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Unraveling the nature of genetic interactions is crucial to obtaining a more complete picture of complex diseases. It is thought
that gene-gene interactions play an important role in the etiology of cancer, cardiovascular, and immune-mediated disease.
Interactions among genes are defined as phenotypic effects that differ from those observed for independent contributions of
each gene, usually detected by univariate logistic regression methods. Using a multivariate extension of linkage disequilibrium
(LD), we have developed a new method, based on distances between sample covariance matrices for groups of single
nucleotide polymorphisms (SNPs), to test for interaction effects of two groups of genes associated with a disease phenotype.
Since a disease-associated interacting locus will often be in LD with more than one marker in the region, a method that
examines a set of markers in a region collectively can offer greater power than traditional methods. Our method effectively
identifies interaction effects in simulated data, as well as in data on the genetic contributions to the risk for graft-versus-host
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INTRODUCTION

Many complex diseases are influenced by both genetic
and environmental factors. Determining the underlying ge-
netic etiology can be difficult, as it may involve single genes
as well as interactions between two or more genes. While
initial and ongoing efforts have centered on disease associ-
ations with single genes (a single nucleotide polymorphism
[SNP] or haplotypes/diplotypes of multiple SNPs from sin-
gle genes or regions), recent interest has expanded to in-
clude examination of gene-gene interactions regardless of
their location within the genome [Chatterjee et al., 2006;
Cordell, 2009; Zhao et al., 2006].

The effect of two genes on a disease outcome is con-
sidered an interaction if the effect on the phenotype of
one gene depends on the other gene. The scale that is
used to model the genetic effects on the phenotype may
sometimes determine whether there is an interaction [Wang
et al.,, 2010]. For example, a multiplicative interaction in a
logistic model may be no longer an interaction when effects
are modeled on an additive scale (see, e.g., the example
in section 2 of Kooperberg et al. [2009]). In practice, a gene-
gene interaction is detected by testing for phenotypic effects
that differ from those observed when each gene contributes
independently, for example, departure from additivity in
a logistic regression model. Identifying gene-gene interac-
tions does not just help to explain part of the heritability
of a phenotype, it also points to pathways involving mul-
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tiple genes, and therefore increases our understanding of
the biology underlying the phenotype. In this paper, we
present an example from allogeneic hematopoietic stem cell
transplantation (HCT), where an interaction between two
genes in two genomes, the IL10 gene in the recipient and
the ILI0RB gene in the donor, have an interaction effect
on graft versus host disease (GVHD), a well-known com-
plication of HCT. This interaction suggests that pathways
involving these two genes are important in understanding
GVHD as a complication of HCT.

In most genetic association studies the “causal” SNP is not
genotyped, but rather inference about a functional variant
is made indirectly because a SNP that is in linkage dise-
quilibrium (LD) with the causal SNP will show association
with a phenotype. When the causal SNP is part of an LD
group, multiple nearby SNPs may show an association [e.g.,
Dickson et al., 2010]. Similarly, we may expect that if there is
an interaction effect on a disease of two causal SNPs, pairs
of SNPs in the LD group adjacent to either of the two causal
SNPs may show some association. In a traditional logistic
regression analysis, this adjacent LD is not used, as each
pair of SNPs is tested separately for possible interactions,
so we expect to lose power if nearby SNPs are not consid-
ered. Here we propose to test for interaction effects between
blocks of SNPs, thereby possibly gaining power. In partic-
ular, our test can identify interactions between two genes,
where in each gene the “causal” SNP may not be genotyped,
but several other genes are genotyped.
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Chatterjee et al. [2006] developed a procedure to identify
main effects and interactions of groups of SNPs simultane-
ously using the Tukey one degree of freedom test. However,
the goal of Chatterjee et al. [2006] was to increase the power
to identify SNPs that have a marginal effect using inter-
actions, rather than to identify the interactions themselves.
The same problem was addressed by Wang et al. [2009], who
developed a Partial Least-Squares solution to this problem.
Zaykin et al. [2006] studied the related problem of find-
ing association between a group of SNPs and a phenotype.
Similar to what we are proposing in the current paper, their
approach compares the LD between cases and controls, but
it is not geared toward identifying interactions. Crosslin
et al. [2010] compares the approaches of Wang et al. [2009]
and Zaykin et al. [2006]. Zhao et al. [2006] introduced a test
for the interaction between two unlinked loci and defined
interaction as deviation from penetrance. The disadvantage
of this method is that the haplotype cannot be determined
with certainty.

