
Genetic
EpidemiologyRESEARCH ARTICLE

A Variational Bayes Discrete Mixture Test for Rare
Variant Association

Benjamin A. Logsdon,1,2∗ James Y. Dai,1,3 Paul L. Auer,1,20 Jill M. Johnsen,4,19 Santhi K. Ganesh,5 Nicholas L. Smith,6,7,8

James G. Wilson,9 Russell P. Tracy,10 Leslie A. Lange,11 Shuo Jiao,12 Stephen S. Rich,13 Guillaume Lettre,14

Christopher S. Carlson,1 Rebecca D. Jackson,15 Christopher J. O’Donnell,16 Mark M. Wurfel,17 Deborah A. Nickerson,2

Hua Tang,18 Alexander P. Reiner,1,6 and Charles Kooperberg1 on behalf of the NHLBI GO Exome Sequencing Project21

1Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America; 2Department of
Genome Science, University of Washington, Seattle, Washington, United States of America; 3Vaccine and Infectious Disease Division, Fred
Hutchinson Cancer Research Center, Seattle, Washington, United States of America; 4Research Institute, Puget Sound Blood Center, Seattle,
Washington, United States of America; 5Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor,
Michigan, United States of America; 6Department of Epidemiology, University of Washington, Seattle, Washington, United States of America;
7Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America; 8Seattle Epidemiologic Research and
Information Center, VA Office of Research and Development, Seattle, Washington, United States of America; 9Department of Physiology and
Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America; 10Department of Pathology and
Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America; 11Departments of Epidemiology,
Genetics and Biostatistics, Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina, United States of
America; 12Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America; 13Center for
Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America;
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ABSTRACT: Recently, many statistical methods have been proposed to test for associations between rare genetic variants and
complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as
a gene. Although there is evidence that “aggregate” tests are more powerful than the single marker test, these tests generally
ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose
a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level,
and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many
variants within a given region of the genome with only a fraction causal our approach has greater power compared to other
popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing
method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to
scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To
demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF
missense rare-variants imputed from the National Heart, Lung, and Blood Institute’s Exome Sequencing project into 2,487
African Americans within the VWF gene. Our method suggests that a relatively small fraction (∼10%) of the imputed rare
missense variants within VWF are strongly associated with lower VWF levels in African Americans.
Genet Epidemiol 38:21–30, 2014. C© 2013 Wiley Periodicals, Inc.
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Introduction

Genome-wide association studies (GWAS) have discovered
thousands of common single nucleotide polymorphisms
(SNPs) associated with complex phenotypes [McCarthy et al.,
2008; Visscher et al., 2012], yet these common variants
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generally explain a small fraction (<10%) of trait heritabil-
ity [Manolio et al., 2009; Visscher et al., 2012]. Rare coding
polymorphisms, those with minor allele frequency (MAF)
less than 1–5%, may in part explain this missing heritability
[Eichler et al., 2010; Manolio et al., 2009]. With advances
in sequencing technologies, it has become affordable to as-
say genome-wide rare variation in large studies and identify
novel rare variant associations [Emond et al., 2012; Tennessen
et al., 2012].

While rare variants may have larger effects than common
variants [McClellan and King, 2010], detecting such variants
by a single variant test is typically underpowered due to the
low frequencies of the variants and the large number of rare
variants in the human genome [Tennessen et al., 2012]. The
standard approach has been to aggregate rare variant associ-
ations across a gene or region of the genome [Han and Pan,
2010; Li and Leal, 2008; Madsen and Browning, 2009; Mor-
genthaler and Thilly, 2007; Morris and Zeggini, 2010; Price
et al., 2010; Wu et al., 2011]. Many different aggregate rare
variant tests have been proposed, largely grouped into three
classes.

The first class tests whether or not the (weighted) sum of all
rare variants in a gene or region of the genome is associated
with a shift in the mean of a trait, so-called “burden tests.”
Popular examples include the weighted sum statistic (WSS)
[Madsen and Browning, 2009], the Morris-Zeggini (MZ) test
[Morris and Zeggini, 2010], and the combined multivariate
and collapsing test (CMC) [Li and Leal, 2008]. These tests
are well powered if the proportion of variants with nonzero
effect is high and each variant’s effect is in the same direction.
However, these assumptions may be violated, e.g. if most
variants have little or no effect or some variants are protective
and other variants are deleterious.

To address these potential limitations, tests in the second
class model heterogeneity in the effect distribution of rare
variants. Essentially these methods test for a nonzero vari-
ance component in a normal random effect model. Popular
examples include the c-alpha test [Price et al., 2010] and the
more general Sequence Kernel Association Test (SKAT) [Wu
et al., 2011]. These tests are advantageous when the effects of
rare variants are either in the opposite direction, or a mixture
of neutral and nonneutral effects [Wu et al., 2011]. Under
diverse genetic architectures, neither of the two aforemen-
tioned classes of tests is uniformly most powerful. This drives
development of the third class of tests, that combine the mean
shift test with the test for heterogeneity of effect (e.g., SKAT-
O [Lee et al., 2012], aSum [Han and Pan, 2010], and others
[Sun et al., 2013]), aiming to achieve greater power over a
range of genetic architectures.

Previous authors have noted that even among nonsynony-
mous variants only approximately 20% are likely functional
[Ng et al., 2008; Sunyaev et al., 2001]. This implies that aggre-
gate tests may lose power because the inclusion of a substan-
tial number of neutral variants increases the “noise” in the
aggregate test. In particular, both SKAT and SKAT-O assume
that the effects of rare variants follow a normal distribution,
yet in published simulations for demonstrating power, only
a portion of variants were set to be causal [Lee et al., 2012;

Wu et al., 2011]. Model misspecification may lead to power
loss.

