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Leveraging Multi-ethnic Evidence for Mapping
Complex Traits in Minority Populations:
An Empirical Bayes Approach

Marc A. Coram,1,8,9 Sophie I. Candille,2,8 Qing Duan,3 Kei Hang K. Chan,4 Yun Li,3,5

Charles Kooperberg,6 Alex P. Reiner,6,7 and Hua Tang2,*

Elucidating the genetic basis of complex traits and diseases in non-European populations is particularly challenging because USminority

populations have been under-represented in genetic association studies.We developed an empirical Bayes approach named XPEB (cross-

population empirical Bayes), designed to improve the power for mapping complex-trait-associated loci in a minority population by

exploiting information from genome-wide association studies (GWASs) from another ethnic population. Taking as input summary sta-

tistics from two GWASs—a target GWAS from an ethnic minority population of primary interest and an auxiliary base GWAS (such as a

larger GWAS in Europeans)—our XPEB approach reprioritizes SNPs in the target population to compute local false-discovery rates. We

demonstrated, through simulations, that whenever the base GWAS harbors relevant information, XPEB gains efficiency.Moreover, XPEB

has the ability to discard irrelevant auxiliary information, providing a safeguard against inflated false-discovery rates due to genetic het-

erogeneity between populations. Applied to a blood-lipids study in African Americans, XPEBmore than quadrupled the discoveries from

the conventional approach, which used a target GWAS alone, bringing the number of significant loci from 14 to 65. Thus, XPEB offers a

flexible framework for mapping complex traits in minority populations.
Introduction

Genome-wide association studies (GWASs) combined with

sequencing have fundamentally transformed the field of

human complex-trait genetics; since 2007, thousands of

loci have been identified for a broad spectrum of traits

and diseases.1 However, the success of GWASs has been pri-

marily confined to populations of European descent.

Minority individuals, such as African-American (AA) and

Hispanic-American (HA) individuals, who together repre-

sent 28% of the US population (US 2010 census), are prom-

inently missing from many studies. For example, the

largest GWAS of plasma lipids (the Global Lipids Genetics

Consortium or GLGC) included over 188,000 individuals

of European ancestry and identified more than 150 loci

associated with lipid traits.2 By comparison, the largest

published discovery GWAS for lipid traits in US minorities

comprised only ~8,000 AA and ~3,500 HAwomen.3 In part

for this reason, minority samples have predominantly

been utilized for replication, generalizability, and/or fine

mapping rather than primary GWAS discovery.4–9

Although several large-scale GWASs dedicated exclusively

to AA and HA populations are underway,10 these studies

are nonetheless underpowered on the basis of the empir-

ical evidence that complex traits and diseases are often

influenced by a myriad of variants, each with moderate

genetic effects requiring a large sample size to be
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uncovered.11 The sample-size limitation and analytic chal-

lenges are likely to be exacerbated amongminority popula-

tions as we move toward sequencing-based studies. As a

result, there is a widening gap in our knowledge about ge-

netic risk factors for complex diseases across racial and

ethnic groups.

Much of the success of GWASs in European populations

owes to the ability to combine cohort-specific summary re-

sults from a large number of studies via meta-analysis tech-

niques. It is therefore reasonable to hypothesize that the

efficiency of complex-trait association studies in minority

populations might be improved when smaller minority

samples are analyzed in conjunction with the much larger

European and European-American cohorts. Indeed, there

is accumulating evidence that, for a variety of complex

traits and diseases, there is substantial overlap in trait-asso-

ciated loci between ethnicities.7,9,12 For plasma lipid

concentration, we previously demonstrated that trait-

influencing loci show excess overlap among AA, HA, and

European-descent (EU) populations and that loci identified

in EU populations explain a disproportionate amount of

the phenotypic variance in both AA and HA popula-

tions.3 Despite such overlap, conventional meta-analysis

approaches—both fixed-effects and random-effects

models—are not appropriate for combining data across

race and ethnicity. These approaches assume that the un-

derlying disease variants and allelic effects are identical
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or similar, but heterogeneity in genetic architecture be-

tween ethnicities is well documented. A well-known

example is the APOE ε4 allele, which confers considerably

higher risk of Alzheimer disease in Japanese than in AA in-

dividuals.13 Moreover, because European sample sizes are

often much larger than those of minority individuals, the

meta-analysis framework (which weighs individual studies

according to sample size or the inverse of the estimated

variance) preferentially identifies loci showing association

in Europeans while sacrificing power to detect minority-

specific risk loci.

On the basis of these considerations, we propose an

empirical Bayes (EB) approach14,15 designed to elucidate

the genetic architecture of complex traits in a minority

ethnic population while adaptively incorporating GWAS

information from other ethnicities. We reason that the

general relevance of GWAS results across ethnicities is

often unknown a priori and might depend on both the ge-

netic architecture of a specific trait and the evolutionary

relationship between populations; however, it can be

gauged empirically on the basis of the genome-wide

consistency in association evidence. In other words, if

the underlying genetic basis of a trait is similar between

two ethnicities, and the genetic architecture is polygenic,

we would observe greater overlap in loci showing trait asso-

ciation in the two populations than expected by chance.

We show through simulations that our proposed cross-

population empirical Bayes (XPEB) approach behaves

sensibly. When the underlying trait-associated loci largely

coincide, XPEB effectively combines the two populations

and approximates the power of a fixed-effects meta-anal-

ysis; at the other extreme, when the genetic bases are

entirely population specific, XPEB only uses the popula-

tion of interest (referred to as the target population).

When genetic architecture partially overlaps, XPEB outper-

forms fixed-effects and random-effects meta-analyses, as

well as the approach of considering only the target

population.
Material and Methods

Data and Model
Consider a situation in which GWASs have been conducted for a

trait in a target (e.g., AA) population and a base (e.g., EU) popula-

tion and in which SNP-level summary statistics are available in

both target and base populations atMmarkers. The goal is to iden-

tify risk variants in the target population.Wemake no assumption

with regard to the genetic similarity between the target and base

populations but require that the target GWAS and base GWAS be

performed on non-overlapping individuals.

Let Sm and S0m be the test statistics (to be specified) of markerm in

the target and base populations, respectively. Within each popula-

tion, the distribution of the test statistic is modeled as a mixture

with J þ 1 components, of which the first component represents

the null distribution of the test statistics at markers not associated

with the trait, and the remaining components represent the alter-

native distributions of the test statistics at trait-associated markers.
The Am
We introduce an unobserved Bernoulli random variable, Dm, at

each marker m, such that Dm ¼ 1 with a probability of p1 and in-

dicates that the test statistic observed in the target population is

drawn from a non-null component. Thus, in the target popula-

tion, the test statistics have a density of

gðsÞ ¼ ð1� p1Þg0ðsÞ þ p1

XJ

j¼1
pjgjðsÞ; (Equation 1)

where p1 represents the proportion of non-null markers and p ¼
(p1, /pJ), ðPJ

j¼1pj ¼ 1Þ represents the relative proportions of

non-null SNPs that are associated with the phenotype at varying

degrees; gj(s) (j ¼ 1,.,J) are densities corresponding to the non-

null components, which are described briefly in the next section

and in detail in Appendix A. For notational simplicity, we denote

the weighted sums of the non-null components in Equation 1 as

~gðsÞ. To formulate the corresponding density in the base popula-

tion, we assume that the distributions of allelic effects are similar

between populations. In other words, on average, the relative frac-

tion of loci with strong andweak effects—measured by the propor-

tion of phenotypic variance explained by each locus—is similar

between populations, even though any given locus is not neces-

sarily shared. Therefore, we let p be shared between target and

base populations and modify gj(s) to account for the differential

target and base GWAS sample sizes (Appendix A). We allow the

overall contribution of the non-null component, p1 and p0
1, to

differ between the target and base populations because the num-

ber of ‘‘detectable’’ loci in a GWAS depends on the sample size.

