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phenotypes. About half of the new blood pressure–associated variants 
identified in this study reside in loci that were previously reported in 
GWAS to be associated with circulating lipid levels, immunological 
diseases, and metabolic phenotypes, suggesting common etiologies 
of blood pressure and metabolic risk factors and an opportunity to 
identify therapies that more broadly influence HTN in the context of 
cardiometabolic risk.

RESULTS
New loci associated with blood pressure by single-variant 
analyses
In the discovery stage (stage 1), a total of 15 distinct new candidate 
loci were associated (P < 3.4 × 10−7) with at least one blood pressure 
trait in a primary meta-analysis among samples of all ancestries and 
secondary meta-analyses among samples of exclusively European (EA) 
or African (AA) ancestry (Supplementary Fig. 1 and Supplementary 
Table 1). Meta-analysis using individuals from all ancestry groups 
identified 22 new associations at 13 loci that reached experiment-
wide significance (Supplementary Table 1). All associations with  
P < 1 × 10−4 for at least one trait in the primary analysis are listed in 
Supplementary Table 2. The sole locus that was associated in the EA 
analysis but not in the all-ancestry analysis was a rare missense vari-
ant, rs3025380, in DBH (MAF = 0.005, 0.001, and 0.003 in EA, AA, 
and Hispanic-ancestry (HA) samples, respectively). Meta-analysis of 
AA individuals identified association at a common missense variant, 
rs12941884, in SEZ6 (MAF = 0.21 and 0.12, respectively, in AA and EA 
individuals) that was not identified in EA or all-ancestry samples.

The Exome Chip contains 43 SNPs from loci previously identified 
in GWAS of blood pressure5–15. Of these 43 loci, 39 were associated 

Meta-analysis identifies common and rare variants 
influencing blood pressure and overlapping with 
metabolic trait loci

Hypertension (HTN), or high blood pressure, is a major risk factor for 
cardiovascular disease, chronic kidney disease, and mortality1. Thus 
far, in addition to identifying rare mutations that cause monogenic 
disorders with high or low blood pressure2–4, candidate gene studies, 
genome-wide association studies (GWAS), and admixture mapping 
approaches5–15 have identified variants at more than 60 genetic loci 
that are associated with blood pressure or HTN. Most of the known 
blood pressure loci identified in large population-based studies are 
common noncoding variants with small effects on blood pressure.

The Human Exome BeadChip (Exome Chip; Illumina) was designed 
to facilitate identification of functional variants that contribute  
to human traits, by focusing on variants that alter amino acid 
sequence. The Exome Chip includes 247,039 markers, of which 
>90% are nonsynonymous or splice-modulating exonic variants that 
were not covered by previous genotyping arrays. Whereas variants on 
previous GWAS arrays are largely common (minor allele frequency 
(MAF) ≥ 0.05), 83% of the Exome Chip variants are rare (MAF < 0.01) 
and another 6% are low frequency (MAF = 0.01–0.05). Only 11% of 
the Exome Chip variants are common, including a set of 5,542 com-
mon variants (approximately 2% of overall array content) that were 
drawn from the associations reported in the National Human Genome 
Research Institute (NHGRI) GWAS catalog16.

To identify functional coding variation associated with blood pres-
sure, we conducted a two-stage study in up to 327,288 individuals who 
were genotyped with the Exome Chip (Fig. 1) for systolic and diastolic 
blood pressure (SBP and DBP), pulse pressure (PP), mean arterial 
pressure (MAP), and HTN. We identified single-variant associations 
at 31 new loci and gene-based associations for three new genes (two 
of which overlapped with the single-variant loci) with blood pressure 

Meta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 	
new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals 
(total n = 327,288). These blood pressure–associated loci are enriched for known variants for cardiometabolic traits. Associations 
were also observed for the aggregation of rare and low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. 	
In addition, blood pressure associations at 39 previously reported loci were confirmed. The identified variants implicate biological 
pathways related to cardiometabolic traits, vascular function, and development. Several new variants are inferred to have roles 
in transcription or as hubs in protein–protein interaction networks. Genetic risk scores constructed from the identified variants 
were strongly associated with coronary disease and myocardial infarction. This large collection of blood pressure–associated loci 
suggests new therapeutic strategies for hypertension, emphasizing a link with cardiometabolic risk.

A full list of authors and affiliations appears at the end of the paper.
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with at least one blood pressure trait in stage 1 analyses (P < 0.05/43 
~0.001) (Supplementary Table 3). Twenty-six of these SNPs reached 
experiment-wide significance (P < 3.4 × 10−7). Conditional analysis 
did not identify any new independent variants at any of these previ-
ously identified loci5–15.

The 15 newly associated variants (P < 3.4 × 10−7; Supplementary 
Table 1) and 62 additional variants (P < 1 × 10−5 for at least one 
blood pressure phenotype; Supplementary Table 2) from stage 1  
were selected for follow-up in 180,726 independent individuals 
(Supplementary Note). Of the 15 newly identified variants, 11 repli-
cated (P < 0.05/15 ~0.0033) in the follow-up samples (Supplementary 
Tables 4 and 5). In stage 2 analyses (joint meta-analysis of results from 
the stage 1 and follow-up samples), we identified 48 new blood pres-
sure variants at 31 loci (including the 11 replicated loci) associated 
with SBP, DBP, PP, or HTN at P < 3.4 × 10−7 (MAP analysis was not 
possible in the follow-up analyses; Supplementary Tables 4 and 5).  
Among the top variants at the 31 loci, 13 were missense (Table 1). In 
stage 2 analyses restricted to EA samples (Supplementary Table 4),  
all newly identified associations in EA samples meeting the signifi-
cance threshold were also statistically significant in meta-analysis 
combining samples from all ancestry groups (Supplementary Table 5),  
with the exception of rs1925153 in COL21A1. In addition, all of the 
variants except for the four that were nominated for follow-up on the 
basis of PP (SBP minus DBP) showed concordant directions of effect 
for SBP and DBP (Supplementary Table 6).