Other authors have explored variant level model selection
methods, including a step-wise selection model [Hoffmann
et al., 2010] and Bayesian hierarchical models with differ-
ent variant level priors [Capanu and Begg, 2011; Yi and Zhi,
2011]. In this article we propose a test based on a simple
discrete mixture model for rare variant effects. Rather than
lumping all SNPs together, every variant has a latent variable
determining whether it has an effect on the phenotype. Un-
like the random effect tests such as SKAT and SKAT-O, we
assume that the variant level effects are distributed as a mix-
ture of a point mass at zero and a point mass away from zero.
The separation of neutral and causal variants is thus directly
modeled, thereby improving power. This is similar in vein to
rare variant model selection methods proposed by Quintana
et al. [Quintana et al., 2011, 2013]. The two major differences
of our method compared to the method of Quintana et al.
[Quintana et al., 2011] are (1) we propose a computationally
efficient variational Bayes approximate inference algorithm
that is scalable to whole-genome analysis, and (2) we propose
a likelihood ratio test that can be used to prioritize genes or
regions of the genome for further investigation that has an
approximately χ2

1 asymptotic distribution. Similar to Quin-
tana et al. [Quintana et al., 2011, 2013], another feature of our
method is that a variant-level posterior probability of asso-
ciation is generated, which can be used to prioritize variants
for follow-up.

Through extensive simulations, we demonstrate our pro-
posed method has proper type I error rates and superior
power performance over existing methods in a wide range of
parameter settings. As an example to illustrate the test statis-
tic and the posterior probability of association, we present
results from applying our method to data on quantitative
von Willebrand Factor levels and rare missense variants in
the VWF gene from the National Heart, Lung, and Blood In-
stitute (NHLBI)-Exome Sequencing Project (ESP), and the
NHLBI Candidate Gene Association Resource (CARe) con-
sortium.

Materials and Methods

Variational Bayes Discrete Mixture Model

Suppose n subjects are sequenced at a region with J vari-
ants observed. For the ith subject, i = 1, . . . , n, observed
data contain (Yi, X i, G i), where Yi denote the disease trait,
X i = (X i1, . . . , X iK ) denote K covariates (that may include
eigenvectors used for controlling for population stratifica-
tion), and G i = (G i1, . . . , G iJ ) denote the vector of 0, 1, or 2
at J loci for an additive genetic model. Our goal is to test for
genetic association in the region.

For a quantitative trait, we propose the following proba-
bilistic discrete mixture model

Yi = γ0 +

K∑
k

X ikγk + θ

J∑
j

Z j G ij + ei,
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where Z j is a latent indicator variable that determines
whether the j th variant is truly causal (Z j = 1) or neutral
(Z j = 0), θ is the “average” effect among causal variants,
γk is the kth covariate effect, and ei is the error distributed
as N (0, σ2). We assume that Z j is distributed as Bernoulli
(p f un) for all j , so that p f un denotes the proportion of causal
variants in the region.

Compared to the burden tests and the tests for heterogene-
ity [Lee et al., 2012; Li and Leal, 2008; Madsen and Browning,
2009; Morris and Zeggini, 2010; Wu et al., 2011], our model
adds a probabilistic assessment of whether a variant is causal
and should be lumped with other causal variants, thereby
filtering out neutral variants based on their evidence of asso-
ciation. One could extend the model to allow causal variants
that have different effects by assigning a normal prior dis-
tribution to θ. However, for testing genetic association in
the region as a whole, a simple model with a single average
effect θ, after teasing out the neutral variants, offers compu-
tational simplicity and good power. Similar arguments have
been made for why burden tests are more powerful than SKAT
when a majority of variants are causal [Basu and Pan, 2011].

The null hypothesis of no genetic association can be ex-
pressed as

θ = 0 or p fun = 0.

The two parameters θ and p fun are identifiable under the

alternative hypothesis, but not under the null. This causes
irregular large-sample behavior of the usual likelihood ra-
tio test (LRT) statistic. For a simple finite mixture model,
the asymptotic distribution of the likelihood ratio test of
the mixing parameter has a complex distribution based on
an autoregressive Gaussian process [Chen et al., 2001]. To
remedy this problem, we take a Bayesian view and apply an
informative prior distribution Beta (2, 2) for p fun. The den-

sity function of Beta (2, 2) is between 0 and 1, peaking at 0.5.
Use of the Beta prior discourages p f un from being near 0 or
1, the boundary of the parameter space, essentially adding
a penalty to the log likelihood, in a frequentist version of
the model, similar to Chen et al. [2001]. Such a penalty can
simplify the asymptotic distribution of the LRT to a more
tractable distribution.

To fit this discrete mixture model using a standard
expectation-maximization algorithm [Dempster et al., 1977],
we would have to sum over all possible assignments of Z j for
each variant within a gene in the likelihood, which can be
prohibitive for genes with many variants. Alternatively, we
could derive a Bayesian Markov chain Monte Carlo solution
with a Gibbs sampler [Smith and Roberts, 1993], but this
is also computationally intensive because of the number of
iterations necessary for the Markov chain to converge to the
posterior distribution. To overcome these computational dif-
ficulties in genome-wide analysis, we use a variational Bayes
approximate inference method [Beal, 2003].

