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Trans-ethnic analysis of metabochip data identifies two new
loci associated with BMI
J Gong1, KK Nishimura1, L Fernandez-Rhodes2, J Haessler1, S Bien1, M Graff2, U Lim3, Y Lu4,5,6, M Gross7, M Fornage8, S Yoneyama2,
CR Isasi9, P Buzkova10, M Daviglus11, D-Y Lin12, R Tao12, R Goodloe13, WS Bush14, E Farber-Eger13, J Boston13, HH Dilks15, G Ehret16,17,
CC Gu18, CE Lewis19, K-DH Nguyen16, R Cooper20, M Leppert21, MR Irvin22, EP Bottinger4, LR Wilkens3, CA Haiman23, L Park3,
KR Monroe23, I Cheng24, DO Stram23, CS Carlson1, R Jackson25, L Kuller26, D Houston27, C Kooperberg1, S Buyske28,29, LA Hindorff30,
DC Crawford13, RJF Loos4,5,31, L Le Marchand3, TC Matise28, KE North2 and U Peters1

OBJECTIVE: Body mass index (BMI) is commonly used to assess obesity, which is associated with numerous diseases and negative
health outcomes. BMI has been shown to be a heritable, polygenic trait, with close to 100 loci previously identified and replicated in
multiple populations. We aim to replicate known BMI loci and identify novel associations in a trans-ethnic study population.
SUBJECTS: Using eligible participants from the Population Architecture using Genomics and Epidemiology consortium, we
conducted a trans-ethnic meta-analysis of 102 514 African Americans, Hispanics, Asian/Native Hawaiian, Native Americans and
European Americans. Participants were genotyped on over 200 000 SNPs on the Illumina Metabochip custom array, or imputed into
the 1000 Genomes Project (Phase I). Linear regression of the natural log of BMI, adjusting for age, sex, study site (if applicable), and
ancestry principal components, was conducted for each race/ethnicity within each study cohort. Race/ethnicity-specific, and
combined meta-analyses used fixed-effects models.
RESULTS: We replicated 15 of 21 BMI loci included on the Metabochip, and identified two novel BMI loci at 1q41 (rs2820436) and
2q31.1 (rs10930502) at the Metabochip-wide significance threshold (Po2.5 × 10−7). Bioinformatic functional investigation of SNPs
at these loci suggests a possible impact on pathways that regulate metabolism and adipose tissue.
CONCLUSION: Conducting studies in genetically diverse populations continues to be a valuable strategy for replicating known loci
and uncovering novel BMI associations.
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INTRODUCTION
Obesity is a heritable risk factor for a large number of serious health
conditions.1–4 It already imposes an enormous burden on the public
health system and will continue to impact the cost of medical care
through the predicted rise in diseases linked to chronic obesity.5–7 In
US ethnicities, obesity rates vary in African Americans (36.2%),
Hispanics/Latinos (31.5%), Native Americans (41.2%), European
Americans (27.9%) and Asians (9.9%).8 Body mass index (BMI)
heritability studies estimate that up to 70% of BMI variability may
be attributed to genetic factors.9–11 Although this might suggest that
genetic traits contribute to racial/ethnic differences in rates of obesity,

the relative importance of genetics compared with diet, behavior and
socioeconomic factors is under continued investigation.12 However, it
is indisputable that many minority groups have been disproportio-
nately affected by the obesity epidemic and obesity research in
minorities must remain a public health priority.
Genome-wide association studies (GWAS) in European ancestry

