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We describe a reference panel of 64,976 human haplotypes at 
39,235,157 SNPs constructed using whole-genome sequence 
data from 20 studies of predominantly European ancestry. 
Using this resource leads to accurate genotype imputation at 
minor allele frequencies as low as 0.1% and a large increase 
in the number of SNPs tested in association studies, and it can 
help to discover and refine causal loci. We describe remote 
server resources that allow researchers to carry out imputation 
and phasing consistently and efficiently.

Over the last decade, large-scale international collaborative efforts 
have created successively larger and more ancestrally diverse genetic 
variation resources. For example, in 2007, the International HapMap 
Project produced a haplotype reference panel of 420 haplotypes at 
3.1 million SNPs in three continental populations1. More recently, 
the 1000 Genomes Project has produced a series of data sets built 
using low-coverage whole-genome sequencing, culminating in 2015 

in a reference panel (1000GP3) of 5,008 haplotypes at over 88 million  
variants from 26 worldwide populations2. In addition, several other 
projects have collected low-coverage whole-genome sequencing data 
in large numbers of samples that could potentially also be used to 
build haplotype reference panels3–5. A major use of these resources has 
been to facilitate imputation of unobserved genotypes into genome-
wide association study (GWAS) samples that have been assayed  
using relatively sparse genome-wide microarray chips. As reference 
panels have increased in number of haplotypes, SNPs and populations, 
genotype imputation accuracy has increased, allowing researchers  
to impute and test SNPs for association at ever lower minor  
allele frequencies (MAFs). A succession of methods developments has 
provided researchers with the tools to cope with these increasingly 
larger panels6–11.

We formed the Haplotype Reference Consortium (HRC; see URLs) 
to bring together as many whole-genome sequencing data sets as 
possible to build a much larger combined haplotype reference panel. 
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By doing so, our aim is to provide a single centralized resource for 
human genetics researchers to carry out genotype imputation. Here 
we describe the first HRC reference panel that combines data sets 
from 20 different studies (Supplementary Table 1). The majority 
of these studies have low-coverage whole-genome sequencing data 
(4–8× coverage) and are known to consist of samples with predomi-
nantly European ancestry. However, the 1000 Genomes Project Phase 
3 cohort, which has diverse ancestry, is also included. This reference 
panel consists of 64,976 haplotypes at 39,235,157 SNPs with evidence 
of having a minor allele count (MAC) greater or equal to 5.

We took the following approach to create the reference panel. We 
combined existing sets of genotype calls from each study to determine 
a ‘union’ set of 95,855,206 SNP sites with MAC ≥ 2. After initial tests, 
we decided for this first version of the HRC panel not to include 
small indels, as these were very inconsistently called across projects.  
We then used a standard tool to calculate consistently the genotype 
likelihoods for each sample at each site from the original study BAM 
files (Online Methods) and make a baseline set of genotype calls not 
based on linkage disequilibrium (LD). We next applied a number of 
filters to remove poor-quality sites (Online Methods). We restricted 
the site list to sites with MAC ≥ 5 on the basis of calls originally 
made by the individual studies, corresponding to a minimum MAF 
of 0.0077%, and then added back sites that are present on several 
commonly used SNP microarray chips for GWAS. Sites with lower 
MAF values would be likely to be poorly imputed. This site list con-
sisting of 44,187,567 sites exhibited improved quality in comparison 
to the unfiltered site list with MAC ≥5 when assessed by measuring 
per-sample transition-to-transversion (Ts/Tv) ratio (Supplementary 
Figs. 1 and 2). We also detected and removed 301 duplicate samples 
across the whole data set (Online Methods).