Cordell [2009] contains a comprehensive discussion of
methods for identifying gene-gene interactions. Several ap-
proaches using data mining methods have been proposed
[e.g., Ritchie et al., 2001; Ruczinski et al., 2002], as well as
methods that first screen marginal associations to identify
the most promising variants or genes to test for interac-
tions [e.g., Kooperberg and LeBlanc, 2008; Millstein et al.,
2006; Wu et al., 2010]. Other approaches focus on compu-
tational efficiency in light of the large number of possible
interactions in GWAS [e.g., Zhang et al., 2010], and some
approaches use penalized regression techniques such as the
lasso [e.g., D’Angelo et al., 2009]. Clearly many methods
have been used to identify gene-gene interactions; it is be-
yond the scope of this paper to provide a comprehensive
review here.

In this paper, we propose a test for identifying gene-gene
interactions, where the effect comes from a group (block)
of genotyped variants, for example, all genotyped variants
within a gene. The blocks need not be the same size. Li et al.
[2009] attempted to use principle components of blocks of
variants to identify gene-gene interactions. To the best of our
knowledge, no other approach in the literature is designed
for this particular problem.

It is easy to see that if the joint distribution of genotype
markers depends on disease status, the disease status is
associated with these markers [Millstein et al., 2006]. As a
consequence, if the covariance matrix of a group of SNPs is
different between cases and controls, the group of SNPs is
associated with case-control status. While the reverse is not
always true, it is true, for example, for a single SNP that is in
Hardy-Weinberg equilibrium separately among cases and
controls when the minor allele frequency in both groups
is smaller than 0.5. In that situation, if the variances for a
SNP are the same, then the minor allele frequencies are the
same, and there is no association. We cannot use a similar
argument for the correlation matrix.

We can take this argument one level further: if the dis-
tribution of two (groups of) SNPs is each the same among
cases and controls, neither of these (groups of) SNP(s) is
by itself associated with disease status. If at the same time
the joint distribution of these two (groups of) SNPs is as-
sociated with the disease status, the two (groups of) SNPs
together are associated with the disease status. If neither of
these (groups of) SNPs is by itself associated with disease
status, this means that there is an interaction effect of these
two (groups of) SNPs on disease status. This motivates our

approach: if the off-diagonal part of a covariance matrix
corresponding to the covariance between two (groups of)
SNPs differs between cases and controls, we conclude that
there is an interaction.

To exploit this in our method, we summarize and contrast
the difference in LD between cases and controls. To measure
the LD we use the composite LD (CLD), which is advanta-
geous because it is not necessary to phase the genotype data.
There are many measures to quantify LD. We show that
there is a direct relation between CLD and the covariance
matrix of a set of markers. Therefore, if the CLD patterns
are different between cases and controls, we conclude that
there is an interaction, making this particular measure of LD
ideal for our purpose. A disease-associated interacting locus
will often be in LD with more than one genotyped marker
in the region. Therefore, methods like ours that examine a
set of markers in a region collectively can potentially offer
greater power than the traditional method of examining 2-
way or 3-way interactions in univariate logistic regression
models.

METHODS

LD AND CLD

LD indicates that particular alleles at nearby
sites co-occur on the same haplotype more often than is ex-
pected by chance. Lewontin [1964] defined the gametic LD
coefficient as Dag = pag — paps, or the simple difference be-
tween the haplotype probability and the product of the allele
frequencies, when data are collected on haplotypes for di-
allelic loci. Weir [1996] and Weir and Cockerham [1989] de-
fined the nongametic digenic disequilibrium coefficientD 5 =
pa/s — paps, where the slash indicates that the two alleles
occur on different chromosomes. For the phase-unknown
situation where random mating cannot be assumed, these
papers introduce the CLD

Apg = Dap + Dajp = pag + Pap —2paps.

In the context of association mapping, Nielsen et al. [2004]
presented a direct LD comparison approach involving two
bi-allelic loci and noted that a test that directly compares
the LD between the case and control groups can be a pow-
erful alternative to either haplotype-based or single marker
approaches. They considered only the case of unambiguous
haplotype phase. When the haplotype phase is unknown,
computational algorithms can be used to infer frequen-
cies of haplotypes and, ultimately, to assess LD. Typically
this requires the assumption of Hardy-Weinberg equilib-
rium (HWE) for the haplotypes. Schaid [2004] and Zaykin
[2004] showed that LD estimation with use of the CLD ap-
proach provides results similar to the haplotype reconstruc-
tion method under HWE, is computationally simpler, and
avoids the assumption of HWE for the haplotypes. There-
fore, we use CLD rather than LD to characterize the relation
between SNPs.