populations have successfully identified numerous genetic var-
iants associated with BMI, firmly establishing the importance of
genetic factors on obesity.13–15 However, examining genetic
associations in minority groups may reveal previously unidentified
BMI loci and help to pinpoint causal variants. Conducting analyses
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in underrepresented minority populations has been shown to
improve the statistical power to detect novel loci by increasing
allele frequency and the variance of allele counts for some genetic
variants.16–18 A recent fine-mapping study in African Americans
benefitted from the lower linkage disequilibrium (LD) patterns
when identifying independent signals in known BMI loci, and also
found two novel loci, presumably aided by the gain in power
owing to the higher minor allele frequencies of these variants in
those with African genetic ancestry.16 GWAS restricted to minority
populations have had similar successes, uncovering additional BMI
loci previously unidentified in studies of exclusively European
ancestry.19–23 To date, the largest and most comprehensive BMI
GWAS included individuals of both European and non-European
descent, confirmed 41 known loci. and found 56 novel BMI-
associated loci.24 The results from these studies highlights the
feasibility and benefits of using diverse human populations as a
strategy to broaden our knowledge of BMI genetics.
To identify additional BMI loci, we leveraged the multiethnic

design of the Population Architecture using Genomics and
Epidemiology (PAGE) consortium to conduct a discovery meta-
analysis in up to 102 514 individuals. Using this approach, we
identified two novel BMI-associated loci, rs2820436 (1q41) and
rs10930502 (2q31.1).

MATERIALS AND METHODS
Study population
The PAGE consortium is funded by the National Human Genome Research
Institute to investigate the epidemiologic architecture of well-replicated
genetic variants associated with human diseases or traits.25 The PAGE-I
study, initiated in 2008, consists of a coordinating center and four
consortia, each with access to large, diverse population-based studies. The
four consortia are: Epidemiologic Architecture for Genes Linked to
Environment (EAGLE), which is based on data from Vanderbilt University
Medical Center's biorepository linked to de-identified electronic health
records (EAGLE-BioVU); the Multiethnic Cohort Study (MEC); the Women's
Health Initiative (WHI); and Causal Variants Across the Life Course (CALiCO),
a consortium of five cohort studies: the Atherosclerosis Risk in Commu-
nities (ARIC) study, Coronary Artery Risk Development in Young Adults
(CARDIA), the Cardiovascular Health Study (CHS), the Hispanic Community
Health Study/Study of Latinos (SOL) and the Strong Heart Study.25 The
PAGE-II study, initiated in 2013, added the Charles Bronfman Institute for
Personalized Medicine at Mount Sinai Medical Center, BioMe BioBank
(MSSM). For specific analyses in this paper, PAGE reached out to additional
studies, including GenNet and the Hypertension Genetic Epidemiology
Network (HyperGen) to increase the African American sample size. The
Supporting Information includes detailed descriptions of each study.
African American, Hispanic, Asian/Native Hawaiian, Native American and

European participants from the ARIC, EAGLE-BioVU, CHS, CARDIA, MEC,
MSSM, SOL, WHI, GenNet and HyperGen were eligible for inclusion in this
study (Supplementary Table S1). Race/ethnicity was self-reported in most
studies except for EAGLE-BioVU, where race/ethnicity was administratively-
reported and recorded in the electronic health record.26,27 All studies were
approved by Institutional Review Boards at their respective sites, and all
study participants save EAGLE-BioVU provided informed consent. The
Vanderbilt University Internal Review Board has determined that data
contained within EAGLE-BioVU are considered limited data sets as defined
by the Health Insurance Portability and Accountability Act (HIPAA) and are
in accordance with provisions of Title 45, Code of Federal Regulations, part
46 (45 CFR 46) that define criteria for 'non-human subjects' research.
The final sample of minorities from PAGE included 35,606 African

American, 26 048 Hispanic/Latino, 22 466 Asian/Native Hawaiian, 17 859
European American and 535 Native American participants (Supplementary
Table S1).

Anthropometric measurements
BMI was calculated by taking the ratio of the weight (kg) and height
squared (m2). For ARIC, CHS, CARDIA, HyperGEN, GenNet and WHI, BMI was
calculated from height and weight measured at the time of study
enrollment. In EAGLE-BioVU and MSSM, the median height and weight was
calculated across all complete medical histories. MEC used self-reported

height and weight. A validation study within MEC was conducted to assess
the validity of these measures and showed that self-reported BMI was
sometimes underestimated, but the difference was small (o1 BMI unit)
compared to the findings from national surveys.28 To reduce the influence
of outliers on the analysis, individuals who were underweight
(BMIo18.5 kg m− 2) and extremely overweight (BMI470 kg m− 2) were
excluded, and BMI values were natural log transformed to correct for the
right-skewed distribution of BMI.

