wy;, with s € {12, 24, 48, 72}, i=1, 2, 3 referring to
cell line, be the regular ¢-statistics comparing
log(Average Differences) y,;; and yg» with yoi1, Y_6i1, Yoi2
and y_g;. Let

T, = min |p(wy, s € {12, 24, 48, 72})|.

Thus, p(wy;, s € {12, 24, 48, 72}) is the largest #-statistic for
cell line i, and T, takes the smallest of these statistics. The true-
discovery plot for 7, (Fig. 1) shows that out of the 100 genes
with the largest 7, only ~10 are expected to be true positives.
Alternative test statistics constructed from ¢-statistics gave
similar results. The reason for the bad performance of regular
t-statistics is likely that these #-statistics have very few degrees
of freedom, and thus have variance estimates that are very
noisy.

Therefore, we modeled the variance of log(Average
Difference) from replicates at the same time point as a function
of the mean of the log(Average Difference) for these
two experiments. This relation (Fig. 2) shows that the variance
decreases with expression level.

Let #,;, with s € {12, 24, 48, 72}, i=1, 2, 3 referring to cell
line and j=1, 2 referring to experiment, be the f-statistics
comparing log(Average Differences) y,; with yo; and y_g;
using the smoothed estimate of the variance (Fig. 2) instead of
the usual estimate of the variance. Let v;= p(min;{z;},
s € {12, 24, 48, 72}) for each i. The statistic v; will be large
if there is a times s > 12 for which both repeats j of cell line i
are significantly different from the baseline measurements at
times s =0 and —6.

The first two test statistics that we consider are

Ty = min |v;]
1

and
T.=¢(v,i=1,...,3);

thus, for 7}, all three cell lines must show a significant result,
where for T, we like two of the three cell lines to show a
significant result, as measured using v;.
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Figure 1. True-discovery plot for three test statistics based on the #-test. This plot shows the estimated number of true-positive genes when a particular number of
the most significant genes are selected. Large estimated number of true-positive genes are preferred, and the best possible procedure would be one for which the
true-discovery plot coincides with the ‘no false calls’ line. Of the four procedures shown in this plot, 7}, performs best. The number of true-positive genes is quite

low even for T}, though.

Let #; be the #-statistics, using the variance estimate from
Figure 2, comparing log(Average Differences) y;; and y,;» with

Yoil> Y—6i1> Yoz and y_gp. Let

T, = min|p(ty, s € {12, 24,48, 72})].
1

The difference between 7}, and T, is that for 7, we compute the
significance between baseline and follow-up times separately
for both repeats, requiring consistency in combining them,
while for 7; we combine both repeats in one two-sample test.
Otherwise, both are using f-statistics with smoothed variances
and require consistency between all three cell lines.

In Figure 1, we plot the true-discovery plot for 7}, T, and 7.
The straight line labelled ‘no false calls’ in this figure
corresponds to m—m* =m. The best test statistic is the one
for which the true-discovery plot is closest to this line. We note
that all three test statistics do in fact have a high rate of
suspected false positives. For the best of these three statistics,
T, ~40% of the 100 most significant genes may be true

positives. Considering more genes as significant does not
appear to yield many more true positive genes.

It may be counterintuitive that the true-discovery plots
(Fig. 1) can be decreasing. However, this is partly due to the
inequalities in Equations 5 and 6 (see the Methods section).
As o becomes larger, the number of significant genes
increases while the inequality becomes less sharp, and this
is also because we estimate o using simulation. A more
complicated randomization scheme, comparing order statistics
(see e.g. 9, 18), can circumvent this. We shall consider the
advantages and disadvantages of both approaches in the

Discussion.

