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Secondary trait genetic association provides insight into the genetic architecture of disease etiology but requires

caution in estimation. Ignoring case-control sampling may introduce bias into secondary trait association. In this

paper, we compare the efficiency and robustness of various inverse probability weighted (IPW) estimators andmax-

imum likelihood (ML) estimators. ML methods have been proposed but require correct modeling of both the sec-

ondary and the primary trait associations for valid inference. We show that ML methods using a misspecified

primary trait model can severely inflate the type I error. IPWestimators are typically less efficient thanML estimators

but are robust against model misspecification. When the secondary trait is available for the entire cohort, the IPW

estimator with selection probabilities estimated nonparametrically and the augmented IPW estimator improve effi-

ciency over the simple IPWestimator. We conclude that in large genetic association studies with complex sampling

schemes, IPW-based estimators offer flexibility and robustness, and therefore are a viable option for analysis.

case-control sampling; design consistency; inverse probability weighting; maximum likelihood

Abbreviations: AIPW, augmented inverse probability weighted; EIPW, efficient augmented inverse probability weighted; GARNET,

Genomics and Randomized Trial Network; IPW, inverse probability weighted; ML, maximum likelihood; SPML, semiparametric

maximum likelihood.

Contemporary case-control genetic association studies are
often nested within large cohorts. In addition to the primary
case-control status that drives sample selection for genotyp-
ing, the cohorts also typically have extensive measures of co-
variates, disease risk factors, plasma biomarkers, and other
intermediate phenotypes, herein referred to as “secondary
traits.”After interrogation of primary case-control genetic as-
sociation, interest often arises in assessing genetic association
with secondary traits, exploiting genotypic data already col-
lected to further dissect the genetic architecture of disease eti-
ology. Over the past decade, there has been a proliferation of
genome-wide genotyping studies addressing secondary trait
analysis of common variants. Reported secondary trait asso-
ciations include height, body mass index (weight (kg)/height
(m)2), and lipid levels (1, 2), often through meta-analysis of
multiple studies. A timely and careful evaluation of both the-
oretical issues and practical considerations related to second-
ary trait genetic analysis is of great importance.

When the case-control status is associated with the second-
ary trait, an association analysis of the secondary trait is com-
plicated by the case-control sampling scheme for genotyping.
If a genetic variant is associated with the disease status, stan-
dard regression analysis that ignores the sampling scheme
will lead to spurious secondary trait association (3, 4). To cor-
rect for the case-control sampling, a number of statistical
methods have been proposed for secondary trait association,
ranging from a naïve analysis restricted to controls only, to
inverse probability weighted (IPW) estimation (3, 5), to max-
imum likelihood (ML) estimation (4). Our discussion herein
focuses on the comparison of IPWandML in their robustness
and efficiency. Such a comparison has been discussed con-
siderably in classical case-control association analyses (6–
9). We next provide a brief summary of some perspectives.
The development of case-control methodology is one of

the most important contributions statisticians have made to
epidemiology (10). For primary case-control association
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parameters in popular logistic regression models, semipara-
metric maximum likelihood (SPML) estimators can be con-
veniently obtained by fitting prospective likelihood to the
case-control data, ignoring retrospective outcome-dependent
sampling (11, 12). In SPML formulation, the distribution of
missing covariates, essentially nuisance parameters relative
to regression coefficients, is left completely nonparametric
(12). When sampling probabilities are available, however,
survey statisticians often suggest the use of inverse probabil-
ity weighted (IPW) estimators (6–8), even though IPW esti-
mators are typically less efficient than SPML estimators (13,
14). To improve the efficiency of the simple IPW estimator, in
which the case-control sampling probabilities are used, a gen-
eral class of semiparametric estimators based on augmented
IPW estimating equations has been proposed (15), which
may use kernel smoothing methods for estimating sampling
probabilities, as well as adding an augmentation term (16,
17). The appeal of various IPW-based estimators stems from
their robustness against model misspecification; that is, even if
the regressionmodel is wrong, IPWestimators still converge to
well-defined coefficients, namely the large-sample limit of the
solution of estimating equations one would have obtained had
the data for the entire cohort been available. On the contrary,
under model misspecification, SPML estimators may differ
substantially from such coefficients (7, 8).

Recently, this view has been modified to some extent for
classical case-control data when one is interested in predict-
ing individual risk (9), in that SPML usually predicts better
for a majority of individuals in the study except for those at
high risk. Selection of analytical methods should therefore
depend on the goal of a study. We quote from Scott and
Wild (9, p. 217) to summarize this perspective: “A prescrip-
tive approach that says that we should always use one or other
approach seems wrong: the method should be tailored to the
particular application.”

