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Abstract Genome-wide association studies (GWAS) in

diverse populations are needed to reveal variants that are

more common and/or limited to defined populations. We

conducted a GWAS of breast cancer in women of African

ancestry, with genotyping of [1,000,000 SNPs in 3,153

African American cases and 2,831 controls, and replication

testing of the top 66 associations in an additional 3,607

breast cancer cases and 11,330 controls of African ances-

try. Two of the 66 SNPs replicated (p \ 0.05) in stage 2,

which reached statistical significance levels of 10-6 and

10-5 in the stage 1 and 2 combined analysis (rs4322600 at

chromosome 14q31: OR = 1.18, p = 4.3 9 10-6; rs10510

333 at chromosome 3p26: OR = 1.15, p = 1.5 9 10-5).

These suggestive risk loci have not been identified in
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previous GWAS in other populations and will need to be

examined in additional samples. Identification of novel risk

variants for breast cancer in women of African ancestry

will demand testing of a substantially larger set of markers

from stage 1 in a larger replication sample.

Introduction

Genome-wide association studies (GWAS) of breast cancer

have been conducted almost exclusively in populations of

European ancestry, and have firmly established associa-

tions with a number of common susceptibility loci that

contribute modest effects (relative risks B1.3) (Ahmed

et al. 2009; Antoniou et al. 2010; Easton et al.

2007;Fletcher et al. 2011; Ghoussaini et al. 2012; Haiman

et al. 2011b; Hunter et al. 2007; Kim et al. 2012; Long

et al. 2012; Stacey et al. 2007, 2008; Thomas et al. 2009;

Turnbull et al. 2010; Zheng et al. 2009b). These discov-

eries provide support for the polygenic model of breast

cancer susceptibility (Pharoah et al. 2002), as well as clues

as to important biological pathways involved in the path-

ogenesis of breast cancer. For example, the most strongly

associated risk locus for breast cancer revealed through

GWAS has been the region containing the fibroblast

growth factor receptor 2 (FGFR2) at chromosome 10q26

(Easton et al. 2007; Hunter et al. 2007; Meyer et al. 2008).

FGFR2 is a member of the FGFR family of receptor

tyrosine kinases (RTKs) which regulate cell proliferation,

differentiation and apoptosis (Tenhagen et al. 2012). The

risk variant on chromosome 14q24 is located in intron 12

of RAD51B which is a member of the RAD51 protein

family. RAD51 proteins are essential for DNA repair by

homologous recombination (Tarsounas et al. 2004), a DNA

repair pathway with an established and important role in

breast cancer development. A more recent study, which

included African American subjects from the current study,

revealed a risk marker at the telomerase reverse trans-

criptase (TERT) locus (Haiman et al. 2011b), a protein that

controls telomere length and is also implicated in onco-

genesis (Kim et al. 1994). Many of the risk variants iden-

tified by GWAS, however, are located in gene deserts, or

near genes with roles in breast cancer etiology that are

currently unknown.