Calling genotypes and phasing using low-coverage whole-genome 
sequencing data was a computationally challenging step for many of 
the 20 studies providing data. To reduce computation, we carried out 
this step on genotype likelihoods from all 32,611 samples together 
and leveraged the original separately called haplotypes from each 
study to help reduce the search space of the calling algorithm (Online 
Methods). We then applied a further refinement step in which the 
called genotypes were rephased using the SHAPEIT3 method12, on 
the basis of experience from the UK10K project, which found that 
this rephasing approach produced substantially improved imputation 
accuracy when using the haplotypes4. After final genotype calling, 
we removed a further 123 samples (Online Methods) and filtered 
out 4,952,410 sites whose MAC values after refinement and sample 
removal were below 5, resulting in a final set of 39,235,157 sites and 
32,488 samples. By measuring the genotype discordance of the called 
genotypes in comparison to Illumina Omni2.5M chip genotypes avail-
able for the 1000 Genomes Project samples, we showed that both our 
site filtering strategy and the increased sample size of the HRC panel 
led to improved accuracy (Supplementary Table 2). For example, 
we obtained non-reference allele discordance of 0.39% on the full 
HRC data set with site filtering, as compared to 0.67% on the subset 
of 1000GP3 samples.

We next carried out experiments to assess and illustrate down-
stream imputation performance in comparison to previous haplotype 

reference panels. To mimic a typical imputation analysis, we created 
a pseudo-GWAS data set using high-coverage Complete Genomics 
(CG) whole-genome sequencing genotypes for ten CEU (European-
ancestry) samples (see URLs). We extracted the CG SNP genotypes at 
all the sites included on an Illumina 1M SNP array (Human1M-Duo 
v3C). These were used to impute the remaining genotypes, which 
were then compared to the held-out genotypes, stratifying results 
by MAF of the imputed sites. The HRC reference panel led to a large 
increase in imputation performance when using a 1M SNP chip, in 
comparison to 1000GP3 (R2 = 0.64 versus 0.36 at MAF = 0.1%), and 
the rephasing step using SHAPEIT3 was also beneficial (Fig. 1). HRC 
imputation at 0.1% frequency provided similar accuracy to 1000GP3 
imputation at 0.6% frequency. The results from a denser SNP chip 
(Illumina Omni 5M) and the sparser Illumina CoreExome are shown 
in Supplementary Figures 3 and 4.

To illustrate the benefits of using the HRC resource, we imputed 
a GWAS of 1,210 samples from the InCHIANTI study13, includ-
ing 534 samples that did not contribute to the HRC reference panel 
because they were not sequenced. Imputing using the HRC panel 
resulted in 15,501,516 SNPs passing an imputation quality threshold 
of R2 ≥ 0.5, in comparison to 13,238,968 variants (11,908,509 SNPs 
and 1,330,459 indels) when imputing using 1000 Genomes Project 
Phase 3 data, corresponding to an increase of over 2 million variants.  
Taking the intersection of the variant sites from the two panels  
to account for the filtering applied to the HRC panel resulted in 
13,364,795 SNPs and 10,728,322 SNPs with R2 ≥ 0.5 for the HRC 
reference and 1000 Genomes Project Phase 3 panel, respectively. The 
majority of these additional SNPs occurred in the lower-frequency 
range (Supplementary Table 3).