For secondary trait association in genome-wide associa-
tion studies, the trade-off between efficiency, robustness,
and practicality among the aforementioned 2 approaches
needs to be carefully evaluated. There are several reasons
for this necessity. First, ML or SPML in this setting involves
an additional nuisance model that regresses the case-control
status on the genetic variant and the secondary trait, which is
very likely to be misspecified. Second, the primary goal of
genetic association studies is to test whether there is a genetic
association (so that properly controlling for false positive
findings is imperative) and less commonly to predict individ-
ual risk. Third, secondary trait data may be available for ev-
eryone in the cohort, whereas genotyping data are available
only for a case-control sample. This scenario has not been in-
vestigated and compared between IPW-based methods and
the ML method. Fourth, secondary traits often come from a
complex sampling scheme rising simply because of conve-
nience. Application of the ML method can sometimes be
computationally prohibitive, whereas IPW-based estimators
remain viable in complex sampling.

Our motivational example comes from the Women’s
Health Initiative Study, one of the largest and farthest-
reaching studies of women’s health ever undertaken in the
United States, harboring several large-scale case-control ge-
netic studies, including the Genomics and Randomized Trial

Network (GARNET) Study, to identify genetic risk alleles
for myocardial infarction, stroke, venous thrombotic disease,
and type 2 diabetes (18). After primary analyses, investigators
were interested in genetic associations with blood pressure,
which was measured yearly; approximately 1 million single
nucleotide polymorphisms were genotyped in case-control
samples based on the 4 different but slightly overlapping dis-
eases and a shared control sample. The implementation of
ML methods for this sampling scheme and the longitudinal
secondary trait is difficult, whereas the simple IPW method
coupled with generalized estimating equations for repeated
measures is easy to apply. Moreover, blood pressure mea-
surement is cheap and available for all participants in the co-
hort. It is of interest to investigate how to leverage secondary
traits that are always observed as opposed to genotypes,
which are available only in case-control samples.

In this paper we compare the ML-based methods and the
various IPW-based methods in efficiency and robustness for
secondary trait genetic association. We consider 2 represent-
ative scenarios of practical importance for assessment in
simulations. The first is a classical setting in which only the
case-control status is observed for everyone in the cohort, and
all other variables of interest including the secondary trait and
the genotype are measured only for a case-control sample.
We derive the most efficient IPW estimator and compare
it with the ML estimator and the simple IPW estimator.
The second scenario is motivated by the GARNET Study,
in which a continuous secondary trait is always observed
together with the case-control status, and genotypes are
collected only in a case-control sample. In this setting, we
explore several IPW-derived methods including augmented
IPWestimators, using kernel estimators of selection probabil-
ities to leverage the always-observed secondary trait and in-
vestigate potential efficiency gain.

METHODS

Consider a case-control study nested in a cohort of n sub-
jects. All participants in the cohort were ascertained for a di-
chotomous clinical endpoint D, with D = 1 coded for disease
(case) and D = 0 for no disease (control). For assessment of
genetic association with D, a case-control sample was drawn
from the cohort. Let R be the indicator variable for whether a
participant was included in the case-control sample. Let G
denote the genetic variant, coded as 0, 1, or 2 depending
on the number of variant alleles. Suppose there are also a sec-
ondary trait variable Y and a vector of confounding variables
V to be adjusted for (e.g., top principal components from a
genome-wide genetic data set and age). Typically for rare dis-
eases, all cases and a small proportion of controls are in-
cluded for genotyping. Suppose the interest is in assessing
the secondary trait association in the following model:

EðY jG;VÞ ¼ gðβ0 þ β1Gþ β2VÞ ¼ gðβTχÞ; ð1Þ
where β1 is the genetic association of interest, χ = (1,G,V )T,
β = (β0, β1, β2)

T, and g is the expit function when Y is dichot-
omous or the identity function when Y is a quantitative trait.

Depending on whether the secondary trait Y is continuous
or dichotomous and on whether Y is available for the entire
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cohort or the case-control sample, there are several common
scenarios for assessing secondary trait association. For con-
ciseness of exposition, we select the following 2 representa-
tive scenarios for discussing methods:

• In scenario 1, the secondary trait is dichotomized and avail-
able only for the case-control sample. The data for a partic-
ipant in the cohort are (D,RY,RG,RV ), where (Y,G,V ) are
missing at random, so that Pr(R = 1|D,Y,G,V ) = Pr(R = 1|
D). This is the standard scenario discussed by Monsees
et al. (3), Lin and Zeng (4), and Jiang et al. (5).

• In scenario 2, the secondary trait is continuous and avail-
able for the entire cohort. The data vector for a participant
in the cohort is (D,Y,RG,RV), where (G,V) are missing at
random in that Pr(R = 1|D,Y,G,V) = Pr(R = 1|D). This is
the scenario motivated by the GARNET Study for genetic
association with blood pressure. Secondary traits are often
cheap to measure, and thus readily available for every
participant.

In scenario 1, we showcase the robustness of IPW methods
relative toMLmethods, whereas in scenario 2 we explore po-
tential efficiency gain when exploiting the information in the
always-observed continuous secondary trait. Other study sce-
narios, such as a continuous secondary trait available only for
case-control samples or a dichotomous secondary trait avail-
able for everyone, present similar settings for methodology
treatment and for comparison of robustness and efficiency.
We thus briefly discuss these alternative scenarios after the
main method presentation for scenario 1 and below.