Following Weir et al. [2004], we show the relationship
between LD and CLD as follows. Let m and 1 be the number
of cases and controls, respectively. Let x;;; =1 if the kth,
k =1, 2, haplotype in the jth, j =1,2,..., p, SNP for case
i=1,2,...,m, carries major allele Aand 0if it carries minor
allele a. The LD between SNPs j and ;' is the covariance of
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x;jx and x;jx, whereas the CLD between SNPs j and j' is the
covariance of

Xii1 + Xij
X,‘j = /L) e and Xij’ =

Xij1 + Xij2
> —_

2

The quantities X;; and X;j: are the proportions of the al-
leles a subject in the case group carries at SNP j and j'. Let
X denote the m x p matrix {X;;}. Similarly, define v;jx, Yijx,
and Y for the control group, where Y is n x p. Thus, for
genotype data we can estimate the CLD by the sample co-
variance between the genotypes (X;;, X;;/) without using
phase information. Note that CLD does not require HWE
to hold, but when HWE holds, CLD is equal to LD [Schaid,
2004; Weir et al., 2004; Zaykin 2004]. The CLD does not
distinguish between the two possible phases of the dou-
ble heterozygotes, so CLD can be defined for SNPs within
the same chromosome (in cis) or between chromosomes (in
trans).

TESTS FOR EQUALITY OF BLOCK
INTERACTIONS

In order to compare CLDs between two groups
of SNPs in cases and controls, rather than only between
single pairs of SNPs, we propose a multivariate statistic
that measures differences between blocks of pairwise CLDs
in cases and controls. Let group 1 have p; SNPs and group
2 have p, SNPs, where p; + p» = p, and let S and T be
the (p1 + p2) X (p1 + p2) sample covariance matrices for the
two groups of SNPs for () cases and (1) controls, based on
Xand Y, respectively. Partition S as

P p2
P (S1 So
5= p2 <521 Szz)’ @

and partition T similarly. Here S;; and S,, are the sample
intragroup covariance matrices for group 1 and for group 2,
respectively, and Si>(= Sj,) is the intergroup sample covari-
ance matrix. Denote the corresponding quantities for the
controls as Ti1, T, and Tio(= Ty,). Note thatif py = p, =1,
then S;, and T}, both reduce to CLD as defined above.

Let X (cases) and 2 (controls) be the population covari-
ance matrices that correspond to S and T, respectively, par-
titioned according to (1). We propose to test whether the
interaction effects (= covariances) between the two groups
of SNPs are different for cases than for controls, that is, to
test equality of the block interactions, that is, test

Hipp : Z1p = Qu,

rather than testing for differences between single pairs of
corresponding elements in X1, and Q5.

Let W = (mS + nT)/(m + n) be the pooled estimate of the
covariance matrix, and W is partitioned similarly to Sand T
(1). We propose a method that is based on the Nagao [1973]
normalized quadratic distance (NQD)and is defined as

82

83, T) = tr[(5 — TYW (S — T)W ]
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applied to § and T, where
& Wi Sp - Wi Ti
= = . 2
5 (521 sz)’ T <T21 sz) @

Details can be found in Appendix A. We believe that & is
a reasonable statistic for detecting departure from the null
hypothesis Hj,. Because the distribution of 8* under the null
hypothesis is not known, we establish the significance levels
of this statistics using permutation tests.

RESULTS
SIMULATION STUDY

We compared our proposed test to tests based on lo-
gistic regression (described below) in a simulation study. Be-
cause we wish to test whether multiple SNPs in two genetic
regions have a nonnull interaction effect on a phenotype,
the univariate logistic regression approaches discussed in
the Introduction are not applicable.

To generate our simulated data we created an artifi-
cial population using genotype data obtained from the
HapMap project Caucasian population [The International
HapMap Consortium, 2005]. We used PHASE [Stephens
et al., 2001] to estimate haplotypes for SNPs rs7130285,
rs2074040, rs3740878, rs7935586, and rs6485533 (denoted
Ay, ..., As) from the EXT2 gene and rs2713813, rs7951391,
rs7480010, rs906625, and rs6485316 (denoted By, ..., Bs)
from the intergenic region of the LRRC4CX2 gene (the haplo-
types and their frequencies are listed in Table I). Randomly
paired haplotypes were used to create our population, so
that our data have the same frequencies as in Table I.

We used interaction models developed by Marchini et al.
[2005] to assign case and control status. We denote the mod-
els IM1 (for Interaction Model 1), IM2, and IM3. IM1 has
main effects, but no interaction, IM2 has a multiplicative
interaction and no main effect, and IM3 has a threshold

TABLE 1. Haplotype frequencies for the simulation
study

Block 1 Block 2
Haplotype Frequency Haplotype Frequency
0 0 0 0 1 0.0544 00 1 1 0 0.0151
0 0 0 1 1 0.0163 0 0 1 1 1 0.0288
0 0 1 0 1 0.0239 01 0 0 O 0.0123
0 0 1 1 0 0.0258 0 1.0 1 0 0.0082
00 1 1 1 0.1645 01 0 1 1 0.0360
0 1.0 0 1 0.0066 0 1.1 0 0 0.0191
01 1 1 0 0.0118 o1 1 1 1 0.0379
10 0 1 1 0.0413 1 0 1 0 0 0.0679
10 1 1 0 0.0061 1 0 1 0 1 0.0315
10 1 1 1 0.0328 10 1 1 1 0.0645
11 0 0 1 0.0589 11 0 0 1 0.0713
11 0 1 0 0.0252 11 0 1 0 0.1074
11 0 1 1 0.0276 11 0 1 1 0.0737
11 1 0 1 0.2832 11 1 0 0 0.0302
11 1 1 0 0.0379 11 1 0 1 0.1104
11 1 1 1 0.1837 11 1 1 0 0.0994
11 1 1 1 0.1862
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interaction where the risk is increased if both SNPs have at
least one copy of the minor allele. In each of the two genes
we will designate one variant as the causal variant. Let g;
and g, be the number of copies of the variant allele for the
causal variant in the two genes. Note that we can write the
probability of being a case (D = 1) for each of these three
models in a logistic regression form:

logit(P(D =11 G)) = Boo + Bo1(g2 =1) + Prolg1 = 1)
+ Bo2(g2 =2) + Bro(g1 = 2)
+ B =2 =1) +Pralg1 =1)
X (g2 =2)+Ba(g1 =2)(=1)
+ B22(g1 = 2)(g2 = 2).

Here B0, Bo - quantify the additive effects, B, . measures the
interactions between two loci, and By ¢ defines the intercept.
The three interaction models are obtained by

IM1: Bo2=2B1,0=B20=2B0.1, B1.1 =B12=PB21=P22=0
IM2: Bo,1 =B1.0=PBo2=PB20=0,4P11=2P12=2P21 =P2>
IM3: Bo,1 =B1.0, =Bo2=PB2.0=0,B11=PB12=P21=PR22-

In our simulations for IM1, we take 0 = 0.01 in all mod-
els, so that each model only has one parameter 8. Note that
P00 = 0.01 corresponds to a moderately rare disease. We
show results for a sample size of 1,000 cases and 1,000 con-
trols. We examined other sample sizes, and found the results
qualitatively similar. In our simulations, we used SNPs A;
and B; as the casual SNPs. The minor allele frequencies of
A;s and Bj are 0.2303 and 0.3090, respectively. In our simu-
lations we consider three scenarios.

Case 1: Only A; and B; are observed. This is a standard
scenario investigated in the literature, where the SNPs
that are interacting are assumed to be observed.

Case 2: We observe A, ..., As and By, ..., Bs. This is the
scenario in which we observe blocks of SNPs, including
the SNPs that we generated to be causal. In this scenario,
we expect some power increase because the additional
SNPs are in LD with A; and B;, which may be offset by
some decrease in power because of multiple comparisons.

Case 3: We observe A;, A, Ay, As and By, By, By, Bs. We be-
lieve that this is the most interesting scenario, as we do
not observe the causal SNP, but observe the interaction
through multiple SNPs that are in LD with the casual SNP.
Our methods are specifically designed with this situation
in mind.

We compare three testing methods: the quadratic
distance-based statistic (3%), and statistics arising from two
logistic models (L M;, L M) in which all SNPs that are con-
sidered are present in the model, coded additively. For L M;
we consider all pairwise interactions simultaneously, test-
ing them using a likelihood ratio test, and for L M, we con-
sider each of the pairwise interactions separately, selecting
the most significant one. We ran each simulation scenario
1,000 times. For all three methods, significance levels are de-
termined using 10,000 permutations of case-control status,
separately for each simulation.

The power results for Case 1, when the matrix size is
2 x 2 and equality of a single off-diagonal covariance pair is

TABLEII. Power of the proposed test statistics for Case 1

Parameter B in the model

0 0.1 0.5 1 2 4
M1 32 0.047 0.048 0.049 0.050 0.053 0.052
LM; =LM, 0.048 0.049 0.051 0.051 0.050 0.053
M2 32 0.053 0.068 0.106 0.184 0.653 1.000
LMy =LM, 0.049 0.061 0102 0.176 0.615 1.000
M3 32 0.051 0.057 0.084 0.120 0.559 0.953

LMy =LM, 0.050 0.055 0.080 0.112 0.547 0.935

Here p1 = p» =1 and we test for equality of the single elements
of X1 and Q1. IM1, multiplicative within and between loci—no
interaction; IM2, multiplicative model and no main effects; IM3,
the threshold model. For this set of simulations, 1,000 cases and
1,000 controls were sampled for each of 1,000 simulation runs. We
completed 10,000 permutations for each data set, and controlled
the significance level at o = 0.05.

tested, are shown in Table II. Note that for this situation the
two logistic regression statistics, LM; and LM,, are identi-
cal. For IM1, where there are additive effects, but there is no
interaction, we note that all approaches maintain the cor-
rect Type 1 error of 5%. It is important to note that this is the
case, even if By; # 0, as formally a permutation test like the
one we use tests whether there is any association between
the genes and the disease. However, our test statistic is de-
signed to only show an effect when there is an interaction
effect, and not when individual genes have an effect on the
phenotype.