The variational Bayes method was first developed for prob-
lems in statistical mechanics as mean-field theory [Parisi,
1988], and recently has found popular applications in fitting
complex statistical models for high dimensional data in ge-

nomics [Giannoulatou et al., 2008; Li and Sillanpää, 2012;
Logsdon et al., 2010; Teschendorff et al., 2005]. In particular,
when the covariates under model selection are independent,
the variational Bayes approximation is nearly the same as
the exact likelihood calculation [Carbonetto and Stephens,
2012], suggesting that the method should work well for rare
variant association due to typically low correlation between
rare variants.

For a quantitative trait, a variational Bayes al-
gorithm approximates the true posterior distribu-
tion p (Z 1, . . . , Z J , p fun|G , X , y, γ, θ, σ2) by estimat-

ing a factorized posterior distribution Q (Z , p fun) =

qpfun
(p f un)

∏
j qj (Z j ) by minimizing the Kullback–Leibler

divergence

DK L

(
Q

(
Z , p f un

) ||p (
Z , p f un|G , X , Y, γ, θ, σ2

))
=

∑
Z

∫
Q

(
Z , p f un

)
× log

(
Q

(
Z , p f un

)
p

(
Z , p f un|G , X , Y, γ, θ, σ2

))
dp fun,

where
∑

Z indicates
∑1

Z 1=0 · · · ∑1
Z J =0. Because of the fac-

torization approximation, there exist efficient closed form
coordinate updates for all qj

(
Z j

)
and qp f un

(
p f un

)
to find a

local solution to the optimization problem

Q̂
(
Z , p f un

)
= argminQ(Z ,p f un)DK L

× (
Q

(
Z , p f un

) ||p (
Z , p f un|G , X , Y, γ, θ, σ2

))
.

Further details of the derivations of these approximate poste-
rior distributions are provided in the Supplementary Infor-
mation. Fitting this model produces a lower bound

L (
Y|G , X , γ, θ, σ2

)
=

∑
Z

∫
Q̂

(
Z , p f un

)
× log

(
p

(
Z , p f un, Y|G , X , γ, θ, σ2

)
Q̂

(
Z , p f un

) )
dp fun

for the marginal log-posterior probability of the data
log

(
p

(
Y|G , X , γ, θ, σ2

))
. The parameters γ, θ, and σ2 are

estimated as(̂
γ, σ̂2, θ̂

)
= argmaxγ,σ2,θL

(
Y|G , X , γ, θ, σ2

)
.

Based on the Beta prior distribution for p f un, we propose
the following test statistic

χ2
dm = –2L0

(
Y|G , X , γ̂, θ̂ = 0, σ̂2

)
+ 2L

(
Y|G , X , γ̂, θ̂, σ̂2

)
,

where L0(Y|G , X , γ̂, θ̂ = 0, σ̂2) is the lower bound of the
data when fitting the null model (θ = 0). Our simulation re-
sults suggest that the asymptotic approximation of this test
statistic as a χ2

1 holds fairly well for realistic data-sets. We
found that different parameters in the Beta prior on p f un had
very little effect on the model inference (results not shown),
and that fitting this model with θ = 0 produces the expected
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approximate posterior densities for qZ j (Z j = 1) = 0.5, and
qp f un (p f un) = Beta(J /2 + 2, J /2 + 2). It would be possible to
incorporate different types of priors based on evidence of
functionality in each individual variant, for example from in-
formation obtained from PolyPhen-2 [Adzhubei et al., 2010].

In addition to the gene level test statistic χ2
dm, the unique

feature of our method compared to competing aggregate rare
variant tests is a per-variant measure of association based
on the estimated probability qj (Z j ). This is the approximate
posterior probability that a given variant is associated with the
phenotype. This posterior probability estimate can be used
to assess which variants in a gene are driving the association
with phenotype, and to rank these variants for functional
follow-up or replication.

Simulation Design

Genotypes were simulated based upon the observed minor
allele frequency spectrum from all imputed exonic variants
from the NHLBI–ESP project with imputation R2 > 0.5 and
0.001 < MAF < 0.05 (Supporting Information Fig. S1). As
other authors have noted, based on the recent hyper expo-
nential population growth of the last 2,000 years, there is a
severe shift in the site frequency spectrum for variants with
very low minor allele frequencies [Tennessen et al., 2012].
Because of the possible biological relevance of this excess of
very rare variation we accounted for it in our simulations. We
simulated genes with 10, 20, or 40 independent rare variants,
with minor allele frequencies sampled from this empirical
frequency spectrum. Rare variants are often effectively inde-
pendent because they lie on different haplotype backgrounds
[Pritchard and Cox, 2002].

Phenotypes were simulated under multiple models. We
first simulated phenotypes based on the null model with 106

replicates. Phenotype data were simulated under the alterna-
tive hypothesis for two distinct cases for a range of genetic
architectures. The first case focused on simulated genotype
data and genetic architectures where the effect sizes were inde-
pendent of allele frequency (i.e., the unweighted model). We
simulated data with θ = 1, the proportion of functional vari-
ants within a gene was either 0.1, or 0.2, the total heritability
associated with a gene was between 0.005 and 0.02, the sam-
ple size was 2,000 and 1,000 replicate simulations were run.
Next, we simulated a model where θ ∼ N (

μ = 1, σ2 = 1/4
)

to model a deviation from the assumption that each func-
tional variant has the same effect. The significance level α for
all tests was 10–3.