Naïve complete-case estimator

For either logistic regression or linear regression in the sec-
ondary trait association (equation 1), the estimating function
for a subject is written as U = χT {Y – g(βTχ)}, where U is the
estimating function. The naïve complete-case estimator sol-
ves the estimating equation,

Pn
i RiUi ¼ 0. The fundamental

problem of the complete-case estimator is that this estimating
equation generally does not have 0 expectation (i.e., E(RU) ≠
0) if the sampling process R is related to U. Exceptions do
exist, however. It is useful to list the conditions under
which the complete-case estimator remains unbiased. Denote
by ⊥ the stochastic independence of 2 random variables. It
has been shown that any 1 of the following 3 conditions is
sufficient to guarantee the consistency of the complete-case
estimator (4):

• D ⊥ Y|χ. Violation of this condition is the very reason for
being concerned about secondary trait association, which
can be tested a priori. When the secondary trait is in the eti-
ological pathway to the disease outcome, or is a phenotype
after the disease onset, this condition could be violated.

• D ⊥ χ|Y, if g is the expit function. For a dichotomous sec-
ondary trait, the estimation of β1 will not be distorted by ig-
noring the sampling if there is no genetic association with
the primary disease status (3, 4). The impact of biased sam-
pling is merely shifting the intercept in equation 1 because
of the multiplicative risk model.

• D ⊥ χ|Y and Y ⊥ χ, if g is the identity link. This condition
says that if there is no genetic association for either the

primary trait or the secondary trait, then β1 = 0 is still con-
sistently estimated, and the type I error is properly con-
trolled, even if there is correlation between D and Y. In
other words, the complete-case estimator provides a valid
global test for no genetic association with either a primary
or secondary trait.

In a genome-wide association study, the majority of genetic
variants are null, for which the complete-case estimator does
not introduce bias. Correction for the biased sampling is
needed for those variants that are indeed associated with
the primary trait.

ML estimation

ML estimation, and SPML estimation in particular, is well
developed for case-control and, more generally, 2-phase sam-
pling studies (12–14). The key element of SPML estimation
is that the distribution for missing covariates, indexed by nui-
sance parameters, is left nonparametric. For secondary trait
association, several forms of ML estimation have been devel-
oped with various nuisance models (4, 5). Let β = (β0, β1, β2)
denote regression coefficients of the inference model (equa-
tion 1). The likelihood for the data arising in scenario 1 can be
derived as

fPrαðDjY;G;VÞPrβðY jG;VÞPrf ðG;VÞgR¼1

×
Z
G;V ;Y

PrαðDjY;G;VÞPrβðY jG;VÞPrf ðG;VÞdgdvdy
� �R¼0

;

and the likelihood for the data arising in scenario 2 can be de-
rived as

fPrαðDjY;G;VÞPrβðY jG;VÞPrf ðG;VÞgR¼1

×
Z
G;V

PrαðDjY;G;YÞPrβðY jG;VÞPrf ðG;VÞdgdv
� �R¼0

;

where α is the parameter indexing the distribution Pr(D|Y,G,
V ), and f is the distribution of the covariate vector (G,V ).
Both α and f are nuisance parameters relative to β, among
which α is typically formulated in a parametric logistic
model (4, 5), and f is typically left nonparametric as in the
classical SPML estimation for 2-phase sampling studies.
The inference model can be logistic or linear regression in ei-
ther likelihood; therefore, the formulation above is applicable
beyond the 2 scenarios we provided.
The validity of SPML estimation hinges on correct model-

ing of both the inference model Prβ(Y|G,V) and the nuisance
model Prα(D|Y,G,V). The former could be difficult for a con-
tinuous Y because it requires the entire distribution of Y given
G and V, whereas the latter could also be challenging if the
secondary trait Y lies on the complex etiological pathway
from genetic mutation G to disease outcome Y, so that Y
could mediate the genetic association, modify the genetic as-
sociation, or modify the association of V and D. When the
secondary trait is collected through complex sampling, cor-
rect specification of Prα(D|Y,G,V) may not be possible (e.g.,
in the aforementioned GARNET Study, there are 4 case
groups and 1 shared control group). This dependence on a
parametric nuisance model in secondary trait association is
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in sharp contrast to the classical SPML estimation developed
in the case-control association, in which the only nuisance
model is the nonparametric distribution of missing covari-
ates. Sometimes Prα(D|Y,G,V) can be estimated nonparamet-
rically (e.g., when Y,G, andV are all discrete). However, as we
will show in the simulation study under scenario 1, SPML es-
timation yields nearly the same efficiency as the simple IPW
method when the nuisance disease risk model is close to
being saturated.

Computation of SPML estimation for secondary trait asso-
ciation resembles that of SPML estimation for primary trait
association, treating α in Pr(D|Y,G,V) as additional regression
parameters (13, 14, 19). Potentially high-dimensional, non-
parametric covariate distribution can be eliminated through
the profile likelihood approach (4, 19). Alternatively, as we
implemented in our simulation for scenario 1, one can use
the expectation-maximization algorithm to simultaneously es-
timate regression parameters and nonparametric point masses
posited on each observed covariate value (20). The variance of
estimated parameters was computed by numerical differentia-
tion of the information matrix for the observed data.