For IM2, where there is a multiplicative interaction, and
IM3, where there is an interaction with threshold (dominant
x dominant) effects, all approaches have approximately the
same power, which, for Case 1, is according to our expec-
tation. After all, this is the situation in which the “blocks”
consist of a single SNP, and the logistic regression is correct.

The power results for Case 2, when the matrix size is
10 x 10 and we test equality of the two off-diagonal 5 x 5
submatrices, are shown in Table III. As in Case 1, all ap-
proaches maintain the correct Type 1 error. For this case we
note that for both IM2 and IM3, our proposed test statistic
8% has considerably more power than both logistic regres-
sion statistics, which have approximately the same power.
Compared to Case 1, we notice that both logistic regression
statistics have less power because of the larger multiple
comparisons penalty (note that we correct using a permuta-
tion approach, and not using a Bonferroni correction, which
would have led to even more loss of power for logistic re-
gression). On the other hand, the power of &? increases from
Case 1 to Case 2, because this statistic exploits the CLD
among entire block of SNPs. This suggests that even if the
causal SNP is genotyped (or imputed) it is still beneficial to
include neighboring SNPs, as long as they have some LD,
in testing for interactions. Each of the neighboring SNPs
carries some signal, as they are weakly correlated with the
causal SNP. Our statistic 8 “adds” those weak signals to the
signal of the causal SNP to strengthen that signal somewhat,
as there is no multiple comparisons penalty with a single
test.

The power results for Case 3, when the matrix size is
8 x 8 and equality of the two off-diagonal 4 x 4 subma-
trices is tested, are shown in Table IV. For this case the
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TABLE III. Power of the proposed test statistics for
Case 2

Parameter 3 in the model

0 0.1 0.5 1 2 4

M1 3% 0.048 0.047 0.049 0.051 0.052 0.053
LM; 0.049 0050 0.051 0.052 0.053 0.052
LM, 0048 0.049 0.051 0.052 0.051 0.052

M2 32 0.049 0072 0134 0225 0.821  1.000
LM, 0051 0059 0.089 0.154 0521  1.000
LM, 0.050 0062 0.095 0169 0.558  1.000

M3 3% 0.051 0.065 0104 0195 0.701  1.000
LM; 0.050 0056 0.072 0.104 0468 0.990
LM, 0050 0.057 0.080 0119 0468  1.000

Here p1 = p» =5 and we test for equality of the two 5 x 5 blocks
%12 and Q1. IM1, multiplicative within and between loci—no in-
teraction; IM2, multiplicative model and no main effects; IM3, the
threshold model. For this set of simulations, 1,000 cases and 1,000
controls were sampled for each of 1,000 simulation runs. We com-
pleted 10,000 permutations for each data set, and controlled the
significance level at o = 0.05.

TABLE IV. Power of the proposed test statistics for
Case 3

Parameter B in the model

0 0.1 0.5 1 2 4

M1 32 0.048 0.049 0.050 0.051 0.052 0.052
LM,  0.047 0.049 0.049 0.051 0.052 0.052
LM, 0.048 0.048 0.051 0.050 0.051 0.053

M2 3% 0.047 0.061 0.089 0.155 0465 1.000
LM; 0.049 0054 0.060 0.084 0226 0.685
LM, 0.049 0.055 0.065 0.099 0242 0.721

IM3 3% 0.049 0.059 0.068 0.105 0235 0.611
LM 0.049 0050 0.054 0.061 0.067 0.128
LM, 0049 0.050 0.055 0.069 0.076  0.141

Here p1 = p» = 4 (the interaction SNPs have been eliminated for
the analysis) and we test for equality of the two 4 x 4 blocks X1,
and Qqp. IM1, multiplicative within and between loci—no inter-
action; IM2, multiplicative model and no main effects; IM3, the
threshold model. For this set of simulations, 1,000 cases and 1,000
controls were sampled for each of 1,000 simulation runs. We com-
pleted 10,000 permutations for each data set, and controlled the
significance level at o = 0.05.

causal SNPs are not part of the data that are analyzed. As
a result, the logistic regression methods lose almost all the
power they had in Case 2, as each of the individual SNPs
that are tested are only weakly correlated with the causal
SNPs. Our proposed statistic 8* also loses power but the
loss is much smaller, and this test still maintains reasonable
power, especially for IM2, where the power is not much
lower than in Case 1. This is the goal of our method, as in
most real situations the causal SNP is not genotyped, and
any signal that we are seeing is because of correlation with
nearby (tag-)SNPs. We repeated the simulation for Case 3
(Table IV) with data sets of 3,000 cases and controls (results
not shown). Naturally the power of all approaches is better,

Genet. Epidemiol.