Regression models

We concluded from Figure 1 that the use of #-tests with smooth
estimates of the variance, while yielding better results than
regular #-tests, failed to select differentially expressed genes, as
the number of true discoveries was too low. Therefore, we now
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Figure 2. Smooth estimate of the residual variance as a function of expression level. From each pair of replicate observations of the expression for each gene at a
particular time point for a particular cell line, we obtain a one-degree-of-freedom estimate of the residual variance 2. We smooth those estimates usinga L oess
smoother (17) as a function of the expression level, as measured by the mean average difference.

discuss test statistics using regression models. Consider models
of the form

yar =B + BV = 2+ BPZ(6) + e i=1.2.3. 1
For each cell line 7, this model combines data from both repli-
cates, allowing different intercepts f§’ when j=1 and
BP+B when j=2. Depending on the choice of Z(s), we
can search for different gene expression patterns in the data.

For test statistic 7,, we use the model in Equation 1, with
Z(s)=Ind(s > 12). Let #; be the (z-)test statistic corresponding
to Y in Equation 1 for cell line i. This choice of Z(s) looks for
a difference between times s <0 and s > 12, and, in fact, the
t-statistic of Y would be the same as the usual #-statistic
comparing s <0 with s > 12 if the term f{’Ind(; =2) was not
in Equation 1. We set

T, = miin{|t,»|};

that is, we look for consistency between all three lines.

The test statistics 7, and T, are defined similarly to T, but
with Z(s)=Ind(s >24) and Z(s)=Ind(s >48), respectively.
Thus, these two statistics also look for jumps in the expression
level, but between times s =12 and s =24 for Trand between
times s=24 and s=48 for T, Test statistic 7, uses

Z(s)=s x Ind(s > 0), so that it looks for a linear trend in the
log(Average Difference) after time s =0.

Note that 3, can be either positive or negative in each of the
models, so both genes whose expression increases and genes
whose expression decreases are captured. In Figure 3, we show
the true-discovery plot for 7j (the best of the previously
examined statistics), T, Ty T, and T},. From this figure, we note
that, except for 7, all regression models perform much better
than 7). The test statistics using a linear relation between time
and log(Average Difference), 7}, seems to perform best. Out of
the 100 most significant genes, ~75% are expected to be true
positives, while out of the first 250, ~68% are expected to be
true positives for 7). This suggests that the changes in
expression at time s=12 are still modest, and that most
changes occur later in time.

We proceeded with examining alternative ways to use the
regression model with Z(s)=s x Ind(s > 0). In particular, set
T;=¢(t;, i=1, 2, 3) using the same #-statistics used to create
Ty, and let 7; be the absolute value of the test statistic
corresponding to the model in Equation 2 (see the Methods
section). Thus, for T}, we required all three cell lines to show a
(linear) effect in log (Average Difference); for 7;, we required
two of the three cell lines to show such an effect; and for 7}, we
combine all data, and therefore model the change for each cell
line with the same slope. In Figure 4, we show the true-
discovery plot for T}, T; and T;. From this figure, we notice that
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Figure 3. True-discovery plot for four test statistics based on a regression model and the best test statistic based on a #-test. The test statistics 7, ..., T}, are all

based on the regression model in Equation 1 but use different forms of Z(s). The test statistic 7}, was the best test statistic from Figure 1. The best test statistic in this
plot is clearly 7}, which uses Z(s) =s x Ind(s > 0). The plot suggests that for 7}, ~75% of the significant genes are true positives.

using the ¢-function (essentially requiring two of the three cell
lines to be in agreement), as is done for 7}, yields a slightly
larger fraction of positives than combining all three cell lines.
For the other functions Z(s), used for 7., Ty and T,, we also
found that using the ¢-function yielded a larger estimate of
true-positive genes found than either using one regression
model or requiring all cell lines to be consistent.

For each design, we shall have to select a randomization
scheme. For our experiment, we randomized the times. As an
alternative, in Figure 5, we show true-discovery plots for 7;
using the randomization scheme where the times were
randomized and an alternative randomization scheme in which
all 36 arrays were randomized. From this plot, we notice that
the complete randomization scheme seems to suggest a larger
fraction of true positives. However, this is an artifact of using
complete randomization: as there is experiment-to-experiment
and cell-line-to-cell-line variation, randomization using com-
plete randomization yields larger variance estimates for the
randomized results, and smaller test statistics. Thus, by using
the incorrect randomization scheme, we would incorrectly
assume that there were more true-positive genes than are
actually present.