Various IPW-based methods

In contrast, the validity of IPW-based estimators depends
only on the correct specification of sampling probabilities.
Denote by πi the sampling probability for the ith subject.
The simple IPW estimator solvesXn

i

Ri

πi
Ui ¼ 0: ð2Þ

Even if g(χβT) in the estimating function is not correctly
specified, the solution of equation 2 still converges to a well-
defined quantity, namely the solution of E(U ) = 0. This is the
parameter one would have estimated had data from the entire
cohort been observed. From the perspective that all models
are to some extent misspecified, such a parameter is of prac-
tical use as an interpretable cohort-based estimand for asso-
ciation. This is the so-called “design-consistency” property
advocated by survey statisticians (7, 8), which is not shared
by ML estimators. Note that design consistency does not
mean unbiasedness in large samples, because parameter esti-
mates from a misspecified model are not directly interpret-
able. In simple language, it means that the IPW estimator
approximates the inference drawn from the full cohort if
the sampling probabilities are correctly specified. Because
the sampling is controlled by investigators in case-control ge-
netic studies nested in a cohort, πi is almost always known.
The simple IPW estimator is, thus, always consistent in this
regard, though its efficiency can be substantially inferior to a
SPML estimator when the models are indeed correctly spec-
ified (13, 14).

Strategies to improve the efficiency of the simple IPW es-
timator while preserving their design-consistency property
have been proposed in the statistical literature (15, 16). Let
W denote the vector of variables that are always observed
(i.e., W =D in scenario 1, and W = (D,Y)T in scenario 2).
One way to improve efficiency of the simple IPW estimator
is to replace the known sampling probabilities in equation 2

with the estimated sampling probabilities given W, denoted
by π̂ðWiÞ Xn

i

Ri

π̂ðWiÞUi ¼ 0: ð3Þ

This is easily accomplished whenW is discrete. WhenW con-
tains continuous variables, for example Y is continuous, it is
convenient to estimate π(Wi) consistently using the nonpara-
metric Nadaraya-Watson kernel smoother (21, 22), given by

π̂ðWiÞ ¼
Pn

j¼1 RjKhðWi �WjÞPn
j¼1 KhðWi �WjÞ ; ð4Þ

where Kh(·) is a kernel function with bandwidth h. With the
proper choice of h, the asymptotic behavior of the estimator
solving equation 3 was presented by Wang et al. (16).

More generally, a class of semiparametric estimators based
on augmented inverse probability weighted (AIPW) estimat-
ing equations was proposed by Robins et al. (15). The opti-
mal estimator in this class attains the semiparametric variance
bound, in our notation solvingXn

i

Ri

πðWiÞ heffðX iÞfYi � gðβTX iÞg

þ 1� Ri

πðWiÞ
� �

E½heffðX iÞfYi � gðβTX iÞgjWi� ¼ 0;

where heff (χ) is the unique solution to the functional equation
shown in proposition 4.2 in the article by Robins et al. (15).
Generally speaking, heff (χ) is difficult to estimate unless W
is discrete. It requires modeling the true data-generating distri-
bution including, in our case, the primary trait association
model. In scenario 1, where D is the only variable observed
for everyone, the most efficient augmented inverse probabil-
ity weighted (EIPW) estimator in this class can be derived
following section 5.2 of the article by Robins et al. (15).
When π(Yi = 1) = 1, we show in the Appendix that the deriva-
tion of the EIPW estimator is further simplified. For scenario
2, in which Y is continuous and available for everyone, com-
putation of the most efficient AIPWestimator is difficult. One
AIPWestimator for scenario 2 that does not require extensive
computation (17), is given byXn

i

Ri

πðWiÞUi þ 1� Ri

πðWiÞ
� �

EðUijWiÞ ¼ 0; ð5Þ

where π(Wi) is estimated by equation 4, and E(Ui|Wi) is esti-
mated by Pn

j¼1 RjUjKhðWi �WjÞPn
j¼1 RjKhðWi �WjÞ : ð6Þ

Note that all of these IPW-based estimators preserve the
design-consistency property. Solving for the IPW estimator
in equations 3 and 4 can be implemented by any standard re-
gression packages allowing individual weights. Solving for
the AIPW and the EIPW estimators involves the Newton-
Raphson algorithm, using the multiroot function in R statis-
tical software (R Foundation for Statistical Computing,

Robust Estimation for Secondary Trait Association 1267

Am J Epidemiol. 2014;179(10):1264–1272

 at Fred H
utchinson C

ancer R
esearch C

tr on M
ay 9, 2014

http://aje.oxfordjournals.org/
D

ow
nloaded from

 

http://aje.oxfordjournals.org/


Vienna, Austria), for example. Their variances can be esti-
mated by the robust sandwich method (15–17), with the em-
pirical variance of estimating functions in the center and the
inverse of the gradient of estimating functions in the 2 sides.