The search for additional low penetrance alleles for

breast cancer in specific racial/ethnic populations has

revealed additional variants that are important globally or

more common and/or limited to defined populations. For

example, a GWAS conducted among Chinese women

identified a novel risk locus for breast cancer near the gene

for the estrogen receptor (ER) on chromosome 6 which had

not been revealed in previous, well-powered GWAS in

R. G. Ziegler � S. J. Chanock

Epidemiology and Biostatistics Program, Division of Cancer

Epidemiology and Genetics, National Cancer Institute,

Bethesda, DC, USA

E. V. Bandera

The Cancer Institute of New Jersey, New Brunswick, NJ, USA

M. F. Press

Department of Pathology, Keck School of Medicine

and Norris Comprehensive Cancer Center, University of

Southern California, Los Angeles, CA, USA

D. Huo

Department of Health Studies, University of Chicago,

Chicago, IL, USA

Y. Zheng � N. J. Cox � O. I. Olopade

Department of Medicine, University of Chicago,

Chicago, IL, USA

T. O. Ogundiran

Department of Surgery, College of Medicine,

University of Ibadan, Ibadan, Nigeria

C. Adebamowo

Department of Epidemiology and Preventive Medicine,

University of Maryland, Baltimore, MD, USA

M. S. Simon

Department of Oncology, Karmanos Cancer Institute,

Wayne State University, Detroit, MI, USA

A. Hennis

Chronic Disease Research Centre, Tropical Medicine Research

Institute, University of the West Indies, Bridgetown, Barbados

A. Hennis � B. Nemesure � S.-Y. Wu � M. C. Leske

Department of Preventive Medicine, State University

of New York at Stony Brook, Stony Brook, NY, USA

S. Ambs

Laboratory of Human Carcinogenesis,

National Cancer Institute, Bethesda, MD, USA

C. M. Hutter � A. Young � C. Kooperberg � U. Peters

Division of Public Health Sciences, Fred Hutchinson Cancer

Research Center, Seattle, WA, USA

D. J. Van Den Berg

Epigenome Center, Norris Comprehensive Cancer Center,

University of Southern California, Los Angeles, CA, USA

L. Le Marchand � L. N. Kolonel

Epidemiology Program, Cancer Research Center,

University of Hawaii, Honolulu, HI, USA

C. A. Haiman (&)

USC Norris Comprehensive Cancer Center, Harlyne Norris

Research Tower, 1450 Biggy Street, Room 1504,

Los Angeles, CA 90033, USA

e-mail: haiman@usc.edu

40 Hum Genet (2013) 132:39–48

123



populations of European ancestry (Zheng et al. 2009b).

A GWAS of prostate cancer in men of African ancestry also

identified a novel risk variant at 17q12 that is not observed in

other populations (Haiman et al. 2011a). In search for risk

variants for breast cancer that may be important to women of

African ancestry, we analyzed[1 million common SNPs in

3,153 African American breast cancer cases and 2,831

African American controls, and examined the most statisti-

cally significant associations in a second stage of 3,607 cases

and 11,330 controls of African ancestry.

Materials and methods

Study populations

Stage 1 of the GWAS included African American partici-

pants from 9 epidemiological studies of breast cancer,

comprising a total of 3,153 cases and 2,831 controls (cases/

controls: The Multiethnic Cohort study (MEC), 734/1,003;

The Los Angeles component of The Women’s Contra-

ceptive and Reproductive Experiences (CARE) Study,

380/224; The Women’s Circle of Health Study (WCHS),

272/240; The San Francisco Bay Area Breast Cancer Study

(SFBCS), 172/231; The Northern California Breast Cancer

Family Registry (NC-BCFR), 440/53; The Carolina Breast

Cancer Study (CBCS), 656/608; The Prostate, Lung,

Colorectal, and Ovarian Cancer Screening Trial (PLCO)

Cohort, 64/133; The Nashville Breast Health Study

(NBHS), 310/186; and, The Wake Forest University Breast

Cancer Study (WFBC), 125/153). Replication testing was

conducted in an independent sample of 3,607 breast cancer

cases and 11,330 controls from 9 additional studies of

breast cancer in women of African ancestry (The Black

Women’s Health Study (BWHS), 826/1,167; The

Women’s Insights and Shared Experiences study (WISE),

174/458; NBHS/Southern Community Cohort (SCCS),

981/851; The Nigerian Breast Cancer Study (NBCS),

681/282; The Barbados National Cancer Study (BNCS),

93/244; The Racial Variability in Genotypic Determinants

of Breast Cancer Risk Study (RVGBC), 151/272; The Balti-

more Breast Cancer Study (BBCS), 117/111; The Chicago

Cancer Prone Study (CCPS), 268/261; and, The Women’s

Health Initiative (WHI), 316/7,484).