For the second case we used the 30 imputed missense
variants from VWF with 0.001< MAF < 0.05 and impu-
tation R2 > 0.5 as the genotype data, and simulated mod-
els where the variant effect magnitudes were dependent
on allele frequency. We simulated phenotype data with
θ = 1/

√
(f j (1 – f j )), the proportion of functional variants

within a gene was either 0.1, or 0.2, the total heritability as-
sociated with a gene was between 0.005 and 0.02, and 1,000
replicate simulations were run. Next, we simulated a model
where θ ∼ N (

μ = 1/
√

(f j (1 – f j )), σ2 = 1/(4f j (1 – f j ))
)

to
model a deviation from the assumption that each functional

variant has the same effect. Age, sex, sub-study and their cor-
responding estimated effects were also included in all of these
simulations. As before, the significance level α for all tests was
10–3. Finally, for the imputed VWF genotypes, we also consid-
ered simulations where the proportion of non-null variants
was either 0.5 or 1.0, with effect distributions as before.

NHLBI ESP, WHI SHARe, and CARe data

The NHLBI’s ESP was designed to identify novel rare vari-
ant associations with common heart, lung, and blood traits
in 6,823 individuals from 20 studies. Genotype data were col-
lected at both the University of Washington and the Broad
Institute via deep whole-exome sequencing on Illumina GAII
or Illumina HiSeq platforms using one of four capture tar-
gets (CCDS 2008 (∼26 Mb), Roche/Nimblegen SeqCap EZ
Human Exome Library v1.0 (∼32 Mb; Roche Nimblegen EZ
Cap v1) or EZ Cap v2 (∼34 Mb), and Agilent RefSeq2010V2,
(∼36 Mb)). Single nucleotide variants were called using the
UMAKE pipeline at the University of Michigan, which al-
lowed all samples to be analyzed simultaneously, both for
variant calling and filtering [Tennessen et al., 2012]. Sam-
ples were filtered based on call-rate, heterozygosity, concor-
dance with GWAS data, concordance between self-reported
race and genetic ancestry as determined through principal
component analysis, and concordance between self-reported
sex and depth of coverage on the X and Y chromosomes.
Duplicate and related samples were identified using PLINK
[Purcell et al., 2007], for each duplicate/related pair, we re-
tained the sample with the higher call-rate. Variants were fil-
tered based on a support vector machine classifier [Tennessen
et al., 2012], depth of coverage, and Hardy–Weinberg equilib-
rium. After filtering, there were 1,904,903 variants available
for analysis. The final dataset contained > 111 -fold coverage
of coding sequence in the majority of samples. Further details
on study design, sequencing, and variant calling are provided
in Tennessen et al. [2012]. Next, we briefly describe the pri-
mary studies that contain the African American samples used
in this study.

Data from Womens Health Initiative (WHI) SNP Health
Association Resource (WHI-SHARe) and the NHLBI Can-
didate Gene Association Resource (CARe) consortium
(Atherosclerosis Risk in Communities (ARIC), Cardiovas-
cular Risk in Communities (CARDIA), Jackson Heart Study
(JHS), Multiethnic Study of Atherosclerosis (MESA)) were
used to impute variants identified in ESP into over 13,000
African Americans. Genome-wide genotyping was per-
formed in all participants using the Affymetrix 6.0 plat-
form, either at Affymetrix (for the WHI-SHARe project)
or at the Broad Institute (for the CARe consortium). DNA
samples with a genome-wide genotyping success rate < 97%,
duplicate discordance or sex mismatch, genetic ancestry
outliers (as determined by cluster analysis performed us-
ing principal components), SNPs with genotyping success
rate < 98%, monomorphic SNPs, SNPs with minor allele
frequency (MAF) < 1%, and SNPs with a P-value testing
Hardy–Weinberg equilibrium < 10–4 were removed from the
analyses. Data from 7,563 WHI AAs on 816,361 SNPs and
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6,205 CARe AAs on 712,556 SNPs remained after QC. We
took the intersection of SNPs passing QC in SHARe and
CARe for a total of 702,205 GWA markers. The 6,205 CARe
and 7,563 SHARe samples were combined into a single target
set of 13,768 samples for phasing. Phasing was performed
using BEAGLE v3.3.1 [Browning and Browning, 2007]. An
imputation reference panel of 2,163 samples was constructed
using individuals with both ESP and Affymetrix 6.0 data.
These samples did not overlap with the 13,768 in the target
set. Prior to imputation, the imputation reference panel was
prephased across all 2,163 samples using BEAGLE v3.3.1. Us-
ing the 4,326 statistically phased haplotypes in the reference
panel we imputed 375,024 bi-allelic autosomal markers into
the SHARe and CARe target panels using minimac [Howie
et al., 2012], similar to Auer et al. [2012].

We tested for association of imputed rare variants with
natural log transformed von Willebrand Factor levels in the
CARe (n = 2,487) study. Von Willebrand factor antigen levels
were measured in ARIC, CARDIA, and MESA participants
using stored EDTA plasma samples, as previously described
[Johnsen et al., 2013]. Only exonic missense variants with an
imputation R2 > 0.5 and 0.001 < MAF < 0.05 were consid-
ered in our model. Because of the sensitivity of the aggregate
rare variant tests for genes with many very rare variants, we
also Winsorized the log(VWF) data at the 0.005 and 0.995
percentiles; this improved the quality of the test statistic for all
tests considered. The imputed dosages are used in all statis-
tical tests (though the dosages are rounded for visualization
purposes). All analyses were run with covariates of the first
two principal components from the GWAS data to correct
for possible population structure, age, sex, and substudy.