It follows that the density of S0m differs from Equation 1 in the

null proportion, p0
1, and the shape of the non-null components,

g 0j ðsÞ:

g 0ðsÞ ¼ �1� p0
1

�
g0ðsÞ þ p0

1

XJ

j¼1
pjg

0
j ðsÞ: (Equation 2)

Additionally, let D0
m denote the unobserved random variable that

determines whether the test statistic in the base population is

drawn from the null or the non-null component.

The key insight underlying the proposed approach is that, at

each marker m, the random variables (Dm and D0
m) are not inde-

pendent if the genetic architecture overlaps between the target

and base populations, and the degree of overlap can be estimated

on the basis of the empirical genome-wide joint distribution of the

observed GWAS statistics (Sm and S0m) across all markers. Specif-

ically, we model the conditional probabilities, PðDm ¼ 1jD0
m ¼ 0Þ

and PðDm ¼ 1jD0
m ¼ 1Þ, as constant across the genome and denote

these two parameters as k0 and k1, respectively. Assuming that Sm
and S0m are independent given Dm and D0

m; respectively, the likeli-

hood of observing a test statistic sm is

g�ðsmÞ ¼
X

a˛f0;1g

X
b˛f0;1g

P
�
D0

m ¼ a j S0m
�
P
�
Dm¼b jD0

m ¼ a
�
PðSm jDm ¼ bÞ

¼ �1� v0m
�½ð1� k0Þg0ðsmÞ þ k0~gðsmÞ�

þ v0m½ð1� k1Þg0ðsmÞ þ k1~gðsmÞ�;
(Equation 3)

where n0m ¼ PðD0
m ¼ 1

��S0mÞ, and the overall likelihood of S (under

linkage equilibrium), is simply

likðSÞ ¼
Y

m
g�ðsmÞ: (Equation 4)

In Equation 3, 1� n0m has the interpretation of the local false-dis-

covery rate (locfdr) for testing the statistical association between a

SNP and the trait in the base population.16 Maximizing the likeli-

hood of Equation 4 provides estimates for themodel parameters in
erican Journal of Human Genetics 96, 740–752, May 7, 2015 741



Equation 3; these parameters are used for computing the posterior

probability, PðDm ¼ 0jSm; S0mÞ, which will be used as the cross-

population locfdr of genotype-trait association in the target

population.

Implementation of XPEB
The model described above is applicable to any GWAS summary

statistics. Two natural choices are t statistics and p values, which

differ only in that t statistics, but not p values, inform the direction

of association. However, t statistics are not always available, and

even when they are, merging two lists of t statistics can be prone

to error because of the ambiguity in the designation of the refer-

ence alleles. In contrast, p values are the most widely shared sum-

mary statistics and do not rely on consistent coding of the refer-

ence alleles; therefore, we choose to base our implementation on

p values. More precisely, in the likelihood of Equation 3, we use

c2
1 statistics for S and S0, which can be derived from either p values

or t statistics through a quantile transformation. It is then reason-

able to use a c2
1 distribution as the null component (g0) in the

mixture densities of Equations 1 and 2 and to use a mixture of

non-central c2
1 distributions to represent the non-null compo-

nents. We introduce non-null basis functions gj(s) (with j ¼
1,.,J and J ¼25), each of which is itself a continuous mixture of

non-central c2
1 distributions. These basis functions are fixed a pri-

ori with masses concentrating at different values (Figure S1),

reflecting the expectation that allelic effects under a polygenic ar-

chitecture might span a broad spectrum, as measured by the pro-

portions of phenotypic variance explained.11 Each basis function

in the base and target populations is scaled to reflect the unequal

sample sizes between the target and base GWASs. Details on the

formulation of these basis functions are described in Appendix

A. We have experimented with using J ¼ 50 in simulations and

found negligible differences in performance. To estimate the

model parameters, we developed an EB approach that proceeds

in two stages, which are described next. The first stage decon-

volves the mixture density in Equations 1 and 2 by estimating

the mixture proportions, and the second stage estimates parame-

ters k0 and k1 by maximizing the likelihood, lik(S), of Equation 4.

The first stage estimates the mixture proportions (p1, p0
1, and p)

in Equations 1 and 2 by assuming that the trait-influencing loci are

independently distributed within the target and base populations.

One way to estimate these parameters is to maximize the marginal

likelihood via the EM algorithm.17 However, theoretical studies18

and our own simulations have found that mixture proportions

estimated this way can be undesirably sensitive when the non-

null probabilities in target or base populations are close to 0;

such a situation can arise either because the trait is affected by

just a few loci or because the signal in the GWAS is weak as a result

of small sample sizes. As an alternative, we implemented a hierar-

chical Bayesian model, implemented via a Markov Chain Monte

Carlo (MCMC) algorithm, to explore multiple plausible deconvo-

lutions (see Appendix A). We use the posterior mean as the esti-

mated mixture proportions. Once the mixture proportions are

estimated, we can compute n0m for each marker by substituting

the estimated parameters as follows:

n0m ¼ P
�
D0

m ¼ 1 j S0m
� ¼ bp0

1

PJ
j¼1
bpjg

0
j ðsÞ�

1� bp0
1

�
g0ðsÞ þ bp0

1

PJ
j¼1
bpjg

0
j ðsÞ

:

(Equation 5)

Analogously, the target-only posterior probability of association

is defined as nm ¼ PðDm ¼ 1jSmÞ. The goal of the second stage of
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the algorithm is to adaptively integrate information from the

target and base populations. We use an EB approach to estimate

parameters k0 and k1, which maximizes the likelihood function

of Equation 4 while being subject to the constraints

0%k0%k1%2 < 1. In the implementation, we set 2 ¼ 0:9 and

express a belief that the genetic architectures in two popula-

tions are seldom identical; this restriction improves numerical sta-

bility without substantial loss of efficiency. Finally, the XPEB

locfdr for the SNP association in the target population, um, is

computed as

um ¼ P
�
Dm ¼ 0 j Sm; S0m

� ¼ ��1� y0m
�ð1� bk0Þ þ y0mð1� bk1Þ�g0ðsmÞbg �ðsmÞ

;

(Equation 6)

where bg �ðsmÞ is the likelihood of observing a test statistic sm,

defined in Equation 3 and evaluated by the substitution of esti-

mated parameter values. Note that the cross-population posterior

estimates reduce to a one-population model in the special case

that k0 ¼ k1; in other words, when XPEB does not detect evidence

of overlapping genetic architecture, results in the base GWAS are

ignored.

The model and implementation described thus far assume that

markers are independent; that is, there is no linkage disequilib-

rium (LD) between SNPs. LD affects two aspects of the procedure.