Sample size and selected characteristics for these studies

are summarized in Supplemental Tables 1 and 2 and

detailed information about the design and organization of

each study is provided in supporting information.

Genotyping and quality control

Genotyping in stage 1 was conducted using the Illumina

Human1M-Duo BeadChip. Of the 5,984 samples from

these studies (3,153 cases and 2,831 controls), we

attempted genotyping of 5,932, removing samples

(n = 52) with DNA concentrations \20 ng/ul. Following

genotyping, we removed samples based on the following

exclusion criteria: (1) unexpected replicates (C98.9 %

genetically identical) that we were able to confirm through

discussions with study investigators (only one of each

replicate was removed, n = 15); (2) unknown replicates that

we were not able to confirm (pair or triplicate removed,

n = 14); (3) samples with call rates \95 % after a second

genotyping attempt (n = 100); (4) samples with B5 % Afri-

can ancestry (n = 36) (discussed below); and (5) samples with

\15 % mean heterozygosity of SNPs on the X chromosome

and/or similar mean allele intensities of SNPs on the X and Y

chromosomes (n = 6) as these are likely to be males.

We removed SNPs with \95 % call rate (n = 21,732)

or minor allele frequencies (MAFs) \1 % (n = 80,193).

To assess genotyping reproducibility, we included 138

known replicate samples; the average concordance rate was

99.95 % ([99.93 % for all pairs). We also eliminated

SNPs with genotyping concordance rates \98 % based on

the replicates (n = 11,701). The final analysis dataset

included 1,043,036 SNPs genotyped on 3,016 cases and

2,745 controls, with an average SNP call rate of 99.7 %

and average sample call rate of 99.8 %. Hardy–Weinberg

equilibrium (HWE) was not used as a criterion for

removing SNPs; none of the SNPs selected for replication

deviated from HWE in controls in each study (based on a

cut-off of p \ 0.001).

We selected 66 SNPs with p values\2 9 10-4 in stage

1 for evaluation in the second stage. These SNPs were

selected from 53 regions following linkage disequilibrium

(LD) pruning of correlated SNPs. Two of these SNPs were

located near a previously validated breast cancer risk locus

[rs12355688 at 10q22, 241 kb downstream of rs704010,

r2 = 0 in both CEU and YRI populations from 1000

Genomes Project (March 2010 release) (Turnbull et al.

2010); and rs3745185 at 19p13, 10 kb downstream of

rs2363956, r2 = 0.57 and 0.19 in the CEU and YRI pop-

ulations from 1000 Genomes Project (March 2010 release),

respectively (Antoniou et al. 2010)]. Genotyping in the

replication studies was performed using the Sequenom

platform (BWHS), OpenArray (WISE and NBHS/SCCS),

the Affymetrix 6.0 SNP array (WHI) (Hutter et al. 2011)

and Illumina GoldenGate (all other studies) (see Support-

ing Information). Blinded duplicate samples (5–10 %)

were included in the replication studies and concordance of

these samples was C98 % in all studies. The number of

SNPs that were genotyped successfully in each stage 2

study ranged from 51 to 63. The average call rate for all

SNPs in stage 2 was 98.8 % (range for call rates of a SNP

within study 71.4–100 %). Call rates by SNP and study are

shown in Supplemental Table 3.
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Estimation of African ancestry

In stage 1, we utilized STRUCTURE (Pritchard et al. 2000)

to infer percent African ancestry on an individual level. A

total of 2,546 ancestry-informative SNPs from the Illumina

array were selected based on low inter-marker correlation

and ability to differentiate between samples of African and

European descent. In evaluating the distribution of the

fraction of African ancestry across the stage 1 populations,

statistically significant differences (ANOVA p \ 10-16)

were noted (Supplemental Figure 1). We also applied

principal components analysis (PCA) (Price et al. 2006) to

estimate axes of variation among the 5,761 individuals

using the same 2,546 ancestry informative markers. The

first eigenvector accounted for 10.1 % of the variation

between subjects, and subsequent eigenvectors accounted

for not more than 0.5 %. Using input genotypes from the

HapMap populations, CEU (CEPH Utah), YRI (Yoruba),

and JPT (Japanese), we determined that the first eigen-

vector clearly differentiates between Europeans (CEU) and

West Africans (YRI) in the HapMap samples (Supple-

mental Fig. 2).