Other study scenarios

Other sampling scenarios beyond scenarios 1 and 2 require
minor modification for maximum likelihood methods. The
scenario in which a continuous secondary trait is available
only in the case-control sample can be treated similarly to
scenario 1, with a linear inference model for Pr(Y|G,V). Nu-
merical integration of (Y,G,V ) may be needed to evaluate the
likelihood of a participant who wasn’t included in the case-
control sample. A scenario in which a dichotomized second-
ary trait is always observed can be treated similarly to sce-
nario 2, with a logistic inference model for Pr(Y |G,V).
IPW-based methods are particularly simple in these 2 scenar-
ios. Because the always-observed variables are discrete, the
AIPW estimator degenerates to the simple IPW estimator
with estimated weights (15, 17), which means no additional
efficiency can be gained by adding the augmented term to
equation 3. Similar to scenario 1, the optimal IPW-based es-
timator can be obtained by computing heff (χ) explicitly fol-
lowing section 5.2 of the article by Robins et al. (15).

RESULTS

We simulated a secondary trait study nested in a cohort
with 10,000 subjects according to either scenario 1 or sce-
nario 2. In scenario 1, we assume that both the secondary
trait Y and the disease outcome D are dichotomized,

generated from the following models, respectively:

logitfEðY jG;VÞg ¼ �2þ β1Gþ V ;

model 1 : logitfEðDjY;G;VÞg
¼ �4:5þ logð2ÞY þ logð1:5ÞGþ 0:5YGþ V ;

ð7Þ

model 2 : logitfEðDjY;G;VÞg
¼ �4:5þ logð2ÞY þ logð1:5ÞGþ V : ð8Þ

Robustness against model misspecification was assessed
when 1 of the model terms was omitted: either the interaction
YX in model 1 or the confounding variable V in model 2. The
genetic variant G is in Hardy-Weinberg equilibrium with
minor allele frequency 0.3, coded as 0, 1, or 2. A continuous
confounding variable V was generated by the normal distri-
bution N(0.5G, 1), so thatG and V are correlated. The disease
statusDwas observed for every subject, but (Y,G,V) were ob-
served only in a case-control sample. The cases were sampled
with probability 1, and then the same number of controls was
randomly selected. For each model 7 and 8 and for different
values of β1 (0 or log (1.5)), 1,000 data sets were generated
with approximately 500 cases and 500 controls. In Table 1,
we compare 4 estimators in terms of their finite-sample prop-
erties: the naïve complete-case estimator, the simple IPW es-
timator, the EIPW estimator, and the SPML estimator.
In Table 1, where there is an interaction between Y and G

on disease risk in model 1, the complete-case estimator is se-
verely biased because the case-control status is strongly cor-
related with the genetic variant and the secondary trait. The
IPW estimator does not depend on specification of nuisance

Table 1. Finite-Sample Properties of Various Estimators for Secondary Trait Association in Scenario 1a, When the

Primary Trait Association is Generated by Model 1b

β1 Property
CC

Estimator
IPW

Estimator

Correct Model Omitting YG

EIPW
Estimator

SPML
Estimator

EIPW
Estimator

SPML
Estimator

0 Bias 0.310 0.010 0.008 0.011 0.011 0.244

Var 0.012 0.025 0.025 0.023 0.025 0.012dVar 0.012 0.028 0.028 0.024 0.027 0.012

95% CPc 0.186 0.950 0.954 0.950 0.954 0.396

Type I error 0.814 0.050 0.046 0.050 0.046 0.604

Log(1.5) Bias 0.303 0.003 0.002 0.005 0.003 0.223

Var 0.012 0.023 0.023 0.020 0.022 0.012dVar 0.011 0.023 0.023 0.020 0.023 0.012

95% CPc 0.194 0.946 0.950 0.958 0.948 0.458

Abbreviations: CC, complete-case; CP, coverage probability; EIPW, efficient inverse probability weighted; IPW,

inverse probability weighted; SPML, semiparametric maximum likelihood; Var, sample variance of the estimator;dVar, mean of estimated variances.
a In scenario 1, the secondary trait is dichotomized and available only for the case-control sample. The data for a

participant in the cohort are (D,RY,RG,RV ), where (Y,G,V ) are missing at random, so that Pr(R = 1|D,Y,G,V ) =

Pr(R = 1|D). This is the standard scenario discussed by Monsees et al. (3), Lin and Zeng (4), and Jiang et al. (5).
b Model 1: logitfEðDjY;G;V Þg ¼ �4:5þ logð2ÞY þ logð1:5ÞG þ 0:5YG þ V .
c Coverage probability of 95% confidence interval.
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models and is always consistent. The EIPW estimator uses
model 1 to compute the efficient score, as we show in the Ap-
pendix, but it is robust against model specification, as the
semiparametric theory dictates. Interestingly, there is little
improvement in efficiency from the IPW estimator to the
EIPW estimator. This is possibly because heff (G) in the op-
timal estimating equation is close to a linear combination of
G when G is coded (0,1,2). If G is binary, then any function
h(G) is also a linear combination ofG, resulting in equivalent
estimating functions. When the primary trait model is
correctly specified, the SPML estimator is consistent, the var-
iance estimates reflect true variation, and the 95% confidence
intervals show proper coverage. For hypothesis testing at α
level 0.05, the empirical type I errors for IPW, EIPW, and
SPML estimation are all approximately 0.05. When the pri-
mary trait model is misspecified, however, the SPML estima-
tor shows a sizable bias relative to its standard deviation. The
type I error of SPML estimation increases to 60.4%, a 12-fold
inflation, which is quite alarming.