First, during estimation of the mixture proportions, the presence

of LD can lead to an over-estimation of non-null proportions, p1

and p0
1. To overcome this problem, we introduce an LD-trimming

step and estimate these parameters in two iterations (see Appendix

A). A second effect of LD is that differential LD patterns between

the target and base populations can lead to an under-estimate of

k1, as we explain in the Results and demonstrate through simula-

tions. However, such a downward bias in k1 leads to slightly

conservative estimates of locfdr but does not inflate false-positive

estimates. Hence, the uncorrected bk1, estimated on full data, is

used in all subsequent simulation and data analyses.
Simulations
We used two sets of simulation experiments to evaluate the perfor-

mance of the proposed approach. The first set of experiments

directly simulated test statistics on the basis of theoretically

computed non-centrality parameters; this approach did not simu-

late individual genotypes and assumed that all markers were inde-

pendent (i.e., no LD). The simulation proceeded in three stages.

The first stagemodeled the genetic architectures of the trait, which

is assumed to have an additive genetic architecture specified by the

total heritability (h2) and the number of causative variants in each

population (K), of which a fraction of d loci are shared between the

target and base populations. We emphasize that although both pa-

rameters d and k1 measure the degree of overlap, d is a simulation

parameter and is allowed to range between K/M (independence)

and 1 (complete overlap), whereas k1 is a model parameter with

the constraints specified by XPEB. Under such a trait model, stage

two simulated the allelic effect and additive variance attributable

to each causal locus. At target-specific or base-specific trait-associ-

ated loci, the allelic effects, l, were sampled independently from a

standard normal distribution. At a shared trait-associated locus,

the allelic effects in target and base populations were sampled

from a bivariate normal distribution, N

��
0
0

	
;

�
1 r
r 1

	

, where

r ¼ 0.7. The phenotypic variance attributable to locus m can be

computed as xm ¼ Cl2mfmð1� fmÞ, where f denotes the allele
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frequency and C is a normalizing constant such that the total ad-

ditive variance matches the pre-specified heritability. The allele

frequencies atM simulatedmarkers were sampled without replace-

ment from the 1000 Genomes Project variants (phase 1 release

v.3).19 EU populations were used for the base GWAS, and popula-

tions of African ancestry were used for the target GWAS; minor

allele frequencies (MAFs) greater than 1% were required in both

populations. Given xm and under the assumption that xm is small,

the GWAS test statistic (on a Z scale) at this causative SNP was

sampled from a normal distribution with mean xm
ffiffiffi
n

p
(where n is

the sample size) and variance 1. The remaining M � K SNPs were

assumed to not be associated with the trait, and the test statistics

were sampled from a standard normal distribution.

The simulated dataset—consisting of a list of Z statistics in each

of the target and base populations—was analyzed via four strate-

gies: (1) p values in the target population alone (target only), (2)

locfdr estimated by the proposed EB approach combining target

and base populations (XPEB), (3) fixed-effectsmeta-analysis imple-

mented in PLINK (meta-FE),20 and (4) random-effects meta-anal-

ysis implemented in METASOFT (meta-RE, corresponding to the

‘‘PVALUE_RE2’’ in METASOFT output), which has been demon-

strated to achieve higher power than the classic random-effect

meta-analysis method.21 For meta-analysis, the SEs for the esti-

mated allelic effects from a linear regression model are given by

s2m ¼ ð1� xmÞ=½2fmð1� fmÞðn� 2Þ�. Hence, the estimated allelic

effects were computed as Zmsm. XPEB declares a positive finding

by using a locfdr threshold, whereas the other three methods use

a p value threshold. Decisions from each of these strategies were

compared against the simulation gold standard, defined as the

set of risk loci in the target population, and the numbers of false-

positive and false-negative discoveries were recorded. We note

that the stringency of a p-value-based testing procedure is not

directly comparable to that of a procedure based on false-discovery

rate (FDR).22 Furthermore, although a p value of 53 10�8 is widely

adopted as a significance criterion in GWASs, studies using FDR-

based approaches do not always use the same significance levels.

With these considerations in mind, we compared the numbers

of true loci discovered while adjusting the p value or locfdr thresh-

olds such that each of the four tests had the same number of false-

positive discoveries. We then varied the calibration number of

false-positive discoveries so that the relative performance of these

methods could be evaluated over a range of statistical stringencies.

We emphasize, however, that in analyzing real data, the signifi-

cance criterion should be fixed prior to the analysis.

The approach described above is computationally efficient and

allowed us to explore the effects of different aspects of model pa-

rameters. However, it is difficult to incorporate a realistic pattern

of LD under this framework; therefore, we adopted a complemen-

tary approach that directly simulates individual-level genotype

data and traits. Specifically, we used YRI (Yoruba in Ibadan,

Nigeria) and CEU (Utah residents with ancestry from northern

and western Europe from the CEPH collection) genotypes from

HapMap phase 3 as the prototypes for the target and base popu-

lations, respectively.23 We used HAPGEN2, which introduces mu-

tation and recombination between haplotypes, to simulate ten

CEU (base) cohorts and one YRI (target) cohort, each of which

included 10,000 individuals.24 We restricted all simulations and

analyses to ~727,348 SNPs, which are on the Illumina Human

1M array and have a MAF greater than 1% in both the simulated

target and base populations. Instead of simulating haplotypes

that span an entire chromosome, we generated independent win-

dows of 25 linked SNPs (i.e., SNPs within a window inherit the LD
The Am
pattern in the HapMap sample, whereas SNPs that reside in

different windows are unlinked). We emphasize that these 25-

SNP windows (spanning a median of 79 kb) captured the essential

and realistic features of LD in the population.25 The motivation

for simulating independent windows was to achieve unambigu-

ous definition of false-positive and true-positive findings: a win-

dow in which at least one SNP is deemed statistically significant

was considered a true-positive finding if the window harbored a

trait-associated SNP; otherwise, this window was considered a

false positive no matter how many SNPs were falsely rejected

within the window. The trait-associated loci and the allelic effects

were specified similarly as in the previous set of simulation exper-

iments, but there was an additional constraint of at most one

causative SNP per window. The positions of causal SNPs were

identical across all ten CEU-derived cohorts, and the allelic effects

had a correlation of 0.9 between the cohorts. A fraction of d of the

causal SNPs coincided between the CEU-derived and the YRI-

derived populations, and cross-ethnic correlations in allelic effects

were 0.7 at the overlapping causal SNPs. The individual geno-

types, causative SNPs, and allelic effects were then used as input

in the program GCTA (Genome-wide Complex Trait Analysis),

which simulates quantitative or binary disease traits with the

pre-specified heritability.26 To reduce computational and data-

storage burden, we simulated the genotypes of the 11 cohorts

once and used these genotype data to simulate multiple sets of

quantitative and case-control traits; a similar strategy was used

and discussed in Wu et al.27 For each trait, a GWAS was performed

with PLINK for each cohort separately. The four procedures

described in the previous simulations of independent loci—target

only, XPEB, meta-FE, and meta-RE—were compared. For XPEB,

the ten CEU cohorts were meta-analyzed first (with PLINK’s

fixed-effects model), and the meta-analysis summary statistics

were used as the base GWAS. For the fixed-effects and random-

effects meta-analyses, the estimated allelic effects and the SEs

for the estimated allelic effects from the 11 individual cohorts

were provided to PLINK and METASOFT, allowing for better esti-

mates of inter-study variability.