Genotyping and imputation
Genotyping was performed using the Metabochip, whose design has been
described elsewhere.29 In brief, the Metabochip is a custom Illumina iSelect
genotyping array of ~ 200 000 SNP markers and was designed to cost-
effectively analyze putative association signals identified through GWAS
meta-analyses of many obesity-related metabolic and cardiovascular traits.
Imputation of Metabochip SNPs was conducted in MEC African Americans
and Hispanics, MSSM African Americans and Hispanics, and WHI African
Americans (SHARe) and Europeans. Study-specific reference samples,30 or
reference samples from 1000 Genomes Phase I31 were used. The programs
MaCH and minimac were used for phasing and imputation,
respectively.32–34 A summary of genotyping and imputation performance
for each participating study has been published previously35 and
reproduced in Supplementary Table S2.
Within each race/ethnicity, related participants were identified within

and between studies using PLINK.36 Identity by descent was estimated and
when apparent first-degree relative pairs were identified, the member with
the lower call rate was excluded from further analyses, with the exception
of GenNet, SOL and HyperGen. These studies accounted for family
structure using linear mixed models (GenNet, HyperGen) or with general-
ized estimated equations which incorporate clusters of first-degree relative
pairs/household members (SOL).37 In the remaining studies, participants
with an inbreeding coefficient F40.15 were excluded. Ancestry principal
components were generated using the Eigensoft software38,39 using either
an unrelated subset, or in the 1000 Genomes reference populations, which
were then projected into the study sample. Ancestral outliers were
excluded from further analyses, as described previously.40 Additional
information is included in the Supporting Information.
A total of 88 505 individuals were genotyped with the Metabochip, and

an additional 14 009 with GWAS data were imputed into the 1000
Genomes Project31 or study-specific reference samples.30 For individuals
with imputed data, only the Metabochip genetic variants were examined.
Genotype data were cleaned by standard quality control procedures as
described in the Supporting Information.

Analysis
As has been done in previous publications,16,41 BMI values were natural log
transformed to account for the right-skewed distribution. Extreme BMI
values o18.5 kg m−2 or 470 kg m− 2 were excluded from the analysis,
with the assumption that these outliers could be attributable to data
coding errors or an underlying rare condition outside the scope of this
investigation. Given that CARDIA participants were generally younger, and
young adults may have naturally low BMI measurements, the 18.5 kg m− 2

exclusion criteria was waived for this cohort. The analyses were restricted
to adults 20 years or older.
The population was stratified by study and self-identified race/ethnicity,

with each subgroup analyzed separately. Multivariable linear regressions
for each study-specific minority group were adjusted for age, sex, study
site (if applicable) and ancestry principal components (Supplementary
Table S2). A sex × age interaction term was included in all models (except
WHI, which only includes women) to account for possible effect
modification by sex. The sex × age interaction term was intended to
account for potential sex-specific effects on BMI that vary by sex and age,
given that obesity risk and body composition are known to vary by age,
and our study population includes both elderly participants and young
adults older than 20 years of age. The results from each ethnicity, and for
all ethnicities combined, were meta-analyzed using an inverse-variance
weighted fixed-effects model in METAL.42 No inflation was observed in this
meta-analysis (inflation factor λ= 0.97).
The SNP with the smallest P-value within a locus was considered the