We next tested the HRC-imputed genotypes for association with 
93 circulating blood marker phenotypes, including many of relevance 
to human health such as lipids, vitamins, ions, inflammatory markers 
and adipokines14,15. This analysis highlighted potential new associa-
tions at the nominal GWAS significance threshold of P < 5 × 10−8 
(Supplementary Table 4). When we repeated imputation using the 
HRC panel without the overlapping InCHIANTI samples, we obtained 
similar results (Supplementary Table 4). We took these SNPs forward 
for replication in SHIP and SHIP-TREND cohorts (Online Methods) 
and found that two of the SNPs replicated (Supplementary Table 5). 
Specifically, we found that SNP rs150956780 (MAF = 0.6%) was associ-
ated with the lactic dehydrogenase phenotype (meta-analysis P value =  
3.779 × 10−29) and SNP rs147142246 (MAF = 0.6%) was associated 
with the potassium phenotype (meta-analysis P value = 8.7 × 10−9).  
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Figure 1  Performance of imputation using different reference panels.  
The x axis shows the non-reference allele frequency of the SNP being 
imputed on a log scale. The y axis shows imputation accuracy measured 
by aggregate R2 value when imputing SNP genotypes into ten CEU 
samples. These results are based on using genotypes from sites on the 
Illumina Omni1M SNP array as pseudo-GWAS data.
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We also found that it is possible for HRC-based imputation to refine 
signals of association. For example, association results using HapMap 
2–, 1000GP3- and HRC-based imputation for the α1-antitrypsin phe-
notype at the SERPINA1 locus are shown in Figure 2. HRC-based 
imputation gave clear refinement of the signal at rare causal SNP 
rs28929474 (MAF = 0.5%) (Supplementary Table 6), known to 
predispose to the α1-antitrypsin deficiency lung condition emphy-
sema16,17. Similar results were obtained when using the HRC panel 
that excluded the InCHIANTI samples (data not shown).

As the HRC reference panel combines data from many different 
studies with a range of restrictions on data release, we have developed  
centralized imputation server resources (see URLs). Under this 
model, researchers upload phased or unphased genotype data  
and imputation is carried out on central servers. Once imputation is 
completed, researchers can download the imputed data sets. Along 
similar lines, we have also developed a lower-throughput phasing 
server for haplotype estimation of clinical samples that uses geno-
types from high-coverage whole-genome sequencing data and takes 
advantage of rare variant sharing18 (see URLs). It is our intention to 
make a limited subset of HRC haplotypes available for researchers via 
the European Genome-phenome Archive (EGA) for the sole purpose 
of phasing and imputation.

This first release of the HRC is the largest human genetic varia-
tion resource thus far and has been created via an unprecedented 
collaboration of data sharing across many groups. We envisage  
continuing to expand the HRC and are currently planning a second 
HRC release differing from the first release in two ways. First, we 
aim to substantially increase the ancestral diversity of the panel, by 
including data from sequencing studies in worldwide sample sets 
such as the CONVERGE study19, AGVP20 and HGDP21. Second, 
we aim to include indels in addition to SNP variants. At the limit  
of a reference panel consisting of the entire human population  
except the person being imputed, imputation would likely be almost 
perfect for alleles at any frequency, as the panel would contain close 
relatives who share long and almost identical tracts of sequence.  
Therefore, we do expect to be able to make future gains in impu-
tation performance. In some populations that have experienced  
isolation (such as Sardinia or Iceland), we expect to approach this 
limit much faster. Thinking further ahead, we hope to work closely 
with efforts underway to collect high-coverage sequence for large 
numbers of samples such as the UK 100,000 Genomes Project  
(see URLs).

URLs. Haplotype Reference Consortium, http://www.haplotype-
reference-consortium.org/; Michigan Imputation Server, https://
imputationserver.sph.umich.edu/; Sanger Imputation Service, 
https://imputation.sanger.ac.uk/; Oxford Statistics Phasing Server, 
https://phasingserver.stats.ox.ac.uk/; genotype likelihood calculation 
scripts, https://github.com/mcshane/hrc-release1; GLPhase, https://
github.com/wkretzsch/GLPhase; hapfuse, https://bitbucket.org/
wkretzsch/hapfuse/src; Complete Genomics high-coverage whole-
genome sequencing genotypes, http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/technical/working/20130524_cgi_combined_calls/; 1000 
Genomes Project Omni array genotypes, ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ALL.
chip.omni_broad_sanger_combined.20140818.snps.genotypes.vcf.gz; 
100,000 Genomes Project, http://www.genomicsengland.co.uk/the-
100000-genomes-project/; GEMMA, http://www.xzlab.org/software.
html; LocusZoom, http://locuszoom.sph.umich.edu/locuszoom/; 
1000GP3 related samples, ftp://ftp.1000genomes.ebi.ac.uk//vol1/
ftp/release/20130502/20140625_related_individuals.txt; SNP chip 
site lists, http://www.well.ox.ac.uk/~wrayner/strand/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 2  Association signal for the α1-antitrypsin phenotype at the SERPINA1 locus. Association test statistics on the −log10 (P value) scale (y axis) 
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ONLINE METHODS
Union site list. Every study provided us with the most recent version of their 
haplotypes in VCF format with one VCF for every autosome. For every cohort, 
bcftools (v0.2.0-rc12) was used to create a whole-autosome, SNP-only site list 
with alternate and total allele count information from these per-chromosome 
haplotypes. Multiallelic SNPs were divided into biallelic sites using ‘bcftools 
norm’. The per-cohort site lists were merged into a single file that correctly 
merged alternate and total allele counts. We created site lists called MAC2 
and MAC5 containing only sites with a MAC value across all studies of ≥2 
and ≥5, respectively, using bcftools. These site lists contained 95,855,206 and 
51,060,347 sites, respectively.