Simulation

We carried out a small simulation study to validate the
procedure of computing a-levels using randomization and to
investigate the power for detecting genes that change
expression level. Let Y;; be the log expression level for the
jth replicate of the ith gene for class ¢. For our simulation, we
generated data for 250 genes, with a two-class design and
four replicates for each class. For 230 of the 250 genes, the
simulated log expression ratio was independent standard
normal data for both classes. For the remaining 20 genes,
Y,']_/':Z”j and Yi2j :M,' +Z,~2j, for l:231, . .,250,
j=1,...,4, with all Z independent standard normal pseudo-
random numbers and M; different for each simulation set-up.
The values for M; for the different simulations are summar-
ized in Table 1.

We employed a regular #-test as our test statistic. We carried
out all (ﬁ) = 70 possible randomizations to select a cutoff value
that has the correct a-level among the randomizations. For each
gene, we then checked whether or not it was called significant.
We repeated this procedure 500 times. In Table 2, we present
the fraction of times that genes were called significant. We
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Figure 4. True-discovery plot for three test statistics based on a regression model that uses time linearly. The three test statistics in this plot all use
Z(s)=s x Ind (s> 0), but they combine the three cell lines in different ways. There is not much difference in performance between the three test statistics.
The test statistic 7;, which uses the second largest #-statistic among the three for the different cell lines, is marginally better than 7}, and 7.

distinguish between the first 230 genes (we should like a
fraction o of those to be significant) and the last 20 genes
(except for set-up A, we should like as many genes as possible
to be significant).

As a comparison, we carried out the same simulation using
our own implementation of significance analysis of microarrays
(SAM) (18). (The Excel format of the official SAM software
did not allow us to use it for a large simulation.) The
significance calls in SAM are based on a quantity A, the
difference between the sorted #-statistics (the variance of these
statistics are slightly inflated in SAM) and the sorted #-statistics
of the randomizations. Further details can be found in (18) and
the online website for SAM.

While SAM is intended to control the FDR, we can also
control o by selecting the parameter A, such that among the
simulations at most a fraction o of the genes is declared
significant. We did not impose a cutoff on the expression ratio,
as is suggested as a secondary threshold in the SAM paper.
Again, we used all 70 possible randomizations. The results for
our implementation of SAM can be found in Table 3.

To investigate the FDR, we counted how many out of the &
most significant genes were among the last 20 genes for which

there was a signal (except for set-up A, where there was no
signal at all). The results are shown in Table 4. Note that when
k=40, the best possible FDR is 0.5.

DISCUSSION

There are many different (regression) models possible for the
Huntington’s disease data; we reported on some of the ones we
explored. The model in Equation 2 (see the Methods section),
but fitted separately for each cell line, resulted in the best true-
discovery plot. The reason that a linear model fits the data best
may be that changes occur linearly, or, alternatively, that
changes happen at different times for different genes, where the
linear model effectively averages these times. It is quite
possible that some other models (e.g. random-effects models)
yield equally good results. An advantage of the models that we
considered is that all models can be fit simultaneously to all
genes, so that the randomization procedure is fast.

Which type of models are considered clearly depends on the
biological context of the problem. In the Huntington’s disease
example used in this paper, changes in gene expression are
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expected after the gene is induced at time s = 0. Those changes
could be gentle, or more abrupt—hence the linear model that
averages-out effects yields the best results. Clearly, for other
types of experiments, other types of models may be more
appropriate; for example, for cell cycle data, we could imagine
using the single-pulse model (19).

The approach that we present in the Methods section to
evaluate test statistics is simple and requires no additional
software. Since it only uses a randomization procedure, and no
comparison of order statistics, as do Dudoit et al. (9) and
Tushner et al. (18), it may be intuitive for non-statisticians.
From the simulation (Table 2) we note that the fraction of genes
indicated to be significant is almost exactly « and that when
|M;| > 2 the t-test appears quite powerful.