In Table 2, the impact of omitting V in model 2 to SPML
estimation is less severe, yet the type I error is still 4 times as
much as it should be. The bias of the complete-case estimator
is less severe in this parameter setting. In either misspecified
model, IPW and EIPW methods remain consistent in estima-
tion and preserve proper control of type I error. Note that the
efficiency comparisons among IPW, EIPW, and SPMLmeth-
ods under correct specification of models 1 and 2 are quite
different. When the true model contains the interaction be-
tween G and Y, SPML estimation is slightly more efficient
than IPW or EIPW estimation, whereas under model 2,
there is more than 50% efficiency gain from IPW estimation
to SPML estimation. This is because equation 7 is close to a
saturated nonparametric model. Similar phenomena were

observed previously (5). In results not presented, we found
that if there is no V in model 1, and G is dichotomous,
IPW, EIPW, and SPML methods are identical.

In Figure 1, we investigate the sensitivity of SPML es-
timation in hypothesis testing across a gradient of model mis-
specification. Clearly omitting the interaction term YG in
equation 7 yields severe inflation of false positives, even if
the size of the interaction is small. Test validity is less sensitive
whenwe omit a confounding variableV. Onewould need a log
(2) effect size from the continuous V to double the type I error.

We next simulated scenario 2, in which both D and Y are
observed for everyone in the cohort, but (G,V) are observed
only in the case-control sample. We let Y be continuous, gen-
erated either from a Gaussian distribution or a standardized T
distribution with 6 degrees of freedom as follows:

model 3 : Y ¼ 0:5þ β1Gþ V þ ϵ; ϵ ∼ N ð0; 1Þ
logitfEðDjY;G;VÞg ¼ �2:8þ logð2ÞY þ logð2ÞG

�0:5V þ logð1:5ÞYG; ð9Þ

model 4 : Y ¼ 0:5þ β1GþV þ ϵ; ϵ∼ standardized Tð6Þ
logitfEðDjY;G;VÞg ¼�2:8þ logð2ÞY þ logð2ÞG� 0:5V :

ð10Þ

The distribution of (G,V) was generated similarly as in sce-
nario 1, and 1,000 data sets were generated with approxi-
mately 500 cases and 500 controls. In Tables 3 and 4, we
compared the following 6 estimators on the basis of finite-
sample properties: the complete-case estimator, the simple
IPW estimator, the kernel-assisted IPW estimator (denoted
IPWK) in which selection probabilities were estimated by

Table 2. Finite-Sample Properties of Various Estimators for Secondary Trait Association in Scenario 1a, When the

Primary Trait Association is Generated by Model 2b

β1 Property
CC

Estimator
IPW

Estimator

Correct Model Omitting V

EIPW
Estimator

SPML
Estimator

EIPW
Estimator

SPML
Estimator

0 Bias 0.033 −0.001 0.000 0.001 −0.002 −0.148

Var 0.015 0.037 0.037 0.015 0.037 0.017dVar 0.015 0.037 0.036 0.015 0.037 0.015

95% CPc 0.950 0.948 0.946 0.954 0.950 0.784

Type I error 0.050 0.052 0.054 0.046 0.050 0.216

Log(1.5) Bias 0.039 0.000 0.001 0.003 −0.001 −0.137

Var 0.014 0.033 0.033 0.015 0.033 0.016dVar 0.014 0.031 0.031 0.014 0.031 0.015

95% CPc 0.930 0.954 0.960 0.950 0.956 0.776

Abbreviations: CC, complete-case; CP, coverage probability; EIPW, efficient inverse probability weighted; IPW,

inverse probability weighted; SPML, semiparametric maximum likelihood; Var, sample variance of the estimator;dVar, mean of estimated variances.
a In scenario 1, the secondary trait is dichotomized and available only for the case-control sample. The data for a

participant in the cohort are (D,RY,RG,RV), where (Y,G,V) aremissing at random, so that Pr(R = 1|D,Y,G,V ) = Pr(R = 1|

D). This is the standard scenario discussed by Monsees et al. (3), Lin and Zeng (4), and Jiang et al. (5).
b Model 2: logitfEðDjY;G;V Þg ¼ �4:5þ logð2ÞY þ logð1:5ÞG þ V .
c Coverage probability of 95% confidence interval.
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equation 4, the augmented IPW estimator solving equation 5,
and the ML estimator under correct or wrong specification.
We used the Gaussian kernel with the bandwidth 4σY |Dn

−1/

3 (23), in which σY |D is the standard deviation of Y given
D. In computing the ML estimator, we used the
Gauss-Hermite quadrature method for integration of V.