Three of the 31 new significant SNPs were low frequency (MAF =  
0.01–0.05). These SNPs encode nonsynonymous substitutions in 
the genes NPR1 (rs35479618), SVEP1 (rs111245230), and PTPMT1 
(rs11537751). NPR1 encodes natriuretic peptide receptor 1 and has 
been reported to be associated with blood pressure regulation in ani-
mal models17,18 but not previously in humans; SVEP1 and PTPMT1 
are new blood pressure–associated genes. The minor alleles of all 
three SNPs were associated with increased blood pressure and had 
larger absolute effects on blood pressure than the alleles of any of the 
newly identified common variants. For example, each minor allele of 
rs35479618 was associated with an increase of 0.85 mm Hg in SBP in 
the follow-up samples as compared with a maximum absolute differ-
ence (per minor allele) among the new common variants of 0.43 mm 
Hg in SBP (for rs8068318 in TBX2; Supplementary Table 5).

Of the 28 newly identified common variants for blood pressure, 
14 were genome-wide significant in previous GWAS of lipid levels19, 
immunological disease20–22, diabetes23–25, kidney function26, age at 
menarche27, resting heart rate28, waist–hip ratio29, and homocysteine 
concentration30 but not blood pressure (Table 2 and Supplementary 
Table 7). Six additional variants were reported for several phenotypes 
(Table 2) in previous candidate gene studies, patent filings, or GWAS, 
but their P values were not specified or did not reach the genome-wide 
significance level31–35. By contrast, the remaining eight variants were 
missense SNPs that have not been reported in the NHGRI GWAS 
catalog for any trait (Table 2). Several genes in Table 2 contain mul-
tiple variants showing distinct allelic roles. HOXA3 and NOS3 harbor  
variants rs17428471 (HOXA3)12 and rs3918226 (NOS3)10 with 
genome-wide significant blood pressure associations that are inde-
pendent of the Exome Chip variants (r2 = 0.007 for rs17428471 and 
rs6969780 and r2 = 0.007 for rs3918226 and rs891511 in 1000 Genomes 
Project data). Variant rs2651899 in PRDM16 has been reported to 
be associated with migraine36, but this variant is not in linkage dis-
equilibrium (LD) with the new blood pressure variant, rs2493292  
(r2 = 0.01 in 1000 Genomes Project data), suggesting predisposition 
to distinct vascular consequences for different variants in this locus.  
In addition, PRDM16 has been shown to have a critical role in vascular 

development37, adipocyte function in subcutaneous fat, and develop-
ment of diabetes38. Finally, several variants in DOT1L were reported 
to be associated with cartilage thickness and hip osteoarthritis39.  
The new blood pressure variant rs2302061, however, was not in LD 
with any of the previously identified signals at this locus39.

Together, the 31 newly identified single variants explain 0.7% and 
1.3% of between-individual variation in SBP and DBP, respectively. 
The previously established and newly identified variants together 
explain 2.8% and 2.9% of phenotypic variation in SBP and DBP.

Gene-level analyses
We considered the possibility that an aggregation of rare or low- 
frequency coding alleles in individual genes contributes to variation in 
blood pressure and specifically tested for effects of nonsynonymous, 
stop codon, and splicing coding variants with MAF <0.05 (T5 test) or 
MAF <0.01 (T1 test) using the seqMeta package. The standard burden 
test40,41, which is sensitive in detecting association when all variants 
have effects on blood pressure in a concordant direction, identified 
an aggregation of rare and low-frequency coding alleles in PTPMT1 
that contribute to higher odds of HTN (experiment-wide signifi-
cance threshold P < 1 × 10−6; Table 3 and Supplementary Table 8a).  
Sequence kernel association testing (SKAT)42, which is designed to 
detect the effects of alleles that collectively contribute to higher and 
lower blood pressure, identified significant blood pressure associations 
for DBH (T1) and NPR1 (T5; Table 3 and Supplementary Table 8a).  
Among additional EA individuals (up to 154,543 individuals) 
who were used for follow-up analysis, gene-based SKAT (with  
the RAREMETAL package) was performed for inverse-normal- 
transformed DBP, SBP, PP, and HTN (Online Methods). The gene-
based associations replicated in the follow-up samples at P < 0.05/3 
~0.017 for NPR1 (P = 4.4 × 10−5 for SBP) and were marginally signifi-
cant for PTPMT1 (P = 0.019 for HTN) and DBH (P = 0.053 for DBP) 
(Supplementary Table 8b).

Twenty-eight genes previously reported to be associated with 
monogenic blood pressure disorders3 contained at least two nonsyn-
onymous, stop codon, or splice-site coding variants with MAF <0.05 
for gene-based testing on the Exome Chip. Burden testing of these 

CHARGE+ Exome Chip Blood Pressure Consortium
includes 146,562 individuals from 16 studies:
EA (n = 120,473), AA (n = 21,503), and HA (n = 4,586)

CHD Exome+ Consortium,
ExomeBP Consortium, T2D-
GENES Consortium, and
GoT2DGenes Consortium include
independent samples from 180,726
individuals

Gene-based
analysisSingle-variant analysis

3 genes with
P < 1 × 10–6

31 new loci identified

77 variants selected
(15 with P < 3.4 × 10–7 and 62 with P < 1 × 10–5)

Follow-up

Stage 1 (discovery) 

Stage 2 (meta-analysis of
stage 1 and follow-up
samples)