TABLE V. Power of the proposed test statistics for Case 3
and IM2 with the interaction § = 2, for different sizes of
the blocks (p; and p,) and different amounts of LD
within the block (measured using |[CLD| = |r])

CLD

02 03 04 05 06 07 08

pr=p2=4 & 0303 0321 0364 0425 0.481 0.291 0.211
LM; 0.175 0.186 0.204 0.212 0.228 0.240 0.181
LM, 0.184 0.205 0.211 0.228 0.249 0.251 0.190

pr=p2=6 & 0349 0381 0405 0.483 0.511 0.544 0.460
LM; 0.146 0.153 0.158 0.165 0.180 0.198 0.163
LM, 0.151 0.163 0.169 0.188 0.195 0.213 0.186

pr=p2=20 & 0381 0431 0485 0.558
LM, 0.091 0.108 0.114 0.121
LM, 0096 0.115 0.120 0.125

For this set of simulations, 1,000 cases and 1,000 controls were
sampled for each of 1,000 simulation runs. We completed 10,000
permutations for each data set, and controlled the significance level
ata = 0.05.

but the general pattern that & substantially outperforms
logistic regression remains the same.

To examine whether the results observed for Case 3 de-
pend on either the LD among the markers or the block
length, we carried out an additional simulation study. For
this simulation we selected blocks of length 5, length 7, and
length 21 out of the real data on GVHD, which is used
in the next section, so that the average CLD (r) between

each of the (3), (]), or (%) pairs of SNPs has a prespecified
valueof 0.2,0.3, ... , 0.8 (for the blocks of length 21 we only
found situations with average LD < 0.5). For those blocks
we reconstruct the haplotypes, and then generate a popu-
lation and an interaction signal using IM2 with the interac-
tion B = 2 using the middle SNP of two blocks of the same
length and the same average CLD identical to the other sim-
ulations. As in Case 3, we then remove this SNP from our
analysis. Thus, we have simulations with p; = p, = 4, with
p1 = p» = 6, and with p; = p, = 20. As before, we generate
1,000 cases and 1,000 controls for each of 1,000 simulation
runs and base the P values on 10,000 permutations. The
results are shown in Table V.

We note that the results in Table V confirm those in Ta-
ble IV: & is much more powerful than the logistic regression
approaches. The gain is present for all values of r and all
block sizes. The gains are the strongest for the larger block
size, which is to be expected as &’ is better able to exploit
the additional variants. The apparent irregularity in this ta-
ble with respect to the correlation r is caused by the fact
that we only fixed the average correlation, and that minor
allele frequencies differed between blocks with one value
of the correlation and blocks with another value of the cor-
relation. We repeated these simulations also using model
IM3 and different values of 3. The conclusions are identical
(results not shown).

AN APPLICATION TO DATA ON GVHD

The IL10 and IL10RB genes are involved in immune
regulation and suppression. A genetic polymorphism in the
promoter region of IL10 has a significant association with
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the risk of GVHD after allogeneic HCT with human leuko-
cyte antigen (HLA) identical sibling donors. In a previous
study of SNPs among 953 HLA-identical sibling transplants
[Lin etal., 2005], the presence of the IL10/-592*A allele in the
patient or the ILIORB*G allele in the donor was significantly
associated with lower risk of severe acute GVHD and nonre-
lapse mortality. It is thought that IL10 may facilitate immune
tolerance after allogeneic transplantation. Higher IL10 pro-
duction by ex vivo stimulated recipient cells before trans-
plantation is associated with reduced risk of acute GVHD
and nonrelapse mortality [Holler et al., 2000]. In this exam-
ple our goal was to see whether an interaction between IL10
and IL10RB has a synergistic effect on the risk for GVHD.
We tested this hypothesis using a data set with two groups,
one of which developed GVHD (case) while the other did
not (control), with a sample size of 350 for each group.
These data originated from a study investigating how ge-
netic diversity among patients and donors contributes to
differences in individual responses to tissue injury, inflam-
mation, and severity of acute GVHD. For IL10 five SNPs
(rs4845140, rs3024505, rs4844553, rs4311892, and rs1554286)
were genotyped in the patients and for IL10RB, five SNPs
(rs2248118, rs2244305, rs2834173, rs2850001, and rs1058867)
were genotyped in the donors; thus (p; = p, = 5) and the
corresponding covariance matrix is 10 x 10. Note that the
SNPs that were genotyped do not include the same as those
studied in [Lin et al., 2005], but all SNPs are in the same
haplotype blocks. In the combined data each of the pair-
wise correlations between an IL10 and an IL10RB is smaller
than 0.1.

We applied our proposed statistics 8 and the two logistic
regression methods, L M; and L M, for testing whether there
is an interaction effect of IL10 and ILI0RB on GVHD. The
statistic 8°results in off-diagonal blocks that are statistically
significantly different between cases and controls with p =
0.0264. The results for LM, and LM, are barely statistically
significant, with p = 0.0483 and p = 0.0465, respectively.
Thus, our approach gives stronger evidence that there is an
interaction with likely biological significance.