Analysis of Lipid Traits
To apply our method to real data, we analyzed high-density lipo-

protein (HDL) cholesterol, low-density lipoprotein (LDL) choles-

terol, and triglyceride (TG) levels. For the target GWAS, we used

results from the Women’s Health Initiative SNP Health Associa-

tion Resource (WHI-SHARe), which consists of 8,153 post-meno-

pausal AA women. Details of the cohort characteristics, pheno-

type transformation, and GWAS analyses were reported

previously.3 For the base GWAS, we used summary-level statistics

reported by GLGC,28 a meta-analysis of ~100,000 individuals pri-

marily of European descent. As negative controls, we also used

European GWAS results in height29 and body mass index

(BMI)30 for a base GWAS. Because the sample sizes of the target

GWAS and base GWAS were used for constructing the non-null

basis, gj(s) and g 0j ðsÞ, respectively, SNPs with excessive missing ob-

servations were removed (see footnotes ‘‘a’’ and ‘‘e’’ in Table 2).

For SNPs whose summary statistics were available in the target

GWAS but missing in the base GWAS, nm was computed analo-

gously as in Equation 5, and 1 � nm was reported as the locfdr.

Regions harboring SNPs with locfdr < 0.05 were considered statis-

tically significant and reported. As validation, we compared the

allelic effects at trait-associated loci identified by XPEB to the cor-

responding allelic effects estimated in an independent cohort of

7,138 AA participants from the NHLBI Candidate-Gene
erican Journal of Human Genetics 96, 740–752, May 7, 2015 743



Figure 1. Decision Boundary for XPEB versus That of the Con-
ventional Single-Population Approach
S (x axis) and S0 (y axis) represent the chi-square test statistics in
the target and base GWASs, respectively. The dashed magenta ver-
tical line corresponds to the conventional approach, which uses
the target GWAS alone and a genome-wide significance of p ¼
5 3 10�8. Solid curves delineate the decision boundaries con-
structed by XPEB, in which the overlap in genetic architecture
(k1) varies; the yellow line labeled k1 ¼ k0 corresponds to the
case where trait-associated loci are independently distributed in
the base and target populations. All other model parameter values
are taken from the estimates obtained from the LDL data.
Association Resource (CARe) Study and in a cohort of 3,587 HA

participants from WHI-SHARe.
Results

The distinction between XPEB and the conventional sin-

gle-population approach is qualitatively illustrated in

Figure 1. The conventional practice rejects the null hy-

pothesis of no association at a SNP if and only if it exceeds

a pre-specified threshold (i.e., p < 5 3 10�8, dashed

magenta line in Figure 1) in the target GWAS and does

not depend on results in the base population. In contrast,

the XPEB approach considers the combined evidence of as-

sociation in both target and base populations (solid lines in

Figure 1). The negative slope of the decision boundaries

supports the intuition that the burden of proof in the

target population can be reduced by the evidence of asso-

ciation in the base population. As a result, the minimal

target evidence for rejecting the null hypothesis can

be substantially weaker for XPEB. The slope depends

on the simulation parameter d, which represents the de-

gree of overlap in the genetic architecture underlying the

trait in the two populations and is empirically estimated

as bk1 on the basis of genome-wide test statistics. The

greater the overlap, the more influence the base GWAS ex-

erts. When little overlap is detected, the XPEB reduces to a

target-only approach with a vertical decision boundary

that is independent of the base GWAS (yellow line in

Figure 1). Regardless of the estimated overlap, target-spe-

cific trait-associated variants can be detected with a suffi-

ciently strong statistic in the target GWAS alone, in which
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case the test statistic in the base population is effectively

ignored, and XPEB coincides with the conventional

p value decision. In contrast, a SNP cannot be declared

significant on the basis of the strength of evidence in the

base population alone as long as bk1 < 1, indicated by

the vertical gap between the y axis and each decision

boundary (Figure 1). This asymmetric feature emphasizes

our primary goal of identifying relevant trait variants

in the target population and distinguishes XPEB from

meta-analysis. Additional Figure 1 features, which are not

essential to the understanding of XPEB, are discussed in

Appendix A.

Simulations with Independent SNPs

The output of XPEB is an estimated locfdr for each

SNP. We recommend rejecting all SNPs with a locfdr fall-

ing below a pre-specified threshold (e.g., locfdr < 0.05);

alternatively, one can successively reject SNPs with

increasing locfdrs until the average locfdr of the rejected

set, denoted as the Fdr, reaches a pre-specified threshold

(e.g., Fdr < 0.05). Table 1 summarizes the number of

true and false discoveries under various simulation set-

tings and significance criteria. As expected, the largest

locfdr of the rejected SNP set is a conservative estimate

of the realized FDR (rFDR). In contrast, the average

locfdr of the rejected set tracks well with the rFDR

except for d ¼ 1, in which case the average locfdr of

the rejected set is also conservative in comparison to the

rFDR. Additional simulations have verified that the

conservatism is due to the constraint of bk1%0:9; the esti-

mated locfdr becomes less conservative when the bound

increases.

Next, we compared the performance of XPEB with

that of three common approaches: (1) p values in the

target population alone (target only), (2) a standard

fixed-effects meta-analysis (meta-FE), and (3) a random-

effects meta-analysis method combining target and

base GWASs (meta-RE).21 SNPs are ranked according to

increasing locfdrs under the XPEB approach and accord-

ing to increasing p values under the single-population

and meta-analysis approaches. Figure 2 compares the

number of false-positive rejections that a method makes

in order to correctly discover a given number of truly

causative (true-positive) variants. Each curve can be

thought of as a partial receiver operating characteristic;

hence, methods characterized by a greater area under

the curve (AUC) are preferred over ones with a lower

AUC. As expected, the target-only approach was robust

against genetic heterogeneity, whereas the random-

effects meta-analysis had the greatest power when the

genetic architectures were identical across populations

(Figure 2). XPEB combined the strengths of both

methods.

In a situation where the trait variants are independently

distributed in target and base populations, the target-only

and XPEB approaches have the desired behavior of using

the target GWAS alone and discarding the information
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Table 1. True-Positive and False-Positive Counts at Different locfdr Significance Levels in Simulations of Independent Loci