The fact that we do not use order statistics is the main
difference between our procedure to select significant genes
and SAM. It appears clear from Table 3 that for SAM it is
much harder to control «. We believe that this is caused by the
procedure in SAM to identify which genes are called
significant, described in the last two paragraphs on page
5117 of the SAM paper (18). This procedure can sometimes

cause large numbers of genes to be called significant at the
same o (or FDR) level when A is changed. Because the SAM
procedure does not match the intended w«-levels, it is hard to
compare the power. We do note that for most set-ups the actual
o is close to the 0.01 when the nominal « =0.001 and that the
actual « is close to the 0.05 when the nominal o =0.01. As
such, we can roughly compare the 0.001 and 0.01 lines for the
20 genes with signal for SAM (Table 3) with the 0.01 and 0.05
lines, respectively, for the 20 genes with signal in Table 2,
suggesting that both procedures have comparable power. We
note from Table 4 that SAM has a slightly lower FDR than the
procedure proposed here, but the differences are very small.

Since the difference between the ordered test statistics on the
actual data and the (average) ordered test statistics on the
randomized data is not necessarily monotone, the SAM
procedure ends up being very granular, calling genes sig-
nificant in groups. This is a main reason why it is hard to
control the o level using SAM.

The true-discovery plot proposed in this paper is intended as
a diagnostic tool for evaluating test-statistics. It is not intended
as an alternate estimate of the FDR. In fact, because of the
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Table 1. Simulation set-ups

Definition of M;

A M;=0,i=231,...,250
B My=—1,i=231,...,240; M;=1, i=241, ...,250
C My=-2,i=231,...,240; M;=2, i=241, ...,250
D
E
F

M,=—5,i=231,...,240; M,=5, i=241, ...,250
M;=5,i=231,...,250
M,=i—230,i=231, ...,240; M;=251 — i, i=241, ...,250

The M; are the differences in log(gene expression) between the two groups in
the simulation study for gene i. For genes 1, ..., 230, there is no difference
between the control and experimental group. Standard normal noise is being
added to the gene expression level for both the control and experimental group.

inequalities appearing in Equations 5 and 6 (see the Methods
section) an estimate of the FDR obtained using these equations
would be biased downwards. See (20) for a better estimate of
the FDR. In fact, the true-discovery plot is very similar to the
ROC curves used to evaluate different testing procedures (11).
In particular, the true-discovery plot plots m — m* versus m,
while an ROC curve would plot (m — m*)/n versus m*/n, the
estimated fraction of true positives versus the estimated fraction
of true negatives. Using ROC curves, we should prefer the test
statistic with the largest ‘area under the curve’. Clearly, test
statistics that are ‘good’ on the true-discovery plot will be good
on the ROC curve, and vice versa. (In fact, we could formalize
the selection of the test statistic using the true-discovery plot,
by selecting the test statistic that has the largest area under the
true discovery plot over the area 0<m<k, for some maximum
number k of genes of interest.) We feel that for DNA
microarrays, the total number of significant genes, m, is the
quantity that needs to be controlled, since this is the number of
follow-up experiments, such as northern blots, that need to be
carried out.

A key assumption for our approach to evaluating test
statistics, as well as those of Dudoit et al. (9) and Tushner
et al. (18) is that, after both explicit normalization and the
implicit normalization that the computation of a test statistic
adds to this, the test statistic for any one gene can be compared
with the test statistics for other genes. This exchangability
condition is somewhat suspect when the variability of the test
statistic differs from the expression level—for example because
there are more outliers when expression levels are low, causing
more large test statistics. One approach to remedy this would
be to ‘bin’ genes by expression level, and only use the test
statistics for genes that are in the same bin. Another,
complementary, possibility is to use robust test statistics, such
as those proposed by Lonstedt and Speed (21), that inflate the
variance estimate for #-statistics.