lead SNP. BMI associations were considered statistically significant if the
P-value surpassed the Bonferroni corrected threshold of significance
(Po2.5 × 10− 7), correcting for ~ 200 000 SNPs included on the Metabochip
array. The locus was considered novel if the lead SNP was not in LD
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(r2o0.1 in any 1000 Genomes population) with a previously published
known BMI loci. The list of known BMI loci was obtained by extracting
records from the GWAS Catalog of the National Human Genome Research
Institute (http://www.ebi.ac.uk/gwas/, accessed 26 April 2016) and through
a literature search (April 2017) identifying publications based on high-
throughput genotyping arrays that are not genome-wide (and thus,
excluded from the GWAS Catalog),16 BMI studies examining GxE
associations,43,44 and internal publications from collaborators that we
expect to be published within the next year (Turcot V, in progress).
Bioinformatic functional follow-up was performed for the most significant
index SNP and all SNPs in high LD with the index SNP (r2⩾ 0.8 in African
1000 Genomes Population). HaploReg v445 and the UCSC Genome Browser
from the Roadmap epigenomics project were used to assess whether
variants in each of these loci were positioned in a putative enhancer or
promoter specific to adipose tissue. GTEx expression data were also used
to assess whether any of the loci overlapped eQTL results.

RESULTS
The Metabochip array contains high density genetic variants at 21
previously published GWAS-identified BMI loci. We first assessed
these known loci to evaluate the reproducibility of these loci in a
multiethnic study population. Our study confirmed 15 of the 21
previously known BMI loci, significant at Po5.8 × 10−5, an
approximate Bonferroni multiple testing correction for the
average 866 SNPs at each BMI locus (Supplementary Table S3).
Among the Metabochip previously known BMI loci that failed to
replicate, the meta-analysis p-values approached significance, with
most in the 10− 4 range.
When we examined the remaining Metabochip content, we

found an additional 14 loci associated with BMI, which achieved a
Metabochip-wide significance level of Po2.5 × 10−7, correcting
for ~ 200 000 SNPs on the Metabochip array (Supplementary
Table S4). Eleven of these loci (or SNPs in high LD, r240.8, with
these loci) were in LD (r240.1 in any 1000 Genomes population)
with BMI loci previously identified since the development of the
Metabochip.14,21–24,46–49 A twelfth SNP (rs11927381) no longer
achieved Metabochip-wide significance after conditioning on a
nearby SNP (rs1516725) that had previously been associated with
BMI.24 Thus, we discovered two novel BMI-associated loci: 1q41
(rs2820436) and 2q31.1 (rs10930502) (Table 1). No evidence of
heterogeneity was observed across studies at these two loci, with
Cochran’s Q heterogeneity p-values of 0.65 and 0.94, for
rs2820436 and rs10930502, respectively (Table 1, Figure 1).
The minor allele frequencies of these SNPs differed across the

different ethnic groups (Table 1). rs2820436 was most frequent
among PAGE African Americans (CAF = 0.48), and least frequent in
Asians (CAF = 0.20), with the strongest association seen in the
African Americans (P= 8.34E-04) and Hispanic/Latinos (P= 1.61E-
-04). Although rs10930502 was also most frequent among African

Americans (CAF= 0.70) and European Americans (CAF = 0.70), and
least frequent among Asians (CAF = 0.33), the association was
strongest among the Asians (P= 1.45E-03) and European Amer-
icans (P= 8.89E-03). Generally, the observed allele frequencies in
our own study population were similar to those from the same
ethnic groups in the 1000 Genomes populations. Both of these
SNPs were analyzed in the most recent and largest BMI GWAS
study to date (P(rs2820436) = 1.02E-02; P(rs10930502) = 2.91E-04),24 and
were directionally consistent with our own results, providing
additional support for these variants.
The variant rs10930502 was included on the Metabochip to

follow-up on significant and suggestive signals from the largest
available GWAS meta-analysis on BMI, whereas rs2820436 was
included on the array for fine-mapping regions associated with
waist-to-hip ratio (WHR). Given that rs2820436 was included on
the Metabochip due to its previously published association with a
non-BMI trait, we evaluated whether the associations with BMI
were independent using individuals where WHR data were
available (n= 53 481). When the association between rs2820436
and BMI was adjusted by WHR, the overall association did not
noticeably change. Conversely, when the association between
rs2820436 and WHR was examined, adjusting for BMI, this P-value
also achieved Metabochip-wide Bonferroni significance (P= 3.09
E-10). These findings suggest that this loci may influence multiple
phenotypes related to body composition.
Functional investigation of the SNPs supports their likely

involvement in lipid metabolism. We found that rs2820436
strongly tagged (r2 = 0.94 in 1000 Genomes Phase I Africans) a
putative enhancer variant, rs2605096, positioned in an eQTL for
the gene lysophospholipase-like 1 (LYPLAL1) previously associated
with adiponectin,50 adiposity,51 cholesterol, T2D and WHR.52