Statistical analysis

We examined the observed versus the expected distribution

of the Chi-squared test statistics using a 1-degree of free-

dom (df) trend test, comparing genotype counts for each

SNP in cases versus controls. All tests of statistical sig-

nificance were two-sided. To improve coverage, we aug-

mented the set of SNPs tested for association through

imputation using MACH (Li and Abecasis 2006). Phased

haplotypes from the 120 CEU and 120 YRI founders in

HapMap Phase 2 were used to infer genotypes of all Phase

2 SNPs that were not available on the Illumina 1M Duo or

did not pass our quality control (QC) criteria. Odds ratios

(OR) and 95 % confidence intervals (CI) for each SNP

were estimated using unconditional logistic regression,

adjusting for age, the first eigenvector and study. The

SFBCS and NC-BCFR studies were conducted in the same

San Francisco Bay Area population and were combined in

all analyses.

In the replication studies, ORs and 95 % CIs for each

SNP were estimated using unconditional logistic regres-

sion, adjusting for age, region within the WHI and esti-

mated genetic ancestry. Ancestry information was

available for all stage 2 studies except WISE (Supporting

Information). Overall testing of single SNP associations

was conducted via meta-analyses of results from the stage

1 and stage 2 studies.

We also conducted combined GWAS and admixture-

based statistical tests to assess the contribution of local

ancestry on the SNP associations. For each subject in our

analysis, we inferred local ancestry, which defines the

proportion of European and African ancestry at each gen-

otyped and imputed SNP. To infer local ancestry in our

GWAS panel of 5,761 African American women, we

applied the program HAPMIX (Price et al. 2009). HAP-

MIX builds a Hidden Markov Model (HMM) using phased

haplotype data that are representative of the two source

populations assumed to be ancestral to the admixed (study)

data. In this case, we provided the same HapMap dataset

that was used for imputation (i.e., 240 CEU ? YRI foun-

der haplotypes per chromosome) as input. HAPMIX

reports posterior probabilities for each subject at each SNP

of carrying 0, 1 and 2 copies of a European allele.

Combined GWAS and admixture-based statistical tests

were conducted to make inferences about regions of the

genome that explain not only case–control differences in

disease risk based on SNP associations, but also risk dif-

ferences based on local genetic ancestry. We utilized the

MIXSCORE program (Pasaniuc et al. 2011) which takes as

input results from a GWAS scan and an admixture scan

(specifically HAPMIX output), and computes several sta-

tistics that incorporate allele frequency information from

both sources of evidence. The SUM score is a 2-df Chi-

squared test that simultaneously tests for association (i.e., a

case–control difference in allele frequency) and admixture

evidence (i.e., a deviation from the genome-wide propor-

tion of European ancestry). The MIX score also tests for

both evidence of admixture and association, but assumes

the odds ratios for admixture and association are equal,

which is potentially more powerful when this assumption is

true since it is a 1-df test.

Results

The stage 1 analysis included 3,016 cases and 2,745 con-

trols among African American women from 9 epidemio-

logical studies of breast cancer. The age of the cases and

controls in stage 1 ranged from 22 to 87 years with the

median ages being 55 and 58 years, respectively (Supple-

mental Table 1). The analysis of the most statistically

significant associations from stage 1 was conducted in

3,533 cases and 11,046 controls from an additional 9

studies. The age of the cases and controls in stage 2 ranged

from 18 to 92 years with the median ages being 50 and

53 years, respectively (Supplemental Table 2).