Meta-analysis of stage 1
and follow-up samples

Figure 1  Overall study design. In the discovery phase, single-variant 
and gene-based analyses were performed for SBP, DBP, PP, MAP, and 
HTN among 146,562 individuals from the CHARGE+ Exome Chip BP 
Consortium. Association for 15 variants was significant (P < 3.4 × 10−7),  
and 62 variants displayed association at P < 1 × 10−5. In the follow-
up phase, meta-analysis was performed for 77 variants on results from 
180,726 individuals from the CHD Exome+ Consortium, ExomeBP 
Consortium, GoT2DGenes Consortium, and T2D-GENES Consortium.
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28 genes identified a statistically significant association of SLC12A1 
(26 variants all having MAF <0.005) with SBP (P = 0.0006 <0.05/28, 
T1 test; Supplementary Table 9). Mutations in SLC12A1, encoding 
the Na-K-2Cl co-transporter, cause Bartter’s syndrome, a Mendelian 
salt-wasting condition associated with hypotension43. The 26 variants 
in SLC12A1, however, did not overlap with the previously reported 
variants for Bartter’s syndrome43. The 27 other genes associated with 
monogenic blood pressure disorders did not reach statistical signifi-
cance in standard burden testing. Additionally, none of the 28 genes 
showed significant association with blood pressure using SKAT42  
(all P > 0.0006; Supplementary Table 9).

Inferred function of the identified blood pressure loci
We applied several computational strategies and conducted cis expres-
sion quantitative trait locus (cis-eQTL) analysis to infer biological  

functions associated with genes at the 31 significant single-variant 
blood pressure loci (see details in the Supplementary Note).

Disease and pathway enrichment analysis. We examined functional 
annotations derived from precompiled gene sets in GeneGo and lit-
erature-based inference in Literature Lab44. In GeneGo biological 
processes, the 31 new loci were enriched for cell signaling and devel-
opment functions (for example, ‘regulation of signaling’ and ‘regula-
tion of growth’) as compared with the largely cardiovascular functions 
(for example, ‘negative regulation of (smooth) muscle contraction’ 
and ‘blood circulation’) found for the 39 validated blood pressure loci 
(Supplementary Table 10). The new loci were also enriched for several 
conditions related to cardiovascular and metabolic disease (for exam-
ple, ‘myocardial ischemia’, ‘congenital hyperinsulinism’, and ‘acid–base 
imbalance’), whereas the validated loci were enriched for conditions 
more directly related to blood pressure or cardiovascular conditions 

Table 2  New common blood pressure SNPs associated with non–blood pressure traits

Locusa (function) dbSNP ID Chr:position CA/NCA CAF GWAS traitb
Amino acid  
substitution Literature Lab term(s)c

SNPs not previously reported in GWAS
PRDM16 (NS) rs2493292 1:3,328,659 T/C 0.15 NA Pro633Leu

SULT1C3 (NS) rs6722745 2:108,875,244 C/T 0.34 NA Met194Thr

HRCT1 (NS) rs76452347 9:35,906,471 T/C 0.19 NA Arg63Trp

ADO (NS) rs10995311 10:64,564,934 G/C 0.38 NA Pro39Ala

CERS5 (NS) rs7302981 12:50,537,815 A/G 0.34 NA Cys75Arg

TNRC6A (NS) rs11639856 16:24,788,645 A/T 0.19 NA Asn185Lys

DOT1L (NS) rs2302061 19:2,226,772 C/G 0.16 NA Val1418Leu

RGL3 (NS) rs167479 19:11,526,765 T/G 0.448 NA Pro162His

SNPs previously reported to be significant in GWAS of other traitsd

PABPC4 (IN) rs4660293 1:40,028,180 G/A 0.21 HDL

CSNK1G3 (IN) rs4530754 5:122,855,416 G/A 0.41 LDL and TC

C5orf56 (IN) rs2188962 5:131,770,805 T/C 0.35 Crohn’s disease

rs926552 6:29,548,089 T/C 0.11 T1D

MSH5–SAPCD1 (IN) rs409558 6:31,708,147 G/A 0.18 SLE

IGFBP3 rs11977526 7:46,008,110 A/G 0.40 IGFBP3 Insulin, 9%; IGF-1 signaling, 55%

PHF19 (5′ near gene) rs1953126 9:123,640,500 T/C 0.33 RA

rs900145 11:13,293,905 G/A 0.34 Age at menarche

KCNJ11 (NS) rs5219 11:17,409,572 T/C 0.32 T2D Lys23Glu Insulin, 0.6%; T2D, 2.5%

MYH6 (IN) rs452036 14:23,865,885 A/G 0.40 Resting heart rate Heart development, 73%;  
hypertrophy model, 83%;  

cardiac muscle contraction, 84%

DPEP1 (NS) rs1126464 16:89,704,365 C/G 0.22 Homocysteine  
concentration

Glu351Gln

TBX2 (IN) rs8068318 17:59,483,766 C/T 0.35 Creatinine and eGFR Heart development, 17.5%

INSR (IN) rs7248104 19:7,224,431 A/G 0.395 TG Insulin, 90%; IGF-1 signaling, 
45%; T2D, 93%; hypertrophy 

model, 5.4%

ZNRF3 (3′ UTR) rs4823006 22:29,451,671 G/A 0.424 WHR

SNPs previously reported in patent filing, candidate gene study, or GWASe

SLC22A7 (SYN) rs2270860 6:43,270,151 T/C 0.37 HTN (patent filing)

COL21A1 (IN) rs1925153 6:56,102,780 T/C 0.45 Bipolar disease traits

PHIP (IN) rs10943605 6:79,655,477 A/G 0.46 Colon cancer (patent 
filing)