Genotype likelihood calculations. The ‘samtools mpileup’ command was 
used to generate genotype likelihoods at all MAC2 sites on a per-sample basis 
from each sample’s BAM file. The pipeline and software versions have been 
made available online (see URLs). The resulting BCF files were merged using 
the ‘bcftools merge’ command, and MAC2 sites and alleles were extracted 
using the ‘bcftools call’ command. The use of ‘bcftools call’ here made a  
baseline set of non-LD-based genotype calls for each site across all samples. 
These calls were used for some initial sample quality control. We calculated 
genotype likelihoods on 33,070 samples in total.

Site filtering. We used an ad hoc method for initial variant filtering that 
enabled us to identify variants that had been filtered out ‘quite often’ by our 
submitting studies. For each site and for each cohort, we labeled the site as 
‘called’ in that study if the putative calls from bcftools based on genotype 
likelihoods exhibited more than one allele in that cohort or ‘not called’ if the 
site showed no variation. We also used the haplotype sets provided by each 
study to determine whether each study had filtered out each site using their 
own internal calling pipeline. To determine a threshold of ‘number of times 
filtered out’, we stratified the sites according to their called status versus their 
filtered status (Supplementary Fig. 5). We also measured the Ts/Tv ratio of 
the set of SNPs for each of these stratified combinations. SNPs corresponding 
to the cells above the red line in Supplementary Figure 5 were filtered out, 
removing all cells that had been filtered out by more than four studies or had 
a Ts/Tv ratio less than 1.7.

We also applied a set of additional site filters as follows. We filtered out sites 
not on the MAC5 site list to restrict the list to sites that could be well imputed. 
We also filtered out sites if in any study (apart from the 1000 Genomes Project) 
they had a Hardy–Weinberg equilibrium P value <1 × 10−10 or an overall 
inbreeding coefficient <−0.1. This coefficient (denoted f) was calculated as 
a departure from Hardy–Weinberg equilibrium by solving Aa = 2pq − 2fpq 
(where p and q are the observed allele frequencies and Aa is the observed 
proportion of heterozygous calls). Negative values indicate an excess of het-
erozygous calls, and positive values indicate an excess of homozygosity. We 
also filtered out sites with MAF >0.1 that were called in fewer than three of the 
studies and were not called in the 1000 Genomes Project (the latter restriction 
kept sites present at high frequencies in non-European populations that were 
only called in the 1000 Genomes Project). We also filtered out sites called only 
in the GoNL study or IBD cohort. We completely excluded GPC haplotypes 
from this step of the site list creation process.

After applying these filters, the site list comprised 44,038,997 sites. Finally, 
we made sure that 4,914,335 sites found on a selection of commonly used SNP 
genotyping arrays and those used in the GIANT Consortium and the Global 
Lipids Consortium (Supplementary Table 7) were included in the final site 
list. The final site list after this filtering contained 44,187,567 sites.