We observed no evidence of inflation of the test statistic

(k = 1.01) for the 1,043,036 genotyped and 2,067,098

imputed SNPs analyzed in stage 1, and no excess of very

small p values beyond what was expected (Fig. 1). We

observed no SNP to be associated with disease status at a

genome-wide level of significance (p \ 5 9 10-8) in stage

1 (Fig. 2). The most statistically significant association was

42 Hum Genet (2013) 132:39–48
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noted with SNP rs7610073 located in intron 2 of the gene

GRM7 (metabotropic glutamate receptor 7) on chromo-

some 3p26 (risk allele frequency 0.64; OR per allele 1.22;

p = 7.4 9 10-7). A second signal was also noted *486 kb

upstream of GRM7 (rs10510333: risk allele frequency 0.18;

OR per allele 1.24; p = 8.2 9 10-6). The associations with

these two markers were independent and remained statisti-

cally significant when both were included in the same model

(p values of 8.3 9 10-7 and 9.3 9 10-6, respectively).

Shown in Table 1 are the genotyped SNPs with p values

\10-5 in stage 1, as well as SNPs that replicated in stage 2

(discussed below).

We selected 66 genotyped SNPs with association p val-

ues less than 2 9 10-4 for replication testing in the stage 2

studies. None of these SNPs replicated with stage 2-wide

significance of\0.0008 (0.05/66), but two replicated with a

p value \0.05 and an OR in the same direction as that

observed in stage 1 (Table 1). Combining results from

stages 1 and 2, no SNP achieved genome-wide signifi-

cance. The smallest combined p values were noted for the

two SNPs that replicated in stage 2: rs4322600 located

*100 kb upstream of the gene GALC (galactosylcerami-

dase) on chromosome 14q31(risk allele frequency 0.78, OR

per allele 1.18, p = 4.3 9 10-6) and rs10510333 located

*486 kb upstream of GRM7 on chromosome 3p26 (risk

allele frequency 0.18, OR per allele 1.15, p = 1.5 9 10-5)

(Table 1). We found no strong statistical evidence that the

associations with these two loci differ by ER status

(p values for heterogeneity in case-only testing:

rs10510333: p = 0.67; rs4322600: p = 0.85).

Using the MIXSCORE program, we simultaneously

tested the null hypothesis of no association and admixture

at each loci defined by the 66 most significant variants

identified in Stage 1. SNP rs7610073, which had the largest

Fig. 1 The distribution of observed versus expected -log10 p values

from stage 1 adjusted for age, study and the first principal component

(PC1)

Fig. 2 A Manhattan plot

showing the -log10 p values

which test for case–control

association to disease for

genotyped and imputed SNPs

by chromosome in stage 1

Hum Genet (2013) 132:39–48 43
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MIX score of 24.5 (p = 7.5 9 10-7) also had the smallest

p value in the first stage (Supplemental Table 4). The risk

allele (the ‘‘A’’ allele for rs7610073) was not strongly

differentiated (60 % in HapMap YRI vs. 81 % in HapMap

CEU) and the MIX score p value was almost identical to

the p value from our association scan. Association p values

were generally stronger than the SUM or MIX score, so

admixture did not make a substantive contribution in joint

evidence of admixture and association for these 66 SNPs,

as indicated in Supplemental Table 4. All together, these

findings seem to indicate that the associations at the most

significant loci in Stage 1 are not influenced by differences

in local ancestry between cases and controls, meaning that

any causal variants in these regions are not appreciably

differentiated in frequency between cases and controls.

Discussion

Genome-wide studies of common and rare genetic variation

conducted in multiple populations will be required to reveal

the complete spectrum of susceptibility alleles that con-

tribute to risk of breast cancer globally. In a genome-wide

scan of common genetic variation in [3,000 African

American cases and [2,700 controls, followed by replica-

tion testing of the most significant associations (p \ 2 9

10-4) in an independent set of [3,500 cases and [11,000

controls, we identified two suggestive associations with

breast cancer risk that replicated in stage 2 at p \ 0.05

[chromosome 14q31 (p = 4.3 9 10-6) and 3p26 (p =

1.5 9 10-5)]; however, these associations did not reach the

standard level of genome-wide significance. These regions

have not been highlighted in previous GWAS conducted in

other racial/ethnic populations and each association

requires further validation in additional studies.