HOXA3 (5′ UTR) rs6969780 7:27,159,136 C/G 0.13 Hypospadias

NOS3 (IN) rs891511 7:150,704,843 A/G 0.37 Endothelium-dependent 
vasodilation

Heart development, 6.7%; T2D, 
3.9%; cardiac muscle contraction, 

14.5%

CYP2C19 (IN) rs4494250 10:96,563,757 A/G 0.32 Breast cancer

The SNPs included in this table are the common SNPs in Table 1. CA, coded allele; NCA, non-coded allele; CAF, coded allele frequency; IN, intron; NS, nonsynonymous;  
HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; TC, total cholesterol; T1D, type 1 diabetes; T2D, type 2 diabetes; SLE, systemic lupus  
erythematosus; IGFBP3, insulin-like growth factor–binding protein 3; RA, rheumatoid arthritis; TG, triglycerides; WHR, waist–hip ratio; NA, not available.
aLoci are named according to the closest gene, as determined on the basis of the position of the index SNP. bTrait for which a SNP was reported in previous GWAS. cLiterature Lab terms  
that were strongly associated with corresponding blood pressure candidate genes. The relative contribution of a blood pressure candidate gene to a Literature Lab term is indicated by a  
percentage (Supplementary Table 10 and ref. 44). dReported to be significant in GWAS using P < 5 × 10−8 or a prespecified significance level in the reported study. Details of association  
direction are included in Supplementary Table 7. eP values were not mentioned or did not reach the specified significance level.
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(for example, ‘arrhythmias, cardiac’, ‘hypertension’, and ‘hypotension’). 
Significant Literature Lab44 (Supplementary Table 11) pathways and 
disease MeSH headings were enriched for insulin-related terms (for 
example, ‘IGF-1’, ‘type 2 diabetes’, and ‘hyperinsulinism’) for the new 
loci as compared to blood pressure–related terms (for example, ‘car-
diac muscle contraction’) and cardiovascular electrophysiology (for 
example, ‘antiarrhythmics’) for the validated loci; both sets of loci were 
significant for ‘heart development’. In the Literature Lab44 anatomical 
annotations, the cardiovascular system (for example, ‘myocardium’ 
and ‘heart ventricles’) was highlighted for both the new and validated 
SNPs, while the validated SNPs were also associated with the renal 
system (for example, ‘nephron’ and ‘urinary tract’). Almost no anno-
tations for either GeneGo or Literature Lab44 were unique to the set 
of combined new and validated loci with the exception of a few terms 
predominantly related to blood pressure or the renal system.

Protein–protein interaction analysis. Using NCBI protein–protein  
interaction (PPI) network resources (Supplementary Note),  
a total of 399 genes were found to be connected to at least one of the  
31 new blood pressure–associated genes (Supplementary Fig. 2). 
Ordered on the basis of connectivity (‘degree’; Supplementary Table 12),  
a measure that signifies a hub disposition in the PPI network, the 
top five blood pressure candidate genes were INSR, PABPC4, NOS3, 
IGFBP3, and DOT1L. On the basis of Google page rank, a connec-
tivity measure that recognizes degree of connectivity while also 
emphasizing connections between highly connected nodes, the five 
top genes differed only by the replacement of IGFBP3 by PTPMT1 
(Supplementary Table 12).

ENCODE and Roadmap Epigenomics analyses. RegulomeDB45 and 
HaploReg46 evaluations of potential cis-regulatory functions identi-
fied rs8068318 (intronic to TBX2) as having the highest score among 
loci (or their LD proxies) that showed relatively strong evidence for a 
role in transcription (Supplementary Table 13). This SNP maps to an 
active TBX2 promoter histone mark in lung fibroblasts and DNase I 
hypersensitivity marks in seven cell types, while overlapping with five 
transcriptional regulatory motifs. TBX2 is a member of a highly con-
served T-box family of transcription factors and has been implicated 
in cardiac developmental abnormalities47,48 and kidney function26.

Cis-eQTL analysis. The 31 newly identified blood pressure variants 
were queried for cis-eQTL association (Supplementary Table 14)  
in over 5,000 participants from the Framingham Heart Study (FHS), 
using microarray-based transcriptomic profiling of RNA from whole 
blood. A total of 720 SNP–transcript pairs were tested. Forty-three 
pairs (representing 17 variants) were significant at FDR < 10%,  
among which 8 variants were cis-eQTLs for multiple gene tran-
scripts. For example, rs1953126 (near the 5′ UTR of PHF19) is a  
cis-eQTL for PHF19 and for multiple nearby genes, including C5, GSN, 
PSMD5, RAB14, FBXW2, and TRAF1. Query of publicly available  
eQTL databases via GRASP49 and recent publications50,51 based on 
profiling of whole blood or other tissue types50–57 yielded eQTL 
assignments that were concordant with the FHS findings for most 
variants listed in Supplementary Table 14.

Effects of blood pressure–associated variants on clinical outcomes
We considered the aggregate effects of the blood pressure loci on 
blood pressure–related clinical outcomes using new Exome Chip–
based results for coronary artery disease (CAD) and myocardial 
infarction, including 42,335 cases and 78,239 controls58, and for 
renal function measured by glomerular filtration rate (GFR) in up to 
111,655 individuals. For 59 of the 70 (31 new and 39 validated) blood 
pressure–associated SNPs, the alleles that were associated with higher 
blood pressure were also associated with increased odds of CAD and 
myocardial infarction (Supplementary Tables 15 and 16), a highly 
significant concordance with the known influence of blood pressure 
on CAD and myocardial infarction (sign test, binomial P = 4.5 × 10−9).  
Similarly, genetic risk scores (GRSs) constructed from the 70 blood 
pressure SNPs using weights derived from their effects on SBP, 
DBP, and MAP were highly significantly associated with CAD and 
myocardial infarction with odds ratios (per 1 mm Hg of SNP-based 
blood pressure) of 1.05 (P = 8.6 × 10−44), 1.08 (P = 1.9 × 10−41), and 
1.06 (P = 1.1 × 10−45), respectively (Supplementary Table 17 and 
Supplementary Note). Notably, the blood pressure–raising allele 
of one of the new low-frequency SNPs from single-variant analysis, 
rs111245230 in SVEP1, was by itself associated with increased CAD 
at genome-wide significance58. GRSs constructed solely from the rare 
and low-frequency variants at the three loci with significant gene-
based tests (DBH, NPR1, and PTPMT1) were significant for CAD 
and myocardial infarction using MAP-based weightings for DBH  
(P = 0.026) and HTN-based weightings for PTPMT1 (P = 0.003) with 
a non-significant concordant trend using MAP-based weightings  
for NPR1 (P = 0.13; Supplementary Table 18). By contrast, the  
blood pressure–raising alleles for only 39 of the 70 blood pressure–
associated SNPs were associated with diminished kidney function 