Robustness against model misspecification was assessed
when either the interaction YG in model 3 was omitted, or
the distribution of Y, T(6) in model 4 was misspecified to
be Gaussian.
Under model 3 and when the interaction term was omitted,

the bias of the ML estimator is quite substantial, resulting in a
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Figure 1. Sensitivity analysis to assess the impact of modelmisspecification on the type I error of testing secondary trait association. A) Type I error
rate for a range of regression coefficients for interactionYG in model 1. B) Type I error rate for a range of regression coefficients forV in model 2. CC,
complete-case; EIPW, efficient inverse probability weighted; IPW, inverse probability weighted; SPML, semiparametric maximum likelihood.

Table 3. Finite-Sample Properties of Various Estimators for Secondary Trait Association in Scenario 2a, When the

Primary Trait Association is Generated by Model 3b

β1 Property
CC

Estimator
IPW

Estimator
IPWK

Estimatorc
AIPW

Estimator

ML Estimator

Correct
Model

Omitting
YG

0 Bias −0.1381 −0.0011 −0.0013 −0.0011 0.0027 −0.1279

Var 0.0024 0.0039 0.0038 0.0040 0.0024 0.0041dVar 0.0026 0.0041 0.0039 0.0039 0.0034 0.0025

95% CPd 0.2280 0.9600 0.9540 0.9560 0.9820 0.3080

Type I error 0.7720 0.0400 0.0460 0.0440 0.0180 0.6920

−log(2) Bias −0.1468 −0.0011 0.0047 0.0035 0.0023 −0.0908

Var 0.0023 0.0040 0.0034 0.0034 0.0021 0.0032dVar 0.0025 0.0041 0.0033 0.0032 0.0027 0.0016

95% CPd 0.1800 0.9520 0.9580 0.9500 0.9780 0.4100

Abbreviations: AIPW, augmented inverse-probability weighted; CC, complete-case; CP, coverage probability; IPW,

inverse probability weighted; ML, maximum likelihood; Var, sample variance of the estimator; dVar, mean of estimated

variances.
a In scenario 2, the secondary trait is continuous and available for the entire cohort. The data vector for a participant

in the cohort is (D,Y,RG,RV ), where (G,V ) are missing at random in that Pr(R = 1|D,Y,G,V ) = Pr(R = 1|D). This is the

scenario motivated by the GARNET Study for genetic association with blood pressure (18). Secondary traits are often

cheap to measure, and thus readily available for every participant.
b Model 3: ϵ ∼ N ð0; 1Þ; LogitfEðDjY;G;V Þg ¼ �2:8þ logð2ÞY þ logð1:5ÞG � 0:5V þ logð1:5ÞYG.
c Inverse probability weighted estimator with selection probabilities estimated by kernel smoothers.
d Coverage probability of 95% confidence interval.
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very inflated type I error (of 0.692) and dismal performance
in the coverage probabilities in Table 3. For model 4 in
Table 4, misspecification of T(6) to a Gaussian distribution
does not cause much bias under the null, but the bias under
the alternative hypothesis is still sizable, leading to poor cov-
erage probability (of 0.722). All IPW-based estimators were
consistent. These observations are consistent with results in
Table 1. Interestingly, in the settings in which there is second-
ary trait association, the variances of the IPWK and AIPW es-
timators decrease by approximately 15%–20% relative to the
variance of the simple IPW estimator, demonstrating the ad-
vantage of leveraging secondary trait data that are available
for everyone. It is also interesting to observe that the IPWK

and AIPW estimators yield nearly identical performances,
consistent with the theoretical results reported by Wang and
Wang (17) that the 2 estimators are asymptotically equiva-
lent. In other simulation settings not shown, the AIPW esti-
mator can be slightly advantageous over the IPWK estimator
in finite sample performance.

DISCUSSION

In the context of case-control studies for secondary trait
genetic association, we compared the efficiency and robust-
ness of ML estimators and various IPW-based estimators.
The new twist of the long-standing IPW-ML comparison is
that ML estimation requires a nuisance case-control risk
model. We showed in simulations that, when the nuisance
risk model is incorrectly specified, ML or SPML estimation
can be severely biased and can, thus, sometimes produce a
drastic inflation of type I error. To increase the robustness of

likelihood-based methods, one may consider a nonparametric
model for the nuisance disease risk model, but that may yield
nearly the same efficiency as IPW-based estimators (Table 1).
On the other hand, IPW-based methods are robust and easy to
implement, offering a competitive alternative approach.

Along with secondary traits, always-observed data often
include additional demographic factors and other disease
risk predictors. When there are high-dimensional always-
observed data, some of which are categorical, nonparametric
kernel smoothing approaches can be problematic to implement.
With careful model fitting, one could consider parametric logis-
tic regression for estimating sampling probabilities, thereby fur-
ther improving the efficiency of estimation.