Ethics Statement

Informed consent for collection of genetic and phenotypic
data was received from all participants within each of the
studies that contributed to the Exome Sequencing Project,
the NHLBI Candidate Gene Association Resource, and the
Women’s Health Initiative SNP Health Association Resource,
where each individual study received approval from all re-
spective institutional review boards. In our analyses all data
were analyzed anonymously.

Results

Simulations

First we demonstrate that the asymptotic VBDM test statis-
tic has appropriate type-I error control. As described in the
methods, we performed 106 replicate null simulations of
genes with either 10 or 20 independent variants with allele
frequencies sampled from the empirical allele frequency dis-
tribution of imputed exome variants in the WHI-SHARe
and CARe studies (as shown in Supporting Information
Fig. S1). In Table 1, we show the type-I error rates for both the
weighted and unweighted version of the VBDM test statistic
for different significance thresholds. The weighted statistic
assumes the effect of a variant is proportional to its minor

Table 1. Empirical Type-I error rates for VBDM based on
simulated phenotypes

Type-I Error Rate (α)
VBDM statistic # Variants N 10–2 10–3 10–4

VBDM 10 2000 1.03 × 10–2 1.12 × 10–3 1.08 × 10–4

wVBDM 10 2000 1.13 × 10–2 1.15 × 10–3 1.29 × 10–4

VBDM 20 2000 1.08 × 10–2 1.25 × 10–3 1.39 × 10–4

wVBDM 20 2000 1.12 × 10–2 1.30 × 10–3 1.64 × 10–4

VBDM 10 4000 1.03 × 10–2 1.16 × 10–3 1.23 × 10–4

wVBDM 10 4000 1.12 × 10–2 1.20 × 10–3 1.26 × 10–4

VBDM 20 4000 1.10 × 10–2 1.19 × 10–3 1.25 × 10–4

wVBDM 20 4000 1.20 × 10–2 1.32 × 10–3 1.28 × 10–4

allele frequency, while the unweighted version does not make
that assumption. The type-I error is well controlled for mod-
erate significance cutoffs, and becomes slightly inflated for
more stringent cutoffs, e.g., α < 10–3. We therefore recom-
mend running permutations on any result that is significant
based on this likelihood ratio test, to ensure that the type-I er-
ror rate is exactly controlled. The inflation of the test statistic
in the tails likely arises because the χ2 reference distribution
for our test statistic only holds approximately.

For the power simulations we compared our approach to
other popular aggregate rare variant tests including WSS, MZ,
SKAT, and SKAT-O (the “w” in front of names of methods
refers to the variation on the method where each variant is
reweighted based upon the standard deviation of each locus,
WSS is essentially a weighted version of MZ). As shown in
Figure 1, we see that VBDM has greater power when com-
pared to the other methods when there are 40 variants within
the simulated gene. Because the variant effects were sim-
ulated independently of allele frequency for the simulations
shown in Figure 1, we see that the unweighted versions of each
statistic tend to do better than their weighted counterparts
(e.g., SKAT vs. wSKAT). The performance gain for VBDM
is present across a range of simulations, including varying
sparsity, heritability, and effect distributions at a significance
cutoff of α = 10–3. For genes with 10 and 20 variants a simi-
lar pattern is observed (Supporting Information Figs. S2 and
S3), though the performance gain is attenuated. Adaptive
permutations were performed to ensure the type-I error rate
of VBDM was exactly controlled. Specifically, our approach
has much greater power than the naive collapsing methods
of WSS and MZ when the true distribution of effects is sparse
because our mixture model is directly accounting for neutral
variants in the effect distribution.

We also compared our approach to another model selection
approach, the “step-up” approach of [Hoffmann et al., 2010],
for a smaller set of simulations (simulated genes with 10 vari-
ants, 20% of variants as causal, and effects sampled from
a N(1,1/4) distribution). The results of the simulations are
shown in Supporting Information Fig. S4, where the “step-
up” method performed worse than both our method as well
as the simple collapsing methods. We used the implementa-
tion of the “step-up” method available in the “thegenetics”
R package. We also found that the “step-up” method was
more computationally intensive than our approach, where on
average our algorithm took 1.0 sec to fit a single model (with
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Figure 1. Power results from simulations of genes with 40 rare variants. (A) Ten percent of variants within a gene have an effect on phenotype,
with a fixed effect size. (B) Ten percent of variants have an effect on phenotype, with effects sampled from a N(1,1/4) distribution. (C) Twenty
percent of variants within a gene have an effect on phenotype, with a fixed effect size. (D) Twenty percent of variants within a gene have an effect
on phenotype, with effects sampled from a N(1,1/4) distribution.

1,000 permutations), whereas it took the method of Hoff-
mann et al. 3.0 sec to fit a single model (with 1,000 permu-
tations). We did not include the method of Hoffmann et al.
in all of the simulations studies because it became computa-
tionally infeasible for genes with greater numbers of variants.