Statistic
Genetic
Architecture

Significance Level

0.01 0.05 0.1

TP FP rFDR TP FP rFDR TP FP rFDR

locfdra null targetb 0 0 ND 0 0 ND 0 0.02 ND

d ¼ 0.001 66.4 0.04 6.0 3 10�4 82.9 0.40 4.7 3 10�3 91.2 0.91 9.9 3 10�3

d ¼ 0.25 81.8 0.06 7.2 3 10�4 103.4 0.59 5.6 3 10�3 115.1 1.43 1.2 3 10�2

d ¼ 0.5 110.2 0.13 1.2 3 10�3 141.7 1.15 8.0 3 10�3 160.6 2.81 1.7 3 10�2

d ¼ 0.75 152.7 0.27 1.7 3 10�3 202.9 1.99 9.4 3 10�3 234.8 5.80 2.3 3 10�2

d ¼ 1 208.1 0.03 1.4 3 10�4 285.2 0.30 1.1 3 10�3 340.1 0.83 2.4 3 10�3

Fdrc null target 0 0 ND 0 0 ND 0 0.03 ND

d ¼ 0.001 87.5 0.73 8.3 3 10�3 109.5 5.33 4.6 3 10�2 122.0 13.00 9.6 3 10�2

d ¼ 0.25 109.2 0.93 8.4 3 10�3 139.6 7.49 5.1 3 10�2 157.5 17.93 1.0 3 10�1

d ¼ 0.5 149.3 1.68 1.1 3 10�2 196.2 11.41 5.5 3 10�2 224.9 27.52 1.1 3 10�1

d ¼ 0.75 211.2 2.72 1.2 3 10�2 290.0 20.09 6.2 3 10�2 345.9 50.53 1.2 3 10�1

d ¼ 1 295.6 0.41 1.4 3 10�3 438.5 2.57 5.8 3 10�3 554.5 13.07 2.3 3 10�2

Abbreviations are as follows: TP, number of true-positive findings; FP, number of false-positive findings; rFDR, realized FDR or the proportion of false-positive SNPs
among the SNPs deemed significant; Fdr, average locfdr calculated as the average locfdr of the marker set with equal or lower locfdr; ND, not defined.
aNumber of TP and FP findings and rFDR at different XPEB locfdr significance thresholds. These are averages of 100 simulations for each genetic-architecture
degree of overlap (d); simulation parameters are the same as in Figure 2.
bSimulations for the null case were of 1,000 causal loci in the base GWAS and no causal loci in the target GWAS.
cNumber of TP and FP findings and rFDR for the same simulations at different average locfdr (Fdr) thresholds.
from the base population (Figure 2D). Both meta-FE and

meta-RE analyses, in contrast, are strongly driven by the

larger GWAS in the base population; consequently, these

methods essentially rediscover trait-associated variants in

the base population (instead of discovering those in the

target population) and incur an unacceptably inflated

false-positive rate. At the opposite extreme, if the trait-

associated variants of the target and base populations

were known to completely overlap, then a meta-analysis

would be the sensible procedure. However, even in such

a situation, XPEB achieved an efficiency similar to that of

the meta-FE andmeta-RE analyses, unless a very high spec-

ificity was imposed (e.g., less than ten false positives; inset

in Figure 2A). In this setting, the target-only approach suf-

fered a substantial loss of power for ignoring the informa-

tion from the base population. For traits with partially

overlapping causative variants, the XPEB outperformed

the target-only, meta-FE, and meta-RE approaches (Figures

2B and 2C). Simulations varying other factors, such as the

sample sizes of the GWAS and the heritability of the trait,

suggest that XPEB has more power than the target-only

and meta-analysis approaches across a broad range of set-

tings (Figure S2). The numbers of false positives and true

positives incurred by the four methods at a conventional

threshold of p < 5 3 10�8 or locfdr < 0.05 are compared

in Table S1. Overall, XPEB, which achieves competitive

or superior performance under broad scenarios without

requiring a priori assumptions of the degree of overlap in

genetic architecture, offers a practical strategy for

analyzing a variety of traits.
The Am
Simulations with LD

The relative performance of XPEB and the target-only,

meta-FE, and meta-RE approaches followed similar pat-

terns in the presence of LD. As explained in the Material

and Methods, in this simulation the decision was made

for a window harboring multiple SNPs rather than a single

SNP. Figure S3 and Table S2 compare power characteristics

of the four methods: target only, meta-FE, meta-RE, and

XPEB. As with the previous set of experiments, XPEB out-

performed the other three methods when the trait-associ-

ated loci partially overlapped; it performed competitively

with the best of the other three methods when trait-associ-

ated loci were either entirely overlapping or independently

distributed in the target and base populations (Figure S3).

We also simulated binary disease traits by using GCTA;

the relative efficiency was similar when the target and

base p values were derived from case-control analyses.

On the basis of a previously developed argument,31 the

estimated locfdr produced by XPEB controls for the frac-

tion of falsely rejected SNPs but not for the fraction of

falsely rejected windows. However, if we retain only the

minimum locfdr in each rejected window, the maximum

of these minimum locfdrs remains a conservative estimate

for the falsely discovered windows, and the average of

these minimum locfdrs provides a good approximation

of the rFDR (Table S3).

Interestingly, whereas k1, the parameter measuring the

degree of overlap in genetic architecture, could be esti-

mated with little bias in the absence of LD, bk1 was substan-

tially under-estimated in the presence of LD (Figure 3).
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Figure 2. Partial Receiver Operating
Characteristic under Independent Simula-
tions with Varying Degrees of Overlap
Number of true-positive (y axis) and false-
positive (x axis) discoveries according to
four methods—XPEB, p value in the target
GWAS alone (target only), p value from a
fixed-effects meta-analysis of base and
target GWASs (meta-FE), and p value
from a random-effects meta-analysis of
base and target GWASs (meta-RE produced
by METASOFT)—for d ¼ 1 (A), 0.75 (B), 0.5
(C), and 0.001 (D). Each simulated dataset
consisted of 106 independent markers, of
which 1,000 causal SNPs explained 70%
of the phenotypic variance; the base
GWAS had a sample size of 105 individuals,
and the target GWAS included 104 individ-
uals. Each curve is based on the average of
100 simulations. The inset in (A) indicates
that meta-analysis (meta-FE and meta-RE)
performed better than XPEB at very low
false-positive counts (<10) when d ¼ 1;
otherwise, XPEB performed as well as or
better than other methods considered.
This occurs because SNPs in strong LDwith a causal variant

will appear to come from the non-null components. Even

if the causal variants are identical in the base and target

populations, these ‘‘shoulder’’ SNPs might not coincide

because of incongruent local LD patterns in the base and

target populations. This discrepancy would be considered

evidence of genetic heterogeneity, causing under-estima-

tion of the degree of overlap and leading to a loss of power.

Plasma Lipid Concentration in AAWomen

Previously, we performed genome-wide association ana-

lyses of lipid concentrations in AA and HA women from

WHI-SHARe.3 A total of 13, 15, and 5 SNPs representing

6, 5, and 3 loci, respectively, were associated with HDL,

LDL, and TG, respectively. We re-analyzed this dataset by

using the XPEB approach and the summary statistics

from the GLGC as the base GWAS.28 On a 2.66-GHz Intel

Xeon processor, each analysis took an average of 20 min.

For all three traits, XPEB estimated very high overlap in ge-

netic architecture between EU and AA individuals: bk1
achieved themaximal allowed value. At locfdr< 0.05, a to-

tal of 177, 140, and 133 SNPs at 29, 19, and 17 loci, respec-

tively, were discovered for HDL, LDL, and TG, respectively.

Without using the base GWAS, we estimated nm ¼ P(Dm ¼
1jSm) in a parallel fashion (as described in Equation 5), and

found three, four, and two loci reaching locfdr < 0.05

for HDL, LDL, and TG, respectively. This indicates that
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the increased loci detected by XPEB

were not due to the locfdr’s being

less conservative than the p-value-

based genome-wide-significant crite-

rion. The estimated FDR, computed

as the average of the minimum locfdr

across all significant loci, was 0.012.
The 65 loci identified by XPEB included 13 of 14 loci pre-

viously identified on the basis of the p values in WHI-

SHARe AA individuals alone; the single exception was a

chromosome 21 HDL-associated locus (p ¼ 2.26 3 10�8),

which has not been replicated in another cohort3 (Table

S4 and Figure S4). Figure S5 illustrates the relationship be-

tween the p value in the WHI-SHARe AA analysis (target

GWAS) and the XPEB locfdr that incorporates the associa-

tion strength in the base GWAS.