For genome-wide association studies, sample sizes are
usually large, possibly assembled through meta-analysis.
The trade-off between bias and efficiency may tilt toward re-
ducing bias and properly controlling false positives, particu-
larly when the secondary trait is a quantitative trait with an
irregular distribution. We show in simulation that slight mis-
specification of the density function of the secondary trait
could also introduce bias. Furthermore, the availability of
secondary trait data often depends on a complex outcome-
dependent sampling process. The ML estimator can be
computationally difficult, if not impossible, for a complex
sampling scheme and high-dimensional adjusting covariates,
whereas IPW-based methods can be implemented for virtu-
ally any sampling scheme.

When the secondary trait is available for the entire cohort,
we show that the IPW estimator with selection probabilities
estimated by kernel smoothers and the AIPW estimator per-
form similarly, both yielding a 15%–20% efficiency gain

Table 4. Finite-Sample Properties of Various Estimators for Secondary Trait Association in Scenario 2a, When the

Primary Trait Association is Generated by Model 4b

β1 Property
CC

Estimator
IPW

Estimator
IPWK

Estimatorc
AIPW

Estimator

ML Estimator

Correct
Model ɛ

Wrong
Model ɛ

0 Bias 0.0347 −0.0014 −0.0006 −0.0009 −0.0064 −0.0067

Var 0.0026 0.0038 0.0036 0.0038 0.0018 0.0017dVar 0.0027 0.0036 0.0032 0.0032 0.0020 0.0021

95% CPd 0.9160 0.9360 0.9460 0.9400 0.9620 0.9660

Type I error 0.0840 0.0640 0.0540 0.0600 0.0380 0.0340

−log(2) Bias 0.0131 −0.0013 0.0080 0.0030 0.0004 0.0591

Var 0.0031 0.0041 0.0034 0.0034 0.0014 0.0019dVar 0.0030 0.0041 0.0030 0.0030 0.0016 0.0017

95% CPd 0.9520 0.9580 0.9440 0.9460 0.9620 0.7220

Abbreviations: AIPW, augmented inverse-probability weighted; CC, complete-case; CP, coverage probability; IPW,

inverse probability weighted; ML, maximum likelihood; Var, sample variance of the estimator; dVar, mean of estimated

variances.
a In scenario 2, the secondary trait is continuous and available for the entire cohort. The data vector for a participant

in the cohort is (D,Y,RG,RV ), where (G,V ) are missing at random in that Pr(R = 1|D,Y,G,V ) = Pr(R = 1|D). This is the

scenario motivated by the GARNET Study for genetic association with blood pressure (18). Secondary traits are often

cheap to measure, and thus readily available for every participant.
b Model 4: ϵ ∼ standardized T ð6Þ;LogitfEðDjY;G;V Þg ¼ �2:8þ logð2ÞY þ logð1:5ÞG � 0:5V .
c Inverse probability weighted estimator with selection probabilities estimated by kernel smoothers.
d Coverage probability of 95% confidence interval.
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over the simple IPW estimator. These methods exploit the
extra information in the secondary trait and remain robust
against model misspecification, and thus should be used
whenever applicable. In particular, the kernel-assisted IPW
estimator is much more applicable in genome-wide studies,
because sampling probabilities can be estimated once for
all genetic variants.
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APPENDIX

Translating proposition 4.2 from the article by Robins et al.
(15) to our notation, the optimal heff (χ) is the unique solution
of the functional equation

heffðXÞ ¼ f@gðX ; βÞ=@βgtðXÞ

þ E
1� π

π
ϕeffðWÞ

� �
εjX

� �
tðXÞ; ð11Þ

where ε = Y – g(βTχ), t(χ) = {E(ε2/π|χ)}−1, and φeff (W) =
E{heff (χ)ε|W}. In scenario 1, the always-observed variable
W is D, Y is binary, and ε = Y – g(χ; β). When the sampling
fraction for cases is 1, ð1� π=πÞϕeffðD ¼ 1Þ ¼ 0, and so we
need only to compute φeff (D = 0). Multiply equation 11 by ε,
take conditional expectation given D, and we have

E½@gðX ; βÞ=@βgtðXÞεjD�

¼ ϕeff � E E
1� π

π
ϕeffðWÞ

� �
εjX

� �
tðXÞjD

� �
:

Let tðXÞ ¼ fPD;Y PrðDjY;XÞPrðY jXÞε2=πg�1, and let
m0 ¼ E½@gðX ; βÞ=@βgtðXÞεjD ¼ 0�, computed by empirical
average. Let l ¼ fPD;Y PrðDjY;XÞPrðY jXÞεð1� πÞ=πg.
Then, ϕeffðD ¼ 0Þ ¼ m0=½1� EftðXÞεljD ¼ 0g�, and hence
heff (χ) is obtained by equation 11. Note that the risk model for
the primary trait Pr(D|Y,χ) is used in the computation.
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