Table 3  CHARGE+ Exome Chip BP Consortium: significant genes in burden tests and SKAT
Gene Chr. Testa T1 or T5b Phenotype β (SE) or Qmeta

c P valued Variantse CAF

PTPMT1 11 Burden T5 HTN 0.05 (0.01) 3.5 × 10−7   4 0.053

NPR1   1 SKAT T5 MAP 270678.8 4.4 × 10−8 14 0.025

DBH   9 SKAT T1 MAP 145331.4 9.2 × 10−7 27 0.028

The experiment-wide significance level for gene-based tests is P < 1 × 10−6. Chr., chromosome; CAF, coded allele frequency.
aThe standard burden test collapses rare variants into a single variable and tests the association between this variable and blood pressure; SKAT was designed to detect the effects of alleles that 
collectively contribute to higher and lower blood pressure. bMeta-analysis was conducted at the gene level to evaluate aggregate effects from multiple nonsynonymous or splicing variants with 
MAF <0.01 (T1) or <0.05 (T5). cThe burden test yields β (s.e.m.) values, and SKAT provides Qmeta values. dP value in pooled samples from all ancestry groups. eNumber of variants used in analysis.
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Figure 2  NPR1 gene: low-frequency and rare variants associated in 
aggregate with mean arterial pressure. The NPR1 protein (1,061 amino 
acids) comprises three domains: an extracellular domain, a kinase 
homology domain, and a guanylate cyclase domain. The effects of the 14 
low-frequency and rare variants after adjustment for age, age2, sex, and 
body mass index on MAP are shown as higher (orange) or lower (purple) 
values; dot area is proportional to the number of carriers of the minor 
allele. The minor allele of rs35479618 (MAF ~0.012; p.Glu967Lys) was 
carried by 3,164 participants. The minor allele of rs201787421 (MAF 
~2.6 × 10−5; p.Arg782Gln) was carried by five participants.
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(CKD) as reflected by lower GFR, a degree of concordance that  
was not significant (sign test, binomial P = 0.40). A similar lack of 
association was observed for the blood pressure GRS associations 
with GFR using weights for SBP (P = 0.18), DBP (P = 0.63), and  
MAP (P = 0.31).

DISCUSSION
Through a two-stage study design of discovery (n = 146,562) followed 
by external lookups (n = 180,726) and joint analysis (n = 327,288), we 
identified single-variant associations at 31 new loci and gene-based 
associations for three new genes (two of which overlapped with the 
single-variant loci) with blood pressure phenotypes. We also con-
firmed common variants at 39 previously reported blood pressure– 
associated loci, increasing the number of statistically significant loci 
in our study to 71 and extending the number of non-monogenic blood 
pressure–associated loci5–15 to over 90. The sample size for the joint 
analysis in this study is far larger than that for any previous genetic 
study of blood pressure5–15. This large increase in sample size is an 
important reason for the discovery of many new blood pressure loci 
and likely explains why some of the newly identified common loci 
were not discovered in previous blood pressure GWAS. In addition, 
direct genotyping of coding variants likely added incremental power 
over imputed genotypes and tagging SNPs that were the basis of previ-
ous GWAS, suggesting that new common variants will continue to be 
identified for blood pressure phenotypes using the same set or similar 
sets of samples with exome sequencing and whole-genome sequencing.  
Furthermore, phenotypic and possibly genetic heterogeneity (due to 
additional samples in this study), differences in analysis plans, and 
the play of chance may be additional explanations of why some of 
the common variants identified in this study were not identified in 
previous blood pressure GWAS.

Fourteen of the new blood pressure variants identified in the 
present study reside in loci that were previously reported in GWAS 
to be associated with lipid levels19, immunological diseases20–22, and 
metabolic phenotypes23–25,29 (Table 2 and Supplementary Table 7). 
Thirteen of the previously identified blood pressure variants were 
also linked to non–blood pressure traits or diseases (Supplementary 
Table 19). Considerable evidence has accumulated linking high blood 
pressure to insulin resistance, altered lipid levels, inflammation, and 
other features of the metabolic syndrome59–64. Gene set enrichment, 
regulatory sequence variation, and PPI annotations of the new blood 

pressure loci implicate genes that contribute to cardiac structure and 
function as well as insulin signaling and type 2 diabetes. In addition, 
among the previously reported blood pressure–associated genes that 
were confirmed in our study, ATXN2, GRB14, HECTD4, PTPN11, and 
SLC39A8 (Supplementary Table 3) have been proposed as candidate 
genes for metabolic syndrome on the basis of their associations with 
metabolic traits and inflammatory biomarkers64.