In addition, for the simulations shown in Figure 1C where
the proportion of causal variants is 20% and the effect size is
fixed, we also inspected the behavior of the per variant pos-
terior probability Pj = qj

(
Z j

)
. The densities of the empirical

Pj statistics for these simulations are shown in Supporting
Information Fig. S5. For the low heritability simulations in
Supporting Information Fig. S5A (h2 = 0.005), there is not
enough signal in the data to overcome the weak prior that
each variant has a probability of 0.5 of being associated with
outcome. As the heritability increases (Supporting Informa-
tion Fig. S5B–D), the Pj statistics for casual variants shift to
the right, and the Pj statistics for neutral variants shift to the
left as the Pj statistics become more informative with respect
to which variants are driving the association. For the highest
heritability simulations (h2 = 0.02, Supporting Information
Fig. S5D) any effect of the weak prior distribution on the

posterior probabilities Pj has disappeared and the Pj statis-
tics are highly informative of which variants are neutral and
which variants are causal.

Next we considered simulations using the 30 imputed rare
missense variants within VWF with MAF < 5%. In this case,
the effects were sampled in a way that was dependent on
allele frequency, and hence the weighted versions of all the
test statistics tend to do better. We see in Figure 2 that now
wVBDM outperforms the alternative methods when only
10–20% of variants are functional within the gene. In con-
trast when 50–100% of variants are functional our method
is still competitive, but is not the most powerful (as shown
in Supporting Information Fig. S6). Our method outper-
forms both SKAT approaches when the number of variants
in a gene is large and the signal is sparse, and has simi-
lar performance for genes with fewer variants. The SKAT
tests have more power than the naive collapsing methods for
the sparse models because of the heterogeneity in the sim-
ulated effect distribution, even though the assumed normal
effect distribution is misspecified. The SKAT model performs
better when the simulated model is sparse, whereas SKAT-O
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Figure 2. Power results from phenotypic simulations based on 30 imputed VWF missense variants with MAF < 5%. (A) Ten percent of missense
variants within VWF have an effect on phenotype, with a fixed effect size. (B) Ten percent of variants have an effect on phenotype, with effects
sampled from a N(1,1/4) distribution. (C) Twenty percent of variants within VWF have an effect on phenotype, with a fixed effect size. (D) Twenty
percent of variants within a gene have an effect on phenotype, with effects sampled from a N(1,1/4) distribution.

performs better when the true distribution of effects is not
sparse. Yet neither SKAT approach has the additional advan-
tage of ranking variants within a gene for follow-up based on
each variant’s estimated posterior probability of association.

Analyses of von Willebrand Factor Levels in African
Americans

Von Willebrand Factor (VWF) is a multimeric plasma
glycoprotein that plays an important role in hemostasis
and thrombosis [Denis and Lenting, 2012]. VWF binds
to platelets at sites of vascular injury, stabilizes coagula-
tion factor VIII (FVIII). High levels of VWF are associ-
ated with increased risk of various cardiovascular outcomes
[Martinelli, 2005; van Schie et al., 2011]. Decreased VWF
levels are associated with the common bleeding disorder von
Willebrand Disease (VWD) [Johnsen and Ginsburg, 2010].
The VWF gene on chromosome 12 contains a large num-
ber of nonsynonymous coding variants, some of which have
been identified in patients with VWD. Using data from ESP
AA participants, Johnsen et al., recently showed that com-

mon and lower frequency variants (including Ser1486Leu
and Arg2287Trp) VWF missense variants are associated with
VWF levels within the African American population [Johnsen
et al., 2013]. Therefore, we performed a gene-wide associa-
tion analysis of plasma VWF levels using imputed genotype
data on low-frequency VWF missense variants from the ESP
AA to demonstrate the efficacy our approach.

We analyzed log transformed von Willebrand factor lev-
els of 2,487 AA participants from the CARe consortium and
30 imputed missense VWF variants derived from exome se-
quencing. The 30 imputed missense variants, their allele fre-
quencies, and imputation quality scores are shown in Sup-
porting Information Table S1. The results of the aggregate
rare variant analyses for each method are shown in Figure 3,
with significance cutoffs of 0.05 and 5 × 10–7 shown in black
and red, respectively. Our wVBDM approach found a signif-
icant association between rare-variants in the VWF gene and
lower VWF levels, with an approximate likelihood ratio test
P-value of 1.59 × 10–9, and a permutation P-value of <1 ×
10–7. Both SKAT and SKAT-O appear to detect some signal,
but neither are as significant as wVBDM. Moreover, SKAT is
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Figure 3. Aggregate rare variant test results for the association of
imputed missense variants within VWF with VWF levels in African Amer-
icans in the CARe consortium.

unable to localize which variants are driving the association.
Interestingly, the unweighted version of our method is un-
able to detect the association signal. We speculate that by not
weighting variants based on allele frequency, our model was
dominated by weak positive effects from the slightly more
common imputed variants. This suggests that even in cases
when the rare variant signal is strong, it can be hidden if
there is additional weak signal in the opposite direction. Un-
der these circumstances models that allow for effects in both
directions may be advantageous. Our results support this as-
sertion, where we see in Figure 3 that the SKAT methods have
increased power to detect the VWF association as compared
to the simple burden tests methods (MZ and WSS). Luckily,
in this particular case the weighted VBDM test prioritized the
rarer variants, and was then able to identify the small subset
that were driving this strong negative VWF association.

Figure 4 shows the burden plot for this association. The
burden plot depicts the distribution of the log VWF levels,
the distribution of alleles for each variant as a function of
phenotype, and the mean effect of each variant on pheno-
type. The posterior probabilities from the VBDM algorithm
are depicted to indicate which variants contribute the most
to the association. It appears that the four low-frequency
variants driving the strong association with phenotype
are rs61750625 (Arg2287Trp), rs149424724 (Ser1486Leu),
rs150077670 (Val1439Met), and rs141211612 (Ala1377Val).
Based on the VBDM analysis, the estimated additive effect of
the burden of rare variants is –39.1 IU/dL lower VWF levels.