We sought to validate the loci discovered by XPEB in two

datasets: a cohort of 7,138 AA individuals fromCARe32 and

a cohort of 3,587 HA individuals fromWHI-SHARe.3 Over-

all, there was strong agreement in the sign of the estimated

effects: 56 of 62 loci agreed in direction between WHI-

SHARe AA and CARe AA individuals (two-sided binomial

test, p¼ 2.973 10�11), and 57 of 65 loci agreed in direction

between WHI-SHARe AA and HA individuals (two-sided

binomial test, p ¼ 3.16 3 10�10; Table S4). Furthermore,

significant loci identified by XPEB in WHI-SHARe AA indi-

viduals were enriched with small p values in WHI-SHARe

HA and CARe AA individuals and showed correlated allelic

effects (Figures S6 and S7). Therefore, it is reasonable to

expect that a majority of the loci detected by XPEB in

WHI-SHARe AA individuals will be replicated in much

larger AA cohorts. Of note, two loci for each of the HDL,

LDL, and TG traits did not reach p ¼ 5 3 10�8 for the cor-

responding lipid trait in either the target GWAS3 or the



Figure 3. XPEB-Estimated Overlap
Parameter Values versus the True Values
(A) The XPEB-estimated overlap parameter
(bk1, y axis) corresponds well to the true
overlap parameters used in the simulation
(d, x axis) in simulations of independent
loci. The red bar indicates the median ofbk1 based on 100 simulations; the simula-
tion setting is identical to that described
in the legend of Figure 2.
(B) In the presence of LD, XPEB under-esti-
mated the degree of overlap. The red bar
is the median of bk1 based on 20 simula-
tions. Each simulation included ~727,000
markers, of which 1,000 SNPs were causal
and together explained 70% of the pheno-
typic variance. Genotypes were simulated

to represent ten cohorts in the base population and one cohort in the target population (each cohort consists of 104 individuals). LD
in the base and target populations was simulated to resemble that of HapMap CEU and YRI, respectively.
base GWAS,28 suggesting that trans-ethnic analysis has the

potential to augment our understanding of complex traits

in all populations.
Cross-phenotype XPEB Analysis

One situation researchers face is that some studies use

related but not identical phenotypes. For example, is it

appropriate to use a study of LDL in EU populations as

the base GWAS to learn about HDL in AA populations?

To address this question, we applied XPEB to pairs of traits

for which we had GWAS summary statistics in AA (target)

and EU (base) populations. The estimated degree of overlap

is shown in Table 2. For each lipid trait, when thematching

trait was used as the base GWAS, the estimated k1 was uni-

formly high. When biologically related traits were

analyzed together, (e.g., LDL in the base GWAS and HDL

in the target GWAS), this parameter dropped sharply, sug-

gesting pleiotropic loci but only a partially overlapping ge-

netic basis. When seemingly unrelated traits were used,

(e.g., height29 or BMI30 in the base GWAS and LDL in the

target GWAS), the overlap parameters were essentially

zero. Thus, XPEB provides a safeguard against combining

incompatible phenotypes by ignoring the base GWAS.
Discussion

This research was motivated by the observation that the ef-

ficiency of genetic association studies and the accuracy of

using genetic variants for predicting disease risk—whether

by genotyping or by sequencing—depends critically on

sample size.33 Given the challenges in establishing well-

phenotyped minority cohorts, and the empirical findings

that many trait-associated loci mapped in minority popu-

lations are actually shared across ethnicities, we reasoned

that a method that borrows information from populations

with large cohorts could accelerate complex-trait genetic

research in minority populations. However, the precise

degree to which we can borrow information across popula-

tions depends on the similarity in genetic architecture be-
The Am
tween populations, which is usually unknown and is both

trait and population specific.

We aimed to remove the often subjective decision of

selecting and meta-analyzing compatible GWASs by devel-

oping XPEB, a principled approach that adaptively

integrates results from related GWASs. XPEB is computa-

tionally efficient and uses summary statistics that are

commonly available. Simulation studies suggest that

when the underlying trait-associated loci partially overlap

between populations, XPEB outperforms both target-only

and meta-analysis approaches (Figures 2B, 2C, S3B, and

S3C). When trait-associated loci are independently distrib-

uted within the base and target populations, XPEB resem-

bles the target-only approach, and both of these methods

outperform meta-analysis (Figures 2D and S3D). In cases

where all trait-associated loci are shared between the target

and base populations, XPEB andmeta-analysis outperform

the target-only approach. Although meta-analysis might

achieve higher power than XPEB if the allelic effects are

highly correlated, the difference is generally modest (Fig-

ures 2A and S3A).

XPEB differs from meta-analysis approaches in imple-

mentation and interpretation, and they serve different

goals.34 An implicit assumption meta-analysis makes is

that there is an underlying population; the observed test

statistics in a given GWAS represent a realization from a

sub-population. The fixed-effects meta-analysis approach

assumes a constant allelic effect among all studies, whereas

the random-effects meta-analysis approach allows the

allelic effects to vary around an overall population value.

A recently developed trans-ethnic meta-analysis approach,

MANTRA, forms clusters among multiple GWASs; subse-

quently, a fixed-effects approach is used to combine studies

that represent genetically similar populations within a

cluster, and a random-effects approach is used to combine

studies across clusters.35 We wish to emphasize that

although XPEB makes use of multi-ethnic GWAS results,

it is not a trans-ethnic meta-analysis approach because its

goal is to identify trait-associated loci that are relevant in

the target population. To define this distinction more
erican Journal of Human Genetics 96, 740–752, May 7, 2015 747



Table 2. Overlap and Number of Significant Loci Estimated by XPEB for the Lipid Phenotypes in the WHI-SHARe AA Cohort

Base GWAS

Target GWAS

WHI-SHARe HDL (na ¼ 7,913) WHI-SHARe LDL (n ¼ 7,857) WHI-SHARe TG (n ¼ 7,914)

Overlapb Locic Overlap Loci Overlap Loci

Noned NA 3 NA 4 NA 2

European HDL (ne ¼ 99,720) 0.90 29 0.25 4 0.66 12

European LDL (n ¼ 95,290) 0.25 7 0.90 19 0.33 3

European TG (n ¼ 96,420) 0.68 11 0.33 5 0.90 17

European BMI (n ¼ 123,800) 0.26 3 0.14 3 0.004 2

European height (n ¼ 133,700) 0.10 3 0.04 3 0.12 2

NA stands for not applicable.
aMedian sample sizes in target GWASs across markers. SNPs with fewer than 7,000 non-missing observations were removed, leaving 852,739 SNPs for all lipid
phenotypes.
bFor each specified target and base GWAS combination, the XPEB estimates of the degree of overlap (k1) are reported.
cNumber of loci with locfdr < 0.05. A significant locus is defined as a set of SNPs with locfdr < 0.05 and a distance between significant SNPs < 1 Mb.
dNumber of loci with locfdr < 0.05 on the basis of WHI-SHARe AA individuals alone.
eMedian sample sizes in the base GWAS across markers. For BMI and height, SNPs with fewer than 100,000 non-missing observations were removed; for HDL, LDL,
and TG, SNPs with fewer than 80,000 were removed. This left 621,117, 615,089, 616,513, 627,441, and 631,843 SNPs overlapping with the target GWAS SNPs
for the HDL, LDL, TG, BMI, and height phenotypes, respectively.
precisely, denote the set of true trait-associated loci in the

target population as T and the set of true trait-associated

loci in the base population as B. Fixed-effects, random-ef-

fects, and trans-ethnic meta-analysis approaches such as

METASOFTandMANTRA aim to detectTWB. The interpre-

tation of a significant finding is that the SNP is associated

with the trait in some meta-population represented by

the conglomeration of all studies (Figure S8). In contrast,

XPEB focuses on a specific population designated by the

target GWAS, and its goal is to identify set T. Information

from the base GWAS is auxiliary and is only allowed to in-

fluence the locfdr if it empirically shows compatibility

with the target GWAS. Importantly, loci in set B but not

in set T (base-specific traits) are considered false positives

under XPEB, but they are considered true positives in

trans-ethnic meta-analysis.