Sample filtering. Having used ‘bcftools call’ to extract sites and alleles, we had a 
set of baseline non-LD-based genotype calls. On the basis of these calls for chro-
mosome 22, some outlier samples were evident, and we removed 150 samples  
showing evidence of fewer than 10,000 non-reference SNPs or more than 10 
singletons across the chromosome. This left a total of 32,920 samples.

To detect possible duplicates, we used the original genotype calls submit-
ted by the individual studies. We selected 1,000 random sites that (i) were 
biallelic; (ii) had European MAF >5% in 1000GP3; and (iii) had no missing 
data in any of the individual studies. Using the ‘bcftools gtcheck’ command, 
we counted the number of genotypes that differed between each sample pair. 

There was a clear set of 269 sample pairs with very few genotypes differing 
over the 1,000 sites. We identified these samples as duplicates either within 
or between studies and removed one of the samples in each pair as described 
in Supplementary Table 8. Because some samples were represented more 
than twice, there were a total of 261 samples removed owing to duplicates. 
Before genotype calling, we also removed (i) 9 samples for which we had CG 
data, so that we could use these samples for testing purposes; (ii) 31 samples 
from 1000GP3 that were related (see URLs); and (iii) 8 samples from the 
HELIC, AMD and ProjectMinE studies with sample labeling inconsistencies. 
These filters resulted in 32,611 samples being used for the genotype calling 
and phasing steps.

In addition, after phasing, 83 samples from the AMD study were excluded 
as the consent for these samples had been removed. We also repeated the 
duplicate detection process on the final HRC genotype calls, as some studies 
increased in size late within the analysis process. This resulted in an additional 
40 samples being removed and a total of 32,488 samples in the final phased 
reference panel.

Genotype calling method leveraging existing haplotype calls. We called 
genotypes from the genotype likelihoods computed on the HRC samples by 
extending the SNPTools22 algorithm to leverage preexisting haplotypes availa-
ble from each cohort. Like other phasing and calling approaches8,10, SNPTools 
is a Markov chain Monte Carlo (MCMC) approach in which each sample’s 
haplotypes and genotypes are iteratively updated using the current estimates 
of all other samples. A low-complexity hidden Markov model (HMM) with 
just four states is used to update each sample, where the states are a set of four 
‘surrogate parent’ haplotypes. The MCMC sampler employs a Metropolis–
Hastings step to sample the set of surrogate parents. In large sample sizes, the 
search space for these surrogate haplotypes is huge and results in low accept-
ance rates for the sampler. Our extension, called GLPhase (see URLs), uses 
preexisting haplotypes to restrict the set of possible haplotypes from which 
the Metropolis–Hastings sampler may choose surrogate parent haplotypes. 
For each individual, we restrict the search space to the 200 haplotypes that 
most closely match the 2 preexisting haplotypes for the individual using a 
Hamming distance metric (100 for each haplotype). We run the method on 
chunks of 1,024 sites at a time, which is the default setting for SNPTools. As 
the preexisting haplotypes from each study do not contain exactly the same 
set of sites, we filled in missing alleles in the preexisting haplotypes from our 
site list using the major allele at each site.

Restricting the search space in this way allows us to reduce the number of 
burn-in iterations from 56 to 5, the number of sampling iterations from 200 
to 95, and the number of Metropolis–Hastings steps taken at each iteration 
for each individual from 2N to 100, where N is the number of samples being 
phased. This reduces the complexity of our phasing algorithm from O(N2) 
to O(N). Although our implementation of the Hamming distance search has 
complexity O(N2), for N = 30,000, the impact of the search on run time is small 
(~5% of run time on each chunk). A chunk of 1,024 sites can be phased in 
~200 min using ~1.3 GB of RAM. Once sample sizes are encountered where 
the Hamming distance search begins to dominate, our implementation could 
be replaced with O(N log N) clustering algorithms that we have implemented 
within the SHAPEIT3 algorithm12.

