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Multiancestry genome-wide association study 
of 520,000 subjects identifies 32 loci associated 
with stroke and stroke subtypes

Full list of authors and affiliations appear at the end of the paper.

Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry 
genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new 
stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood 
pressure, cardiac traits, and venous thromboembolism, at individual loci (n =​ 18), and using genetic risk scores and linkage- 
disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke sub-
types. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization  
of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci 
were significantly enriched in drug targets for antithrombotic therapy.

Stroke is the second leading cause of death and disability-
adjusted life years worldwide1,2. Characterized by a neuro-
logical deficit of sudden onset, stroke is primarily caused by 

brain infarction (ischemic stroke) and, less often, by intracerebral 
hemorrhage (ICH). Common etiological subtypes of ischemic 
stroke include large-artery atherosclerotic stroke (LAS), cardio-
embolic stroke (CES), and stroke caused by small-vessel disease 
(small-vessel stroke (SVS)), which is also the leading cause of ICH. 
Previous genome-wide association studies (GWAS) in predomi-
nantly European-ancestry groups have identified ten loci robustly 
associated with stroke3–12. In