The NPR1 gene was associated with blood pressure in both single-
variant and gene-based tests. This gene encodes the receptor for atrial 
and B-type natriuretic peptides, which regulate blood volume and 
pressure17,18. The functional consequences of the p.Glu967Lys amino 
acid substitution that is encoded by rs35479618 (the significant NPR1 
SNP in single-variant analysis) are unknown, but the change results 
in opposite charge and a large difference in side chain volume, and it 
is predicted to be possibly damaging (score = 0.513) by PolyPhen-2  
(ref. 65). The effects of the 13 rare variants and 1 low-frequency vari-
ant in NPR1 varied in direction, explaining why gene-based testing 
was significant using SKAT42, which is sensitive to effects raising 
and lowering blood pressure, but not in burden testing40,41, which 
requires a consistent direction of effect on blood pressure (Fig. 2 and 
Supplementary Fig. 3). Of note, Npr1-knockout mice have HTN, 
cardiac hypertrophy, and sudden death phenotypes17,18,66, and mice 
with only one copy of the Npr1 gene have salt-sensitive HTN as com-
pared to wild-type mice17. Future studies are warranted to determine 
whether humans carrying the rare blood pressure–increasing alleles of 
NPR1 also have salt-sensitive HTN. We have previously demonstrated 
that common variation that raises atrial natriuretic peptide levels low-
ers blood pressure13, suggesting the potential for blood pressure– 
lowering strategies that target the interaction of natriuretic peptide 
with natriuretic peptide receptors. Similarly, molecular mimicking of 
the action of blood pressure–lowering alleles in NPR1 may be worth 
exploring as a novel blood pressure treatment.

Both single-variant and gene-based (T1) analyses in stage 1 identified 
DBH as a blood pressure–associated gene (Fig. 3). DBH encodes the 
enzyme dopamine β-hydroxylase, which catalyzes the transformation 
of dopamine into norepinephrine. Both dopamine and norepinephrine 
act on the sympathetic nervous system, influencing a variety of com-
plex traits, including blood pressure. Impaired dopamine β-hydroxylase  
activity has been identified in individuals with severe autonomic failure, 
including orthostatic hypotension67,68, and mutation of DBH has been 
identified in two individuals with autonomic dysfunction69. The rare 
minor allele of rs3025380, encoding the p.Gly88Ala nonsynonymous 
substitution, was associated with a comparatively large reduction of 
1.81 mm Hg in MAP even though the amino acid change is predicted to 
be remote from the active site70. Inhibition of dopamine β-hydroxylase  
has long been considered a potential target for antihypertensive  
therapy71, but these efforts have been undermined because of the 
broad involvement of catecholamines in a variety of critical biological  
processes72,73 and the potential for undesirable side effects.

The remaining significant gene in gene-based testing was PTPMT1, 
which encodes mitochondrial protein tyrosine phosphatase 1. 
Knockdown of Ptpmt1 expression in a rat pancreatic insulinoma cell 
line was found to enhance ATP production and insulin secretion74, 
an observation that is closely aligned with the insulin and cardio
metabolic regulatory features of many of the new blood pressure 
loci identified in this study. In addition, targeted burden testing of 
uncommon and rare variants in genes that underlie monogenic blood 
pressure disorders identified a significant blood pressure association 
with SLC12A1, the Na-K-2Cl co-transporter that is well established 
to harbor rare mutations that cause Bartter’s syndrome, a salt-wasting 
condition associated with hypotension43.
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Figure 3  DBH gene: rare variants associated in aggregate with mean 
arterial pressure. The DBH protein (617 amino acids) contains a 
dopamine β-monooxygenase N-terminal (DOMON) domain, a catalytic  
core (CuH and CuM domains), and a C-terminal (C-T) domain. The effects 
of the 27 rare variants after adjustment for age, age2, sex, and body mass 
index on MAP are shown as higher (orange) or lower (purple) values.  
The minor allele of rs74853476 (MAF ~0.0015), a splicing variant, 
 was carried by 291 participants. The minor allele of rs201681337  
(MAF ~7.9 × 10−5; p.Ala301Thr) was carried by four participants.
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The Exome Chip array was designed to aid in the search for rare 
functional variants with large effect sizes. This study did not, however, 
identify any rare variants associated with blood pressure phenotypes 
through single-variant analyses, suggesting that rare variants with 
large effects on blood pressure are an uncommon occurrence. Even 
with the current sample size, this study was not adequately powered to 
identify rare variants with only modest effect sizes (Online Methods). 
Within the predominant class of variants studied (low-frequency and 
rare nonsynonymous SNPs), there may not be a large enough number 
of variants or effects of sufficient size to account for a substantial 
proportion of the remaining missing heritability of blood pressure. 
Nevertheless, this study greatly extends the number of known blood 
pressure–associated loci and moreover demonstrates their potential 
relevance to cardiovascular disease. The discovery of a total of 32 new 
blood pressure–associated loci (31 from single-variant tests, 1 from 
gene-based tests) and their overlap with other disease-related phe-
notypes suggest common etiologies of blood pressure and metabolic 
risk factors and an opportunity to identify therapies that more broadly 
influence HTN in the context of cardiometabolic risk.

URLs. BIND, http://thebiogrid.org/; BioGRID, http://thebiogrid.
org/; CHARGE+ Exome Chip, http://www.chargeconsortium.com/
main/exomechip; EcoCys, http://www.ecocyc.org/; GeneGo, http:// 
lsresearch.thomsonreuters.com/; Literature Lab, http://www. 
acumenta.com/acumenta/overview/index.php; HaploReg, http://
www.broadinstitute.org/mammals/haploreg/haploreg_v3.php; 
Human Protein Reference Database (HPRD), http://www.hprd.org/; 
NCBI Protein–Protein Interaction (PPI) database, ftp://ftp.ncbi.nih.
gov/gene/GeneRIF/; National Human Genome Research Institute 
(NHGRI) GWAS catalog, http://www.genome.gov/gwastudies/;  
PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/; RAREMETAL,  
http://genome.sph.umich.edu/wiki/RAREMETAL_Documentation; 
RegulomeDB, http://regulomedb.org/; Recode alleles, http://www.
chargeconsortium.com/main/exomechip; Roadmap Epigenomics, 
http://www.roadmapepigenomics.org/; seqMeta package, http://cran.
r-project.org/web/packages/seqMeta/index.html.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The meta-analysis results at the single-variant level 
for SBP, DBP, MAP, PP, and HTN can be downloaded from the data-
base of Genotypes and Phenotypes (dbGaP) CHARGE Summary site 
under accession phs000930.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Study participants. A total of 146,562 individuals comprising EA (n = 120,473),  
AA (n = 21,503), and HA (n = 4,586) individuals contributed from 16 studies 
(Supplementary Table 20 and Supplementary Note) were included in the 
discovery-stage association analyses. The entire discovery sample was also 
included in the meta-analyses of results from the discovery and follow-up 
stages (Fig. 1). All study participants provided written informed consent for 
genetic research, with the exception of the BioVU biorepository, in which DNA 
was extracted from discarded blood collected during routine clinical testing 
and was linked to deidentified medical records. All studies received approval 
to conduct this research from their respective institutional review boards. 
Studies contributing to the discovery analyses included a wide range of mean 
measured blood pressure values (110–142 mm Hg for SBP and 69–84 mm Hg 
for DBP), HTN prevalence (2–77%), and proportion of individuals taking 
antihypertensive medications (0.6–63%) (Supplementary Table 20).