Discussion

We have demonstrated several advantages of our discrete
mixture test. Compared to other popular rare variant aggre-
gate tests such as the SKAT-O test, our VBDM test had greater
power, particularly as the number of variants increases (e.g.,
for testing large genes or multiple genes within a pathway). In
addition, the exact inference implementation of this model

proposed in Quintana et al. Quintana et al. [2011, 2013]
relies on computationally inefficient MCMC methodologies
that can take multiple hours to run for a single gene with
134 variants [Quintana et al., 2013]. In contrast, our method
takes a fraction of a second to fit a single gene, and can there-
fore be used efficiently for genome-wide analyses. As the size
of sequencing studies grows, the number of rare variants in
any given region of the genome will also increase dramati-
cally, while the likelihood that any given variant in that region
will be functional for a given phenotype will be low. Having
a test that performs well for this circumstance will be invalu-
able to association mapping practitioners. Not only is this
test well powered to detect rare variant associations when
there is significant heterogeneity in the effect distribution
(e.g., the association is driven by a small proportion of the
overall number of variants tested), it can also provide a vari-
ant level measure of association with phenotype. The variant
level association works by determining the level of evidence
that a particular variant has an effect θ on the phenotype.
In cases where there is weak or no association (θ = 0) the
Beta(2,2) prior on the Pfun parameter will cause Pj to have a
null expectation of 0.5 (Supporting Information Fig. S5A).
Alternatively, in cases where there is ample evidence of θ � = 0,
the Pj statistics are highly informative with respect to which
variants have an effect θ (Supporting Information Fig. S5D).

We showed an example of the utility of the wVBDM statis-
tic in identifying rare variant associations with lower von
Willebrand Factor levels. Our test statistic captures a more
realistic effect distribution of a mixture of null and nonnull
variants as compared to the popular SKAT random effect
test. It can also detect both heterogeneity in the effects dis-
tribution and a mean shift, making it competitive with the
SKAT-O type tests. Extensions of the VBDM statistic that
allow different effects for some variants in one direction and
for other variants in other directions will be considered in
future work. These extensions will hopefully allow for a more
natural accommodation of the phenomena we observed for
VWF, where there appeared to be many slightly more com-
mon variants with positive effects, and only a few rare variants
with large negative effects. An additional extension would be
to apply VBDM to dichotomous outcomes. The variational
algorithm applied to the logistic regression models is nontriv-
ial [Carbonetto and Stephens, 2012], therefore we also plan
to extend the VBDM framework to logistic models in future
work. Finally, another extension of the VBDM model would
be to apply it to testing for associations genome wide. This
would require a very careful selection of the hyperparameters
α and β to prevent model overfitting, since the number of
variants would exceed the observed sample size. Of course
one could also apply VBDM to each gene across the genome
in a genome-wide search.

In our data set of >2,400 African Americans, the as-
sociation of the 30 VWF imputed variants reached an
exome-wide significance level (5 × 10–7) with our wVBDM
test. To the authors’ knowledge, the application of aggregate
rare-variant tests to imputed rare variants is novel, and could
be used to identify sparse aggregate associations in general
GWAS studies where imputation has been performed for rare
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Figure 4. Burden plot of VWF levels for the VWF gene from the CARe consortium. Histogram of Winsorized log transformed VWF levels is shown
on top. The thirty imputed missense variants are shown on bottom, ordered by mean log VWF levels of the imputed nonreference allele. Each tick
mark for a given variant represents the phenotypic value of an individual estimated to have the nonreference allele for that variant based on the
imputation. The solid circles indicate the mean of all individuals with imputed nonreference alleles. The dotted line indicates the overall mean of
VWF levels. The purple triangles indicate the posterior probability of association of a given variant with VWF levels.

variation. The association of VWF with VWF levels was com-
pletely undetectable by the naive collapsing methods (WSS
and MZ) that do not take into account sparsity or heterogene-
ity in the effect distribution. Notably, our wVBDM model
provides additional insight into the possible genetic architec-
ture underlying VWF’s putative association with VWF levels.
Specifically, four rare variants with MAF < 1% appeared to
be driving this strong association with lower VWF levels.

Our results from the aggregate VDBM test are consis-
tent with a prior single-variant variant analysis [Johnsen
et al., 2013], in which 3 of these four variants
(Arg2287Trp,Ser1486Leu, and Val1439Met) were signifi-
cantly associated with lower plasma VWF levels in ESP
AA. The fourth variant (Ala1377Val) had an effect size of
similar magnitude in the single-variant analysis [Johnsen
et al., 2013], but did not reach statistical significance (per-
haps due to power/sample size limitations). Additional ev-
idence supports the functional importance of these 4 VWF
missense variants. Arg2287Trp has been reported in a pa-
tient with VWD and low VWF levels [Ahmad et al., 2013;
Goodeve et al., 2007]. Arg2287Trp has also been shown to
be associated with abnormal expression in multiple studies
[Ahmad et al., 2013; Eikenboom et al., 2009] Arg2287Trp and
Ala1377Val are predicted to be functionally deleterious based

on sequence conservation analyses [Johnsen et al., 2013],
while Ser1486Leu disrupts a highly conserved O-linked gly-
cosylation site that modulates VWF function [Badirou et al.,
2012]. As mentioned previously, another natural extension
of the model would be to incorporate these functional pre-
dictions into the prior distribution over individual variants.
This generalization would provide a test of association that
integrates multiple sources of prior belief about variant effect
distributions and probability of functionality.