Although rs10930502 was positioned in an eQTL for a lincRNA
in adipose tissue, it did not strongly tag a putative regulatory
variant. However, it was in moderate LD (r2 = 0.48, D’= 0.85 in 1000
Genomes Phase I Africans) with variant rs34636594 at 2q31.1,
which was positioned in a transcription factor-binding enhancer in
adipose tissue. LincRNAs are highly tissue specific and typically co-
expressed with neighboring genes and thus we hypothesize that
the 2q31.1 association may exert its effects on the candidate gene
SLC25A12, through regulation of lincRNA.

DISCUSSION
This trans-ethnic meta-analysis replicated 15 of 21 previously
known BMI loci included on the Metabochip. Of the six loci that
did not reach statistical significance in our own study, two of these
had lead SNPs that were very rare, with CAFo0.01 in 1000
Genomes populations and PAGE racial/ethnic subgroups. As most

Table 1. Novel BMI-associated loci

Metabochip Loci Chr:BP Gene A1/A2 Population N CAF Beta s.e. P-value HetP

rs2820436 (1q41) 1:219640680 LYPLAL1/ZC3H11B A/C Combined 94255 0.3876 0.0049 0.0009 3.79E-08 0.65
AA 35606 0.4782 0.0051 0.0015 8.34E-04 NA
HA 26046 0.4395 0.0062 0.0017 1.61E-04 NA
AS 14210 0.1952 0.0021 0.0021 3.20E-01 NA
EA 17859 0.3446 0.0024 0.0132 8.56E-01 NA
NA 534 0.3446 0.0024 0.0132 8.56E-01 NA

rs10930502 (2q31.1) 2:172890588 METAP1D A/G Combined 94256 0.6794 0.0048 0.0009 1.35E-07 0.94
AA 35599 0.7000 0.004 0.0017 1.70E-02 NA
HA 26043 0.6555 0.0043 0.0018 1.40E-02 NA
AS 14220 0.3327 0.0056 0.0018 1.45E-03 NA
EA 17859 0.6971 0.0056 0.0021 8.89E-03 NA
NA 535 0.6794 0.0102 0.0137 4.56E-01 NA

Abbreviations: A1, coded allele; A2, non-coded allele; AA, African American; AS, Asian; BP, base pair position hg19/GRCh37; CAF, coded allele frequency; Chr,
chromosome; EA, European American; HA, Hispanic American; HetP, heterogeneity P-value; NA, Native American; StdErr, Standard Error.
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of these loci were originally discovered in GWAS studies with
much larger sample sizes,13–15,24,53–55 our smaller study was likely
insufficiently powered to replicate the rarer variants (Supporting
Information). Other loci that we failed to replicate had lead SNPs
that were more frequent in Europeans than in non-Europeans.
Given that only 17% of our study sample consisted of those with
European ancestry, insufficient power may also have contributed
to our inability to replicate some of these loci, especially if these
were European-specific associations.
Interestingly, both of the novel loci we identified, rs2820436