Populations of African ancestry have greater genetic

diversity and lower levels of LD among chromosomal loci

(Campbell and Tishkoff 2008; Reed and Tishkoff 2006).

Because of LD patterns and allele frequencies that differ

from non-African populations, GWAS results from Euro-

pean or Asian populations are not always replicable in

populations of African ancestry (Chen et al. 2010; Huo

et al. 2012; Hutter et al. 2011; Ruiz-Narvaez et al. 2010;

Zheng et al. 2009a). Fine mapping of known breast cancer

risk loci in populations of African ancestry has revealed

risk-associated markers that are more relevant to African

populations and contribute to modeling of genetic risk in

this population (Chen et al. 2011; Ruiz-Narvaez et al. 2010;

Udler et al. 2009). Large GWAS in populations of African

ancestry, with proper control of population structure, will

be required to discover additional disease susceptibility

variants that better define the genetic profile of breast

cancer in this population.T
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A strength of the present study is that it includes most

existing case–control studies of breast cancer conducted in

women of African ancestry. In this two-stage design, we

had 80 % statistical power to identify a common risk

variant (frequency of C10 %) that conveys a risk per allele

of 1.3 at genome-wide significance (p = 5 9 10-8). Thus,

we were able to rule out variants with large effects if they

were among the top 0.007 % in stage 1 (and thus taken to

stage 2) and were adequately tagged by the common SNPs

on the 1 M array. However, we are likely to have missed

some milder associations. In previous GWAS of breast

cancer in European ancestry populations, most risk variants

eventually identified were not among the most statistically

significant in stage 1 and were only revealed through

testing of large numbers of SNPs in additional replication

stages. To identify novel risk loci for breast cancer in

African ancestry populations will require continued col-

laborative efforts and investigators willing to test larger

numbers of SNPs in their respective studies.

Our attempt to apply joint admixture and association

mapping, using MIXSCORE, did not provide additional

suggestive risk variants beyond those found using association

methods alone. This suggests that the associations observed at

the most significant regions in Stage 1 are not weakened by

ancestry differences between cases and controls, and thus, the

biologically functional alleles are unlikely to be highly dif-

ferentiated in frequency between cases and controls. Because

of the limited number of ER-negative cases in stage 1

(n = 988) and stage 2 (n = 423), the statistical power to look

at subtypes with rate differences (e.g., ER-negative disease,

more common in African American than European American

women) was limited and not attempted for GWAS or

admixture testing. However, in collaboration with GWAS of

ER-negative breast cancer in European ancestry populations,

which have substantially larger numbers of ER-negative

cases, we have identified a novel locus for ER-negative breast

cancer at 5p15 (TERT) (Haiman et al. 2011b). Genetic vari-

ation at this locus may contribute in part to the higher inci-

dence of ER-negative disease subtypes in women of African

ancestry (frequency of 0.56 in African Americans and fre-

quency of 0.26 in Whites) (Haiman et al. 2011b). As for the

analysis of overall breast cancer, larger studies of breast

cancer in women of African ancestry will be needed to search

for novel risk loci for ER-negative disease subtypes that are

important for and may be limited to this population.

This study is the first genome-wide investigation of

common genetic variation in relationship with breast can-

cer risk in women of African ancestry. The suggestive

associations noted with risk variants at 14q31 and 3p26

require further validation in additional samples of African

ancestry as well as in other populations. Identification of

common risk variants for breast cancer in African ancestry

populations will require testing a larger number of the most

statistically significant SNPs from stage 1 in additional

samples.
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