DISCUSSION

Classical methods for identifying disease-susceptibility
genes focus on one genomic area or locus at a time. They
have worked well for Mendelian disorders but appear in-
sufficient for complex traits because of the presumed mul-
tiplicity of genes involved. To facilitate the search for sets
of SNPs jointly associated with a disease phenotype, we
have developed a new statistic for testing for interaction
effects between two blocks of SNPs—two genes—based on
defining a distance between sample covariance matrices.

A test for equality of the off-diagonal block corresponding
to the covariance between the two genes of the two matrices
becomes a test of an interaction effect between the two genes
on case-control status. Our proposed method avoids the
need for a multiple comparisons correction as we have a
single test for interaction. We believe that avoiding multiple
comparisons is a main reason why our test offers greater
power than the traditional method of individual pairwise
testing of SNPs.

Simulation results reveal that our method is more power-
ful than traditional logistic regression-based methods. For
the matrix size 2 x 2, where the SNPs that are interacting

are observed, the power results for the proposed statistic 8
and logistic regression behave approximately equally. When
we consider multiple SNPs in a gene, and assume that the
true causal interacting SNPs are among them, the power is
higher for 8* than for logistic regression (Table III). The sce-
nario in Table IV is the most interesting one, as we eliminate
the interaction SNPs for the analysis. Again, here we see
that power is much larger for & than logistic regression. In
this case we do not observe the causal SNP, but rather the
interaction through multiple SNPs that are in LD.

We can easily apply our proposed methods to explore
interactions between two loci, where there is gene-gene in-
dependence in the controls (in a population with a rare
disease), as we would simply set the off-diagonal subma-
trix for the controls equal to zero. Initial simulations suggest
this significantly improves power. We are currently work-
ing on an extension of our methods that will allow us to test
whether many genes—a network of SNPs—associate with
a phenotype by comparing two complete covariance matri-
ces. We note here that for all our simulations we generated
the interaction effect using a logistic model. The logistic
model was, however, not used for identification of the in-
teraction, suggesting some robustness of our approach for
the model of the interaction.

As we argued in the introduction, if the covariances be-
tween gene 1 and gene 2 are different between cases and
controls, there must be an interaction effect of genes 1 and 2
on the disease outcome. An advantage of logistic regression
for the situation when both genes have a single marker is
that the coefficient in the logistic model is the log of the odds
ratio. There is naturally a relation between the difference in
the covariances and the magnitude of the odds ratio. See
the Appendix B for details. We note, however, that for the
situation where the genes have multiple markers that are
in LD with each other, the multiple estimates of interaction
parameters in the logistic model have a higher variance,
and may be hard to interpret. Of course if an interaction
effect is identified, a follow-up study may be warranted to
characterize such an interaction.

To evaluate performance for detection of interactions be-
tween two loci, the proposed & statistic was applied to
data from hematopoietic stem cell transplantation (HCT)
patients and donors. In this example we wished to distin-
guish between groups of patients, for example, those who
developed GVHD and those who did not. Our study pop-
ulation, consisting of paired patients and donors, provided
a unique opportunity to assess genome-genome interaction
between recipient and donor genomes [Spilianakis et al.,
2005]. Using our methods, we confirmed a statistical inter-
action between these two unlinked loci, a beautiful example
of two different chromosomes showing a statistical interac-
tion that aligns with a known biological interaction between
different cells, in this case, from two different individuals.
This suggests that the pathway involving both the IL10 and
IL10RB genes is likely an important player in GVHD.

While computing test statistics for many blocks of SNPs
is computationally intensive, it is reasonably achievable
by spreading computations over clusters of computers. In
practice we would test for interactions between a limited
number of blocks of interest, either because there is bi-
ological interest (as was the case for our IL10 example),
or because these blocks suggest the strongest marginal ef-
fects (using a similar approach as Kooperberg and LeBlanc
[2008]). Each of these limited numbers of blocks could then
be compared with the complete genome in a sliding window
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fashion. A computationally intense approach would be to
carry out permutation tests separately for each possible in-
teraction. Rather than separate permutation tests, we would
first “rank” all tests, and only carry out the tests for interac-
tions with the largest statistics, for example, using the Holm
step down procedure [Drton and Perlman, 2008]. The Box
approximation for normally distributed data can be applied
to obtain the asymptotic null distribution [Anderson, 2003].
Software implementing our methods will be made available
in an R-package.