The practical difference between meta-analysis and

XPEB can be clearly appreciated in a situation where the

sample size of the base GWAS far outnumbers that of the

target GWAS and the risk loci only partially overlap, a real-

istic situation in the analysis of a target GWAS from a

minority group and a base GWAS performed in EU popula-

tions. In such a situation, meta-analysis essentially re-iden-

tifies trait-associated loci in the base population (B); a

fraction of these loci are not shared between populations

and are therefore false positives with respect to the target

population. As a result, meta-analysis incurs a high FDR

even at stringent statistical significance. This is not the

case for XPEB, as indicated by the decision boundary in

Figure 1. A SNP association will not be declared significant

without association evidence in the target population, no

matter how strong the association is in the base popula-

tion; however, with sufficiently strong evidence, target-

specific loci (TyB) can be detected without support in

the base population.
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Although our primary motivation was to integrate

GWASs from heterogeneous populations, XPEB is also

applicable when related traits might provide supportive in-

formation. Recent studies examining multiple phenotypes

found evidence of pleitropic effects for groups of traits

including cancers, psychiatric disorders, and metabolic

syndromes.36–38 When can GWASs from related traits be

combined? Rather thanmaking a subjective decision about

the appropriateness of combining such studies, XPEB of-

fers an objective approach to selectively borrow informa-

tion from traits whose genetic basis partially overlaps

that of the target trait. When we used XPEB to determine

whether HDL loci are relevant for understanding the ge-

netic architecture of LDL, we found that HDL indeed pro-

vides information about LDL but that the influence is

weaker than that from an LDL study (Table 2). Therefore,

we envision XPEB as broadly applicable, for example, for

determining whether a GWAS of mammographic density

informs risk loci for breast cancer.

The intuition of up-weighing a set of candidate SNPs on

the basis of external information has been explored in the

context of genetic association studies, but most studies as-

sume either that the weighing scheme can be fixed a priori

or that the set of candidate SNPs are pre-defined. For

example, to weigh association results by linkage evidence,

it is often reasonable to assume that the linkage peaks and

association signals largely overlap; therefore, a pre-deter-

mined weighing scheme might work well.39 Recently,

several Bayesian and EB approaches have been developed

for prioritizing GWAS results.40–44 Most of these methods

aim to incorporate biological information and are based

on the belief that truly causal genetic variants are enriched

in some pathways or share specific functional annotation.

Whereaspathwayandannotation informationare assumed

to be known without error (a gene is either in a pathway or
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not), the same is not true for the association evidence in the

base GWAS that XPEB tries to integrate. Whether a variant

influences the trait in the base population is not directly

observed in anyGWASof finite sample size; even the largest

GWAS to date is underpowered to detect the many variants

with small effects. Hence, one contribution of the XPEB

approach is to simultaneously determine the weighing

scheme and account for the imperfect information in the

base GWAS. A second statistical contribution is an

improved deconvolution algorithm for themixture density

in Equations 1 and 2: this algorithm achieves greater nu-

merical stability over commonly used approaches, such as

the expectation-maximization (EM) algorithm. Estimating

the components of the mixture density is particularly chal-

lenging when one component dominates; in our situation,

we expect that an overwhelming majority of SNPs are not

associated with the trait. Consistent with the theoretical

investigation,18 our simulation indicates that the EM algo-

rithm yields numerically unstable estimates when the non-

null proportions are low. The MCMC-based algorithm we

implement in XPEB ameliorates this problem by consid-

ering multiple plausible deconvolutions. This part of the

algorithm is stand-alone and could be incorporated as a

module in other types ofmixture-deconvolution problems.

XPEB could be enhanced in several directions. The likeli-

hood model in Equation 3 could be extended so that

multiple base GWASs could be adaptively integrated simul-

taneously. Another area of improvement would be to bet-

ter model the LD between markers. Our simulation results

suggest that ignoring LD between markers leads to an

underestimation of the degree of overlap and thus reduces

the efficiency of the method (Figure 3). Likewise, XPEB

does not explicitly model allelic heterogeneity: when a

large fraction of overlapping trait-associated loci harbor

population-specific trait variants, the degree of overlap

can also be underestimated (data not shown). Hence,

XPEB errs on the conservative side, and a model that prop-

erly accounts for LD structure and allelic heterogeneity

might be able to borrow information from the base

GWAS more aggressively.

Although XPEB improves our ability to map complex

traits in minority populations by using a GWAS from a

distantly related population with large cohorts, studies

that focus on minority populations remain critical.

Borrowing information from related populations cannot

be a substitute for minority-specific studies. Increased sam-

ple size in the target population will improve the efficiency

of XPEB in threeways. First, the power of target-specific loci

can only be detected through an increased sample size in

the target population. Second, for trait-associated loci that

are shared between target and base populations, increased

sample size in either population will improve the overall

power; however, increasing the sample size in the target

population is likely to bring greater marginal gain, because

the base GWAS most likely outnumbers the target GWAS

already. Finally, as the degree of overlap (k1) is estimated

on the basis of the consistency in the occurrence of putative
The Am
trait-associated loci in the target and base populations,

increasing the sample size of the target population will

improve the accuracy of the overlap parameter by bringing

more true trait-associated loci into a detectable range. We

also note that, as demonstrated in the lipid-trait example

(Table S4), integrating GWAS results across populations by

usingXPEB can potentially uncover truly novel trait-associ-

ated loci that are not significant in either the target or the

base GWAS. We advocate that minority-specific cohorts

continue to be developed, but minority-specific GWASs

should be analyzed in conjunction with related studies

across ethnicities. Ultimately, by using sufficiently large

sample sizes and borrowing information across ethnicities,

we have the opportunity to gain a comprehensive under-

standing of the genetic architecture of complex traits by

assembling information across populations.
Appendix A

The Null and Non-null Components of the Mixture

Densities

According to the notation used in the Material and

Methods, let sj and s0j be the observed test statistics for

marker j in the target and base populations, respectively.

The marginal distributions of S and S’, modeled as mixture

densities, are displayed as Equations 1 and 2 in the Mate-

rial and Methods, respectively. In both of these mixture

densities, the null distribution, g0, is modeled as a c2
1

random variable, regardless of the GWAS sample size.