To illustrate how important GLPhase was to genotype calling and phasing 
on such a large sample size, we carried out a comparison to Beagle 3.1, Beagle 
4.1 and the original SNPTools method. We ran all four methods on five ran-
domly selected 1,024-site chunks from chromosome 20 on the cluster using 
increasing sample sizes and measured run time. Supplementary Figure 6  
shows that GLPhase is approximately 100 times faster than the next fastest 
method at the full HRC sample size. We did not compare the accuracy of the 
methods because GLPhase is the only method it is feasible to run on data sets 
large enough to make meaningful comparisons. It may well be the case that 
gains in accuracy can be made over GLPhase, and we plan to investigate this 
for future releases of the HRC panel.

Final phasing and haplotype estimation. We estimated haplotypes from 
GLPhase genotype calls using SHAPEIT3 (ref. 12). Chromosomes were phased in 
chunks consisting of 16,000 variants plus 3,300 variants overlapping with neigh-
boring chunks on either side. The non-default command line option -w 0.5 was  
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used for SHAPEIT3. Chunks were ligated using the hapfuse program (see 
URLs). SHAPEIT3 does not handle multiple variants at the same genomic 
coordinate, so multiallelic sites (SNPs with three or four alleles) were shifted 
by 1 or 2 bp for rephasing and then moved back to their original position 
after chunk ligation.

Evaluation of the genotype calling process. We tested the genotype calling 
process on data from chromosome 20 with different combinations of site lists 
and sample sets to assess both the effects of site filtering and the benefits of 
increasing sample size. We evaluated three different site lists: the 1000 Genomes 
Project Phase 3 set of sites (775,927), our HRC MAC5 site list (1,128,114) and 
our HRC MAC5 site list with additional site filtering (1,006,559). We ran the 
genotype calling method on three different sets of samples: the 2,525 original 
1000 Genomes Project Phase 3 samples, a subset of 13,309 HRC samples that 
we used at an early stage of HRC testing (HRC Pilot) from the 1000GP3, 
AMD, GoNL, GoT2D, ORCADES, SardinIA, FINLAND and UK10K studies, 
and the near-final full set of 32,905 HRC samples. We called genotypes using 
GLPhase on each of these nine data sets and examined genotype discordance 
as compared to Illumina Omni2.5M genotypes produced by the 1000 Genomes 
Project. For this comparison, we focused only on genotypes from 365 samples 
shared across the three sample sets and at 42,244 SNP sites. We calculated 
percentage discordance for the three possible genotypes consisting of reference 
and alternate alleles as well as an overall non-reference allele discordance rate. 
Results are shown in Supplementary Table 2.

Downstream imputation performance. We assessed the imputation accuracy 
of four different reference panels: 1000 Genomes Project Phase 3, UK10K and 
two versions of the HRC reference panel, with and without rephasing with 
SHAPEIT3. To do this, we used high-coverage whole-genome sequencing data 
made publicly available by CG (see URLs). For the pseudo-GWAS samples, we 
used data from ten CEU samples that also occur in the 1000 Genomes Project 
Phase 3 samples. These samples were removed from the various reference 
panels before using them to assess imputation performance.

Three pseudo-GWAS panels were created on the basis of three chip lists 
(see URLs): the Illumina Omni5M SNP array (HumanOmni5-4v1-1_A), 
the Illumina Omni1M SNP array (Human1M-Duo v3C) and the Illumina 
CoreExome SNP array (humancoreexome-12v1-1_a). For these comparisons, 
we only used sites in the intersection of the reference panels to enable direct 
comparison.

These pseudo-chip genotypes were used to impute the remaining genotypes, 
which were then compared to the held-out genotypes, stratifying results by 
MAF of the imputed sites.