Our methods can be extended to test for gene-
environment interactions. Here, instead of comparing the
covariance between two blocks of SNPs, we compare the
covariance between a block of SNPs and a block of environ-
mental variables. We can then apply &* to detect interaction
differences between cases and controls. An advantage of this
approach is that multilevel categorical environmental vari-
ables (e.g., smoking, which is often coded using two levels,
current and former, compared to a reference level of none)
can be considered as a block of environmental variables, just
like a block of SNPs in one gene is considered jointly. We can
also adjust for environmental, nongenetic, variables (or ad-
ditive components to control stratification, e.g., Price et al.
[2006]) as is typically done in traditional regression models.
We consider the following approach. Before applying our
method, we first regress each of the SNPs considered for
the tests, separately on all environmental variables. Then,
we apply our methods to compare the covariance matrices
of the residuals from these regressions. Another possible
extension of our approach is to extend the methods to inter-
actions involving three or more blocks of SNPs by replacing
S and T in Equation (2) by a partition involving multiple
blocks. A limitation of our approach is that it does not easily
generalize to continuous phenotypes. Another limitation is
that, unlike for logistic regression, it does not easily gener-
alize to third and higher order interactions. However, we
note that the power to identify higher order interactions is
very limited, and in fact, we are not aware of any higher
order interactions that have been successfully replicated in
other studies.

It is now common practice to impute untyped variants in
genome-wide studies. If an untyped variant that is imputed
well is in fact the single causal variant in a gene contribut-
ing to an interaction, testing this variant may be a powerful
approach to identify the interaction. However, as we saw in
Case 2 of our simulation study, including additional vari-
ants that are in LD with the causal variant improves the
power of a study. In addition, not all variants can be im-
puted well (e.g., variants with low minor allele frequency),
and our approach is also applicable to smaller (candidate
gene) studies, where there may not be enough typed vari-
ants to carry out an imputation.

Novel genomic tools and computational methods have
led to a dramatic increase in the rate of discovery of disease
genes. While traditional association studies have sought sin-
gle marker or single gene associations, phenotypes result
from complex interactions among large numbers of genes.
Extensions of the statistical methods we have proposed will
allow the investigation of relationships among groups of
SNPs in many genes and can discriminate between the ge-
netic signatures of distinct groups of subjects. By identifying
interactions among networks of genes, we may further our
understanding of how the collective behavior of genes gives
rise to phenotypes as well as our ability to predict disease
outcome. Detecting interactions among disease associated
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SNPs may reveal basic biological mechanisms that are crit-
ical to understanding development and progression of a
disease state [Hartwell et al., 2006], and in this way provide
a powerful and promising foundation for the development
of novel diagnostics and therapeutic strategies.
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APPENDIX A: DERIVATION OF THE
TEST STATISTIC

The Nagao [1973] normalized quadratic distance
(NQD)is modified as follows:

2 =53, T) = t[(S— TYW (5 - T)W]

applied to S and T, where

[ Wi S T Wi T
S Wa ) Ty Wy )
where W = (mS + nT)/(m + n). Here Wi (respectively W)
is the pooled estimate of DT (222) if Y1 =Qp (222 = 922)
based on S;; and Ty (S and Ty). To ensure that W is non-
singular with probability 1, it is only required that m +n >
p1 + p2 = p. Note too that W = (mS + nT)/(m + n).

In general, neither 5 nor T need be positive definite.
Nonetheless, 8% is a valid measure of distance between S,
and le if Y11 =Qn and Yoo = Qo because

2 _ 0 Sip — T 1
¥ = “((su ~Tu) 0 >W

0 Sz = T2 \ a1
x ((512 ~Tw) 0 )W

= tr(S12 — Ti2) Wy, 5(S12 — Tho)
+ tr(Sp2 — T12)VV{2.11(512 —Tp)'.

Thus, 8 = 0 iff S, = T1,. Furthermore, we have the equiv-
alent expressions

-1 -1
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where, using symmetric matrix square roots,

Q = W, (Si2 — Tio) Wy, /2,
R = Wy,"*(mSi2 + nTi)Wy,* /(1 + 1) (= Rw),

(e 1) (2 6T
=\rR I Q o0 J\R I :

Note that L is a symmetric matrix and that

14
=1
i=1

wherel; > ... > 1, are the ordered eigenvalues of L, equiv-
alently, the ordered eigenvalues of

g_ayw-1_ (0 Si2— Tz \ 1
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APPENDIX B: AN ADDITIONAL
SIMULATION

This is a small simulation to demonstrate the relation
between the differences in the covariance and the log-odds
parameters in a logistic regression model.

1 o

o 1
We generated bivariate predictors for 100,000 controls from
a multivariate normal distribution with mean 0 and covari-
ance matrix C(0) and for 100,000 cases from a multivari-
ate normal distribution with mean 0 and covariance matrix
C(o), for —1 < 0 < 1. We then carried out a logistic regres-
sion of case-control status against the two predictors and
their interaction. We repeated this calculation with control
covariance matrix of C(0.5). In Figure B1, we show the re-
lation between o and B in these logistic models. We note
that there is a clear relation between these two parameters,
which may or may not appear linear.

Consider the 2 x 2 covariance matrix C(o) =
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Fig. B1. Relation between the difference in the covariance and a logistic regression parameter.
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