The test statistic at a marker, m, associated with the trait

follows a non-central c2
1 distribution with non-centrality

parameters x2mn, where x2m measures the proportion of vari-

ance explained by the variant and n is the sample size. We

assume that the marginal distributions of x are shared be-

tween target and base populations, but the non-centrality

parameters are adjusted to account for different sample

sizes.

We now describe the individual non-null components,

gj, of Equation 1. The formulation of g 0j in Equation 2 is

completely analogous. We adopted a hierarchical model

in which gj has the density of a c2
1 random variable with

a random non-centrality parameter. Let dbetaðq; a; bÞ
denote the density at q of a beta random variable with

parameters a and b. Let F(x;h) be the cumulative density

function (CDF) at x of a c2
1 random variable with a non-

centrality parameter of h. The CDF of gj takes the form

GjðxÞ ¼
Z 1

0

F

 
x;n

exp
�
cq2 � 1

�
expðc � 1Þ

!
dbetaðq; j; J þ 1� jÞdq:

In the implementation of XPEB, we let J ¼ 25, c ¼ 9,

and n be the sample size in the target GWAS. The dis-

tribution of the non-centrality parameter, hðqÞ ¼
n expðcq2 � 1Þ=expðc � 1Þ, is designed so that h ranges

from 0 to n, and the mean of h increases with j. If we as-

sume that the strongest trait-associated locus explains no
erican Journal of Human Genetics 96, 740–752, May 7, 2015 749



more than half of the total phenotypic variation—an

assumption that holds for virtually all non-Mendelian

traits—the maximum non-centrality parameter value for

S at sample size n is n. Figure S1 displays a series of CDFs,

Gj, (j ¼ 0,/,25), for n ¼ 100,000.

Estimating Parameters in Equations 1 and 2

We next describe a MCMC algorithm for computing the

posterior mean estimates of p1, p
0
1, and p. For this step,

we treat the observed statistics, sj and s0j, as independent

draws from the mixture density in Equations 1 and 2 and

seek the parameters that maximize the pseudo-likelihood

function,

L ¼
Y

i
gðsiÞg

�
s0i
�
: (Equation A1)

The priors of the parameters are specified as follows: p1

and p0
1 are assumed to be independent draws from a

density

fmðxÞ ¼ ð1� gðmÞÞx�gðmÞ1ð0 < x%1Þ;

where g(m) ¼ (1 � 2m)/(1 � m) and m ¼ 10�6. The density

function, fm(x), is designed to reflect a conservative belief

that only a small fraction of the genome affects the

trait: the density has an expectation of m, features a

spike at 0, and decays rapidly near 0. The vector p ¼
(p1,/,pJ) is modeled as a draw from a Dirichlet of order J,

Dir(a, /, a), where a is a hyper-parameter with a uniform

prior of U(0,1).

The posterior distributions of the parameters are

computed by MCMC via the Metropolis-Hastings algo-

rithm.45 Two kinds of moves are proposed: (1) random

perturbation of the p1, p
0
1, or a parameter and (2) perturba-

tion of the relative non-null components, (pj1, pj2), subject

to the constraints that 0% pj%1 for all j and
P

pj ¼ 1before

andafter themove. The lattermoves,whichhave the effects

of shiftingmass between non-null components, gj1 and gj2,

either choose a random pair of distinct coordinates (j1,j2)

uniformly from 1 to J or shift mass between adjacent coor-

dinates (j, j þ 1). Proposals that perturb p1, p
0
1, or a occur

with a probability of 1/15 each;mass shift between random

pairs of coordinates and mass shift between adjacent coor-

dinates are each proposed with a probability of 2/5. All

simulation and data analyses presented in the Results are

based on 106 MCMC steps. In subsequent estimation of k0
and k1, as well as the calculation of locfdr, the posterior

mean of p1, p
0
1, and pj from this MCMC step was used.

Evaluating the likelihood in Equation A1 is computa-

tionally intensive because gj(sm) does not have a closed an-

alytic form. To reduce computational burden, we adopted a

trick46 in which the likelihood function is not evaluated

with the raw s and s0 values. Instead, data are binned

into 500 intervals, resulting in counts ci and c0i for bins Bi

and B0
i, respectively. Let Mij denote the mass assigned to

bin Bi under distribution Gj, and define M 0
ij analogously

in the base GWAS. These Mij and M 0
ij are pre-computed by

numerical integration and stored in two matrices. The
750 The American Journal of Human Genetics 96, 740–752, May 7, 2
discretized L is then L ¼QiðmiÞciðm0
iÞc

0
i , where mi ¼

ð1� p1ÞMi0 þ p1

PJ
j¼1pjMij and m0

i is defined analogously.

LD Trimming

A two-iteration parameter-estimation procedure, which in-

cludes an LD-trimming step, is introduced to correct for

the biased p1, p0
1, and p estimates (due to LD) in the

mixture densities. In iteration 1, the two-step algorithm

described in the Material and Methods is applied to the

full data without consideration of LD; next, any regions

showing suggestive evidence of association, defined as

maxðnm; v0m;1� umÞ > 0:5 for some marker m in the re-

gion, are trimmed by removal of all markers except the

one that achieves the minimum um in the region. In the

simulation experiments, which generated haplotypes of

25-SNP windows, the underlying window boundary was

used for defining regions; in the real-data analysis, SNPs

showing suggestive evidence of association and within

200 kb of each other were merged into one region, given

that most observed GWAS peaks span less than that range.

Finally, in iteration 2, p1, p
0
1, p, and k0 are re-estimated with

the trimmed dataset, and the locfdr is computed with

Equation 6 in the Material and Methods for all SNPs.

Additional Explanations of Figure 1

Figure 1 displays the contours of locfdr ¼ 0.05 for various

values of k1 while fixing k0; p1;p
0
1, and other simulation

parameters at known values. The conventional genome-

wide significance threshold of 5 3 10�8 is plotted to aid

qualitative comparison, but we wish to make a conceptual

distinction: although the conventional p-value-based sig-

nificance criterion controls the family-wise error rate,

XPEB controls the FDR;47 the stringencies of these signifi-

cance criteria are not directly comparable.22 Furthermore,

the particular threshold value of XPEB depends on the

number of detectable true trait-associated loci, which in

turn depends onmodel parameters k0, k1, p1, and pj. There-

fore, the x intercept of XPEB decision boundaries can fall

higher or lower than that of the p-value-based criterion.

In Figure 1, we set p1 ¼ p0
1 ¼ 0:001, the true simulation

values, and used the estimated bp based on theWHI-SHARe

LDL data.

Perhaps more curious is the observation that the XPEB

decision boundaries can cross each other when k1 varies:

the x intercept of the decision boundary for k1 ¼ 0.9 is

greater than the corresponding x intercept for k1 ¼ k0 ¼
0.001. In fact, this is sensible for the following reasons:

when k1 [ k0, a majority of SNPs showing association

evidence in the target GWAS are likely to show strong asso-

ciation in the base GWAS as well. Hence, the lack of evi-

dence of association at a SNP in the base GWAS is Bayesian

evidence against the hypothesis that this SNP is associated

with the trait in the target GWAS. Stronger evidence of

association is required in the target GWAS in order to

compensate for this contrary evidence. Of course, such

comparison assumes that all other model parameters are

held equal.
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Supplemental Data include eight figures and four tables and can be

found with this article online at http://dx.doi.org/10.1016/j.ajhg.
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