Studies of the distribution of genetic variation within
human populations have observed a severe excess of very
rare genetic polymorphism [Nelson et al., 2012; Tennessen
et al., 2012] because of recent hyper exponential population
growth. Being able to account for this severe excess of rare
variation in association models will be necessary to iden-
tify the source of missing heritability for complex disease
and complex phenotypes. Our method provides a novel ap-
proach, that exploits a biologically plausible assumption of
the effect distribution, is well powered to identify genes or
regions of the genome with an aggregation of rare variation
associated with phenotype, and classifies which variants in
that region are most likely to be contributing to phenotype.
Software for the VBDM algorithm is freely available in the
“vbdm” package from CRAN (http://cran.r-project.org).
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Li Z, Sillanpää M. 2012. Estimation of quantitative trait locus effects with epistasis by
variational Bayes algorithms. Genetics 190:231–249.

Logsdon B, Hoffman G, Mezey J. 2010. A variational bayes algorithm for fast and
accurate multiple locus genome-wide association analysis. BMC Bioinformatics
11:58-.

Madsen B, Browning S. 2009. A groupwise association test for rare mutations using a
weighted sum statistic. PLoS Genet 5:e1000384–.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy
MI, Ramos EM, Cardon LR, Chakravarti A and others. 2009. Finding the missing
heritability of complex diseases. Nature 461:747–753.

Martinelli I. 2005. von Willebrand factor and factor viii as risk factors for arterial and
venous thrombosis. In: Mannucci PM editor, Seminars in Hematology. New York:
Elsevier, volume 42, pp. 49–55.

McCarthy M, Abecasis G, Cardon L, Goldstein D, Little J, et al. 2008. Genome-wide
association studies for complex traits: consensus, uncertainty and challenges. Nat
Rev Genet 9:356–369.

McClellan J, King M. 2010. Genetic heterogeneity in human disease. Cell 141:210–
217.

Morgenthaler S, Thilly W. 2007. A strategy to discover genes that carry multi-allelic
or mono-allelic risk for common diseases: A cohort allelic sums test (cast). Mutat
Res-Fund Mol M 615:28–56.

Morris A, Zeggini E. 2010. An evaluation of statistical approaches to rare variant analysis
in genetic association studies. Genet Epidemiol 34:188–193.

Nelson MR, Wegmann D, Ehm MG, Kessner D, St. Jean P, Verzilli C, Shen J, Tang Z,
Bacanu S-A, Fraser D and others. 2012. An abundance of rare functional variants
in 202 drug target genes sequenced in 14,002 people. Science 337:100–104.

Ng P, Levy S, Huang J, Stockwell T, Walenz B, et al. 2008. Genetic variation in an
individual human exome. PLoS Genet 4:e1000160.

Parisi G. 1988. Statistical Field Theory. Reading, MA: Addison-Wesley.
Price AL, Kryukov GV, de Bakker PIW, Purcell SM, Staples J, Wi L-J, Sunyaev SR. 2010.

Pooled association tests for rare variants in exon-resequencing studies. Am J Hum
Genet 86:832–838.

Pritchard JK, Cox NJ. 2002. The allelic architecture of human disease genes: common
disease–common variant or not? Hum Mol Genet 11:2417–2423.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar
P, de Bakker PIW, Daly MJ and others. 2007. Plink: a tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet 81:559–575.

Quintana MA, Berstein JL, Thomas DC, Conti DV. 2011. Incorporating model uncer-
tainty in detecting rare variants: the Bayesian risk index. Genet Epidemiol 35:638–
649.

Quintana MA, Schumacher FR, Casey G, Bernstein JL, Li L, Conti DV. 2013. Incor-
porating prior biologic information for high-dimensional rare variant association
studies. Hum Hereditary 74:184–195.

Smith A, Roberts G. 1993. Bayesian computation via the gibbs sampler and related
markov chain monte carlo methods. J Roy Stat Soc B Met 55:3–23.

Sunyaev S, Ramensky V, Koch I, Lathe W, Kondrashov AS, Bork P. 2001. Prediction of
deleterious human alleles. Hum Mol Genet 10:591–597.

Sun J, Zheng Y, Hsu L. 2013. A unified mixed-effects model for rare-variant association
in sequencing studies. Genet Epidemiol 37:334–344.

Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do
R, Liu X, Jun G and others. 2012. Evolution and functional impact of rare coding
variation from deep sequencing of human exomes. Science 337:64–69.

Teschendorff A, Wang Y, Barbosa-Morais N, Brenton J, Caldas C. 2005. A variational
bayesian mixture modelling framework for cluster analysis of gene-expression
data. Bioinformatics 21:3025–3033.

van Schie M, van Loon J, De Maat M, Leebeek F. 2011. Genetic determinants of von
Willebrand factor levels and activity in relation to the risk of cardiovascular disease:
a review. J Thrombosis Haemostasis 9:899–908.

Visscher P, Brown M, McCarthy M, Yang J. 2012. Five years of gwas discovery. Am J
Hum Genet 90:7–15.

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-variant association testing
for sequencing data with the sequence kernel association test. Am J Hum Genet
89:82–93.

Yi N, Zhi D. 2011. Bayesian analysis of rare variants in genetic association studies. Genet
Epidemiol 35:57–69.

30 Genetic Epidemiology, Vol. 38, No. 1, 21–30, 2014