METHODS

Randomization

Assume that we want to use a particular model to identify
genes for which the expression pattern may have changed and
that this model yields some sort of test statistic. If this test

Table 2. Fraction of times that genes were called significant during the
simulations

o Set-up
A B C D E F

230 noise genes:

0.001 0.0012 0.0012 0.0011 0.0002 0.0017 0.0001
0.01 0.0104 0.0103 0.0100 0.0083 0.0127 0.0086
0.05 0.0509 0.0508 0.0497 0.0516 0.0549 0.0513
20 genes with signal:

0.001 0.0012 0.0095 0.0604 0.3805 0.3598 0.4172
0.01 0.0091 0.0657 0.3060 0.9864 0.9364 0.7918
0.05 0.0495 0.2284 0.6488 1.0000 0.9520 0.8832

For the set-ups described in Table 1, we carried out 500 simulations of four
control and four experimental microarrays with 250 genes. To determine
significance, a t-statistic, with significance levels set using the randomization
procedure described in the Methods section, was employed. Since for genes
1, ...,230 the M; were 0, a fraction o of these genes should be significant,
while, except for set-up A, for the 20 genes with signal (=231, ...,250) as
many genes as possible should be significant.

statistic is extreme (say large), then the gene is called
‘significant’. An example of such a test statistic for one gene
for the Huntington’s disease data described above would be the
t-statistic for ff; in the regression model

6

yi=Y_ B Ind(i =)+ Byls x Ind(s > 0)] + €, 2
j=1

where i=1, ...,6 refers to the six experiments that were
carried out at each time point (three cell lines times two
replicates) and s € {—6, 0, 12, 24, 48, 72}, the times at which
experiments were carried out, yg; is the expression level, as
measured by the logarithm of the Average Difference, provided
by the GeneChip software, and Ind(x) is the usual indicator
function [i.e. Ind(x)=1 is x is true, and 0 otherwise]. The
interpretation of the model in Equation 2 is that for each cell
line and each experiment, there is a different baseline level f8;,
and that after times s=0 there is a linear trend in the
expression with the same slope f3; for all cell lines. Statistical
significance of f3;, as measured by its #-statistic, would measure
whether there is evidence of a linear slope.

The model in Equation 2 is an example of one that may be of
interest when analyzing the experiment; in the Results section
many more possible models are considered. Typically, the
significance of each such model would be summarized by a
single test statistic. An important question is to determine a
cutoff for such a test statistic. In traditional (parametric)
statistical models, this cutoff is determined such that the
probability of identifying a gene as having changed, given that
it actually has not changed, to be a prespecified level o by
referring to a known reference distribution (e.g. Z> 1.96). In
the context of a microarray experiment, with many thousands
of genes being examined at the same time, it is more useful to
identify a cutoff value that controls the fraction of the genes
that are significant while they are in fact unchanged. This was
identified as the FDR (10).

Let #; be the test statistic for the ith gene (i=1, ...,n)
using the original data. Assume that r times the arrays



Table 3. Fraction of times that genes were called significant during the
simulations for SAM
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Table 4. False-discovery rate for various numbers of selected genes during the
simulations

o Set-up
A B C D E F

230 noise genes:

0.001 0.0011 0.0014 0.0021 0.0000 0.0010 0.0000
0.01 0.0110 0.0198 0.0449 0.0670 0.0650 0.0674
0.05 0.0543 0.1037 0.1604 0.1604 0.1354 0.1590
20 genes with signal:

0.001 0.0010 0.0156 0.1641 0.4396 0.4318 0.4454
0.01 0.0110 0.1112 0.6328 1.0000 0.9524 0.8993
0.05 0.0536 0.2978 0.8450 1.0000 0.9562 0.9276

Number £ selected Set-up

B C D E F
Procedure proposed in this paper:
10 0.686 0.295 0.008 0.053 0.004
20 0.736 0.420 0.044 0.094 0.176
40 0.789 0.596 0.500 0.523 0.545
SAM:
10 0.658 0.227 0.001 0.026 0.000
20 0.713 0.382 0.014 0.058 0.160
40 0.779 0.586 0.500 0.519 0.537

This table provides the same information as Table 2, when the significance
levels for the test statistic are determined using the SAM (18) procedure, which
uses randomizations and order statistics, instead of the randomization procedure
described in this paper.

are randomized yielding test statistics #¥ (i=1,...,n,
j=1, ...,r). If the experiment is large enough, we can, for a
gene i, compare f; with the £ for the same gene, and the
fraction of times that ##>; is the P-value for gene i. However,
many complicated microarray experiments will not have
enough replicates to allow for an appropriate randomization
scheme that allows r to be large enough to estimate extreme P-
values separately for each gene. For example, in the experiment
used in this paper, we randomize over the time s, so that only
6!/2 =360 unique randomizations are possible (the division by
2 is necessary since s =—6 and s =0 are interchangeable in
this experiment).