Imputation was carried out using IMPUTE2 (ref. 7), which chooses a cus-
tom reference panel for each study individual for each 2-Mb segment of the 
genome. We set the khap parameter of IMPUTE2 to 1,000. All other parameters 
were set to default values. We stratified imputed variants into allele frequency 
bins and calculated the squared correlation between the imputed allele dos-
ages at variants in each bin and the masked CG genotypes (called aggregate 
R2 values in Fig. 1). The non-reference allele frequency for each SNP was 
calculated from HRC release 1 genotype likelihoods at sites with MAC ≥5. 

Figure 1 shows the results for the Illumina Omni1M chip. Supplementary 
Figures 3 and 4 show the results from the Illumina CoreExome chip and the 
Illumina Omni5M chip, respectively.

Details of imputation, association testing and replication in the InCHIANTI 
study. A total of 1,210 individuals from the InCHIANTI study were genotyped 
using the Illumina Infinium HumanHap550 genotyping array13,14. Individuals 
were prephased using autosomal SNPs after filtering out SNPs with MAF <1%, 
Hardy–Weinberg equilibrium P value <1 × 10−4 and missingness >1%. SNPs 
were also removed if they could not be remapped to the GRCh37 (hg19) 
human reference genome. This filtering resulted in 483,991 SNPs available 
for prephasing. Phasing was performed locally using SHAPEIT2 (ref. 10).

Imputation was performed remotely using the Michigan Imputation Server 
(see URLs). A total of 39,235,157 SNPs and 47,045,346 variants were imputed 
from the HRC and 1000 Genomes Project Phase 3 (v5) reference panels, 
respectively. An imputation quality threshold of R2 > 0.5 was subsequently 
applied to both imputation data sets before association testing. This resulted 
in 15,501,516 and 13,589,949 variants available for association analysis derived 
from HRC- and 1000 Genomes Project–based imputation, respectively.

Measures for a total of 93 circulating blood factors available in the 
InCHIANTI study were double inverse normalized, while adjusting for age and 
sex, before association testing14,15. Association analysis was performed using a 
linear mixed-model framework as implemented in GEMMA (see URLs). The 
association plots in Figure 2 were produced using LocusZoom (see URLs).

We attempted to replicate the associations reported in Supplementary Table 3  
in the SHIP and SHIP-TREND cohorts23. The SHIP samples were genotyped 
using Affymetrix Genome-Wide Human SNP Array 6.0. The SHIP-TREND 
samples were genotyped using the Illumina Human Omni2.5 array. Before 
imputation, duplicate samples (identified using identity by state), samples 
with mismatch between reported and genotyped sex, and samples with a very 
high heterozygosity rate were excluded. Additionally, all monomorphic SNPs, 
SNPs with duplicate chromosomal positions, SNPs with Hardy–Weinberg 
equilibrium P values <0.0001 and SNPs with call rates <95% were filtered 
out. Imputation was performed on the Sanger Imputation Service (see URLs) 
against the HRC panel. In total, 4,070 SHIP samples and 986 SHIP-TREND 
samples were included in genotype imputation. Association analyses were 
conducted using SNPTEST v2.5.2 (ref. 24). A subset of the phenotypes with 
new associations was also analyzed within the Avon Longitudinal Study of 
Parents and Children (ALSPAC). This included measures of magnesium and 
potassium in cord blood and measures of free thyroxine (FT4) and vitamin 
D both in children and pregnant women. These did not replicate (data not 
shown), although meta-analysis was not performed owing to high heterogene-
ity between samples.

22.	Wang, Y., Lu, J., Yu, J., Gibbs, R.A. & Yu, F. An integrative variant analysis pipeline 
for accurate genotype/haplotype inference in population NGS data. Genome Res. 
23, 833–842 (2013).

23.	Völzke, H. et al. Cohort profile: the study of health in Pomerania. Int. J. Epidemiol. 
40, 294–307 (2011).

24.	Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. 
Nat. Rev. Genet. 11, 499–511 (2010).
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