(1q41) and rs10930502 (2q31.1), are common in those with
European ancestry, with a frequency of 0.68 and 0.31 in 1000
Genomes Europeans, respectively. Previous large, European-based
BMI GWAS studies may have failed to detect these associations
due to population-specific GxG interactions, or GxE interactions
linked to cultural, socioeconomic, or behavior risk factors, resulting
in a more pronounced effect on BMI in minority groups compared
with Europeans. For both novel SNPs reported here, the largest
betas in our study occurred in a non-European subgroup,
suggesting that the genotypes might have a greater effect on
BMI among non-Europeans (Supplementary Table S5). Should
non-European population-specific effects exist, our large sample
of minority subjects may have yielded more power to detect those
associations compared to previous GWAS studies that may have
been underpowered to detect population-specific effects related
to a certain minority group.
Another possible explanation for why these associations were

not detected in previous GWAS efforts is that these SNPs may be a
poor proxy for the underlying causal SNP in European populations,
but are a better proxy for the causal SNP in non-European
populations. LD patterns are known to differ by genetic ancestry. It
is possible that these SNPs are in poor LD with the causal SNP in

those with European ancestry, but in high LD with the causal SNPs
in those with non-European ancestry. This would cause the
association to be weaker or non-significant in Europeans owing to
exposure misclassification, where the tag SNP is an inaccurate
indicator for the presence of the causal SNP. Given that the
Metabochip was designed to facilitate fine-mapping in non-
Europeans, it is not surprising that some of the Metabochip tag
SNPs may perform better at estimating causal genotype-
phenotype associations in a predominantly non-European study
population.
Our findings demonstrate the value of conducting GWAS in

non-European populations, both when replicating findings pre-
viously discovered in large, often European-centric GWAS, and for
discovering novel associations which may be population-specific,
or have stronger effects in those with non-European ancestry.
Finally, the functional findings provide additional evidence for the
biological relevance of these new loci in the BMI phenotype,
which warrant further investigation. Although these results are
intriguing, additional replication is needed, especially using study
populations that include underrepresented individuals. Both of
these SNPs are most frequent in those with African ancestry, and
our association in rs10930502 appears to be the strong in those
with Asian ancestry.
Many genetic studies of BMI with larger sample sizes have been

published and comparatively, we were underpowered to detect
and replicate weaker associations, especially in less-frequent
variants. It is possible that additional novel, or population-
specific loci may be found in a larger, trans-ethnic study
population. However, we assembled one of the largest and most
diverse non-European study populations and were still able to
confirm 15 of the 21 known BMI loci included on the Metabochip.
Although the Metabochip was designed to replicate and fine-map

Figure 1. Combined and study-specific associations in novel BMI-associated loci. AA=African American, HA=Hispanic American, PI= Pacific
Islander, ARIC=Atherosclerosis Risk in Communities Study, WHI=Women’s Health Initiative, MEC=Multiethnic Cohort, CHS=Cardiovascular
Health Study, SHARe=WHI SNP Health Association Resource, GenNET=GenNet study, HyperGEN=Hypertension Genetic Epidemiology
Network, CARDIA=Coronary Artery Risk Development in Young Adults study, EAG-BioVUE= Epidemiologic Architecture for Genes Linked to
Environment accessing Vanderbilt University Medical Center BioVU, MSSM= The Charles Bronfman Institute for Personalized Medicine at
Mount Sinai Medical Center, BioMe BioBank, SOL= The Hispanic Community Health Study / Study of Latinos.
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loci known to be associated with 23 disease-related traits, its
content is not genome-wide and non-Metabochip loci were not
evaluated in this study. Yet, the inclusion of strong and well-
established metabolically-related loci allowed us to identify a
potential pleiotropic association with WHR. Studies that replicate
our findings are advised to isolate the association that contributes
specifically to BMI, given that our associations with BMI remain
significant after adjusting for WHR. Through accompanying
research efforts, we will benefit from the Metabochip’s increased
marker density to fine-map these associations and further
describe the relationship between these loci, BMI and related
phenotypes.35

Certainly, there are challenges associated with multiethnic
genetic studies, but there are also legitimate benefits, which may
help explain more of the BMI heritability. The dearth of studies
that include underrepresented populations only sustains dispa-
rities in genetic research, inhibits our ability to identify population-
specific genetic risk factors, and hinders the development and
application of genetic findings in real-world clinical settings.56–58

Our findings are promising and perhaps more importantly,
demonstrate the need to conduct additional genetic studies of
complex traits in non-European individuals.
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