For very small P-values, many more randomizations are
needed: for example, for a Bonferoni correction, the 0.05/n
quantile of the randomization distribution needs to be estimated.
To estimate this with any accuracy, at least ~51/0.05 = 100n
randomizations are needed. Even when enough randomizations
are possible, computation time may limit the number of
randomizations. Thus, with few replicates and without making
a parametric assumption, data for different genes will have to be
combined in order to estimate extreme P-values.

Instead, we assume that under the null hypothesis of no gene
changes, the distribution of the test-statistic is the same for each
gene. Now an estimate of the P-value for each gene using all
t# is

> Ind(t; > 1)

&,‘ :d(t[) ZMT 3

This approach allows computation of more-extreme P-values
using as few as 100 randomizations. The idea of using test
statistics of one gene for evaluating other genes was also used
to compute the Westfall-Young step-down P-values (9), and for
SAM (18). Note that the assumption of using Equation 3
(namely, that under the null hypothesis of no change, the
distribution of the test-statistics is the same for each gene) is a
considerably weaker assumption than the assumption that the
distribution of the expression of all genes is the same.

Instead of tuning test statistics to select the significance level o, the k£ genes with
the largest test statistic are selected. This table displays the average fraction of
these k that have in fact no changes (i.e. i=1, ...,230). Any gene i with
i=1,...,230is in fact a false discovery. For k=40, it is not possible to have a
false-discovery rate of under 50%, since there are only 20 genes with true
changes in the simulation. The top half of the table uses #-statistics; the bottom
half of the table uses the statistic A from SAM (18).

P-values and the false-discovery rate

If there are no changes in expression ratio, then approximately
a fraction o of the genes have a P-value <. If a fraction py of
the genes have changes that are large enough that they can be
detected with the experiment, then approximately a fraction
pot+(1—po)a = o+po(1—a) of the genes have a P-value <u.

Suppose that out of n genes, m are significant at a level of a.
This yields

m
;%O(“rpo(l _O()v 4
so that
mn—o m
PR ———— > —— . 5
1 —o n

Thus, out of the m significant genes, at least about (m—an)/
(1—o) should be true positives.

Using the randomization procedure described above, let 7' be
a particular cutoff level, and let & = a(7T) be the corresponding
significance level (see Equation 3). Let m* be the average
number of genes among the randomized data sets that exceeds
a particular the same cutoff level T for the test statistic. Note
that m* = an Then an estimate of the number of true positives
that we expect among the m genes having test statistics
exceeding T is

mn—a m—m*
— = >m
1—a 1 —m*/n

npo ~ n

In many situation, the interest is not in selecting one (or
maybe a few) genes for which we are convinced that there is a
change in the expression level, but rather we want to identify a
longer list of genes that have potential changes in expression
level. In making a decision how many genes to select, a critical
ingredient is the expected number of true-positive genes among
this list. Therefore, we examine a graph of the expected number
of true-positive genes, m—m*, versus the total number of
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significant genes, m, as the cutoff level of the test statistic 7 is
varied. Such a graph is also a tool to select among test statistics,
since test statistics for which the graph is higher for a particular
value of m are more powerful in selecting a list of m genes. We
refer to this plot as the ‘true-discovery plot’.

Storey and Tibshirani (20) point out that (1 — po)m™*/m is an
estimate of the FDR, and discuss a way to obtain an estimate
for py. In particular, they point out that it is advantageous to
estimate p, using a smaller cutoff value for the test statistic than
T, which is the cutoff used to determine significance. Their
argument does consider all changes—not just those that are
large enough to be detected with the actual experiment, which
is the starting point for Equation 4. Our approach, in fact, will
lead to a slightly conservative analysis, in which we may
slightly overestimate the number of false positives.
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