Genotyping and quality control. All samples were genotyped on the Illumina 
Infinium Human Exome Array v1.0 or v1.1 (Supplementary Table 21).  
Ten studies (51,106 individuals) were jointly called at the Human Genetics 
Center of the University of Texas Health Science Center in Houston76. Six 
additional studies followed genotype calling protocols from Illumina or from  
the CHARGE Consortium and strand assignment for allele coding specified 
by the CHARGE Consortium76. All studies followed quality control guidelines 
recommended by the CHARGE analysis committee. Quality control proce-
dures were further applied at the cohort level (Supplementary Table 21).  
Variants were removed for having a genotype call rate less than 95%, 
Hardy–Weinberg equilibrium P value less than 1 × 10−6, and concordance  
rate (between overlapping variants from previous GWAS and the Exome 
Chip) less than 95%; individual samples were removed for having a call rate  
less than 95%, having a concordance rate less than 95% with GWAS data, 
or in the event of a suspected sample swap, sex mismatch, or heterozygosity  
F value greater than 10.

Blood pressure phenotypes. In the discovery stage, the blood pressure pheno-
types included were SBP, DBP, PP (SBP minus DBP), and MAP (1/3 SBP + 2/3 
DBP). A participant was classified as having HTN if she/he had SBP ≥140 mm 
Hg or DBP ≥90 mm Hg or was taking antihypertensive medication. SBP and 
DBP values were obtained from the first examination attended for longitudinal 
studies; when available, the average of two single-occasion measurements was 
used for SBP and DBP. To account for the reduction in blood pressure due to 
medication use, all individuals taking blood pressure–lowering medication had 
15 mm Hg added to the measured SBP and 10 mm Hg added to the measured 
DBP15. The four continuous blood pressure traits are moderately or highly  
correlated, such that among the larger contributing cohorts the ranges of corre-
lation were 0.70–0.82 (SBP–DBP), 0.92–0.95 (SBP–MAP), 0.73–0.89 (SBP–PP), 
0.92–0.99 (DBP–MAP), 0.20–0.45 (DBP–PP), and 0.43–0.68 (MAP–PP). Such 
correlations appeared to be consistent across different ancestry groups within 
these same studies.

Association analyses and meta-analyses. Power estimation. Nearly 90% of 
the markers on the Exome Chip are low-frequency (MAF = 0.01–0.05) or 
rare (MAF < 0.01) variants. Power for association was evaluated for MAP 
assuming a mean of 100 mm Hg with standard deviation of 10 mm Hg using 
QUANTO77 for sample size n = 150,000 at the significance level of 3.4 × 10−7 
for a variant with MAF of 0.0005, 0.001, 0.005, or 0.01. To reach 80% power, an 
effect size of 5, 3.5, 1.6, or 1.1 mm Hg is needed, respectively, for a variant with  
MAF = 0.0005, 0.001, 0.005, or 0.01.

Fraction of the common variants tagged by the Exome Chip. We downloaded 
the phase 3 genotype data for EA individuals from the HapMap Project. The 
phase 3 file hapmap3_r2_b36_fwd.CEU.qc.poly includes 1,416,121 variants 
(1,352,770 with MAF >0.01 and 1,223,919 with MAF >0.05). We used the 
PLINK command ‘show-tags’ to estimate the number of common (MAF >0.05) 
variants that can be tagged by Exome Chip variants. We estimated that 172,220 
(LD r2 ≥0.5) and 88,186 (LD r2 ≥0.8) common SNPs (MAF >0.05) can be 
tagged by the Exome Chip variants. In comparison to the number of variants 
tagged by a GWAS chip (for example, Affymetrix 500K), the Exome Chip tags 
many fewer common variants.

Cohort-specific analysis. Gene-based (or region-based) testing was per-
formed using the seqMeta package. Covariates included age, age2, sex, body 
mass index, and principal components (if applicable) to account for population  
structure. All variants were recoded to conform to the alleles specified in 
a ‘recode’ file distributed to each study. In all analyses, variant effects were  
modeled additively. Conditional analysis was performed to identify independent  
blood pressure signals at previously reported blood pressure loci5–15 using the 
seqMeta package by adjusting at the cohort level for the previously reported 
GWAS SNP with the smallest P value in association analysis. Similarly, for 
any newly identified locus with multiple variants, conditional analysis was  
performed by adjusting for the most significant variant in the region to identify 
non-redundant signals.

Meta-analysis at the single-variant level. Meta-analysis of single-variant  
associations from discovery and follow-up results was performed using  
the inverse-variance-weighted fixed-effects method77 implemented in the 
seqMeta package. In the discovery stage, the primary meta-analysis was 
performed in all samples to identify variants showing consistent effects with 
blood pressure traits across multiple ancestry groups. Secondary analysis was 
performed in each of the three ancestries separately to identify new variants 
with different ancestral origin. Meta-analysis was also performed on results 
from conditional analysis and compared with the original meta-analysis  
to identify non-redundant signals. Although we performed association 
and meta-analysis on all genotyped variants that passed quality control, we 
only report results from about 147,000 variants that had minor allele counts 
(MACs) ≥30 in meta-analyses of all samples. Because the blood pressure traits 
are highly correlated, we used an array-wide Bonferroni-corrected significance 
threshold of 3.4 × 10−7 (= 0.05/147,000). The Exome Chip array contains 
numerous previously published variants or their LD proxies, mostly from 
GWAS using imputed genotype information for a variety of human traits. 
Using exome chip experimental genotypes, associations from previous blood 
pressure GWAS5–15 were considered significant with P ≤ 0.05/n, where n is the 
number of previously identified SNPs or SNPs that showed at least moderate 
LD (r2 ≥0.3) on the Exome Chip.

Meta-analysis at the gene level. Meta-analysis was also conducted at the 
gene level to evaluate aggregate effects from multiple nonsynonymous and 
splicing variants with MAFs ≤0.01 (T1) and ≤0.05 (T5) in a gene using both  
SKAT42 and the standard burden test40,41 implemented in the seqMeta package.  
The standard burden test collapses the rare variants and has optimal properties 
when these variants all have the same directionality and magnitude of effect on 
phenotype. In contrast, SKAT aggregates individual variant score test statistics 
and offers better power than the burden test when there are a variety of effect 
sizes and directions, for example, when there are both protective and delete-
rious effects in a gene42. Approximately 17,000 genes included two or more 
nonsynonymous variants in the primary meta-analysis of all study samples. An 
association was deemed to be significant at P < 1 × 10−6 for gene-based tests. 
Among up to 154,543 EA individuals from the CHD Exome+ Consortium, 
ExomeBP Consortium, GoT2DGenes Consortium, and T2D-GENES 
Consortium (Supplementary Note), gene-based SKAT was applied to HTN 
and inverse-normal-transformed DBP, SBP, and PP using the RAREMETAL 
software package78. We performed lookups in their SKAT results for the genes 
that reached P < 1 × 10−6 in stage 1 analysis of this study.

Follow-up study at the single-variant level. The follow-up study was per-
formed in external samples (follow-up samples) including a total of 180,726 
individuals from the CHD Exome+ Consortium, ExomeBP Consortium, 
GoT2DGenes Consortium, and T2D-GENES Consortium (Supplementary 
Note). Summary information from participants, genotyping, and quality 
control in the follow-up samples are presented in the Supplementary Note. 
The follow-up samples provided SNP association statistics for DBP, PP, SBP, 
and HTN but not MAP for a total of 180,726 individuals. Significant variants  
(P ≤ 3.4 × 10−7) in the discovery samples were considered replicated in the 
follow-up samples with P ≤ 0.05/n with their prespecified blood pressure trait 
in the follow-up sample alone, where n was the number of variants tested in 
the follow-up samples. From the discovery stage, the significant variants and 
additional variants with P ≤ 1 × 10−5 were selected for joint meta-analysis  
with the follow-up samples. The primary meta-analysis of the discovery and 
follow-up results was performed in individuals of all ancestries. The secondary  
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meta-analysis was conducted in EA-only samples. The inverse-variance-
weighted method was used in meta-analysis of the discovery and follow-up 
results for DBP, PP, and SBP. Because the follow-up samples provided only z 
scores and sample sizes for HTN, the optimally weighted z-score method79 was 
used in meta-analysis of HTN. The threshold of P ≤ 3.4 × 10−7 was required for 
significance in meta-analyses of the discovery and follow-up samples.

Functional inference. We applied several computational strategies to infer bio-
logical functions associated with candidate genes from the 31 new loci reach-
ing P < 3.4 × 10−7 (Table 1) and 39 validated loci (Supplementary Table 3).  
(i) To test whether the SNPs in Table 1 and Supplementary Table 3 were 
significantly enriched among prespecified gene sets defined in pathways or by 
shared roles in particular diseases or biological processes, we performed gene 
pathway, disease, and Gene Ontology (GO) enrichment analysis using GeneGo 
software and Literature Lab44 data mining of the literature (Supplementary 
Note). (ii) To investigate whether the coding and noncoding variants listed 
in Table 1 might influence transcriptional regulation, we compared blood 
pressure candidate SNPs with ENCODE and Roadmap Epigenomics regulome 
features summarized for mainly cis-regulatory function in HaploReg46 and 
RegulomeDB45. The inclusion of coding variants in this analysis was justified 
by previous research showing that transcriptional regulation can be influenced 
by both noncoding and coding variations; a recent publication has shown 
that ~15% of human codons simultaneously specify both amino acids and 
transcription factor recognition sites80. (iii) To identify genes that encode 
proteins especially connected with other proteins and therefore inferred to 
be important, we performed PPI network analysis on the SNPs in Table 1. 
The PPI network was constructed using NCBI PPI database information, 
which sources information from the HPRD, BIND, BioGRID, and EcoCys 
databases. By design, 2% of the Exome Chip variants were identified from 
previous GWAS. To investigate whether these previous GWAS SNPs might 
artificially increase the extent of GeneGo enrichment in known functional 

classes, we performed GeneGo enrichment analysis on ten randomly selected 
sets of genes from the Exome Chip (with replacement) with the size of new 
and previous blood pressure candidates discovered. None of these random sets 
showed gene set enrichment with significance comparable to the enrichment 
for the blood pressure SNPs.

To further assess putative functionality for the new loci, we performed  
cis-eQTL analysis between each of the newly identified variants and gene 
expression within 1 Mb flanking that variant in peripheral whole-blood sam-
ples from ~5,000 individuals from FHS. Statistical significance in the FHS 
expression data was evaluated at FDR < 10% for newly identified variants81. 
We also searched for cis associations between new variants and gene transcripts 
within 1 Mb flanking the lead SNP based on databases of previously published 
eQTL analyses at FDR < 10% (refs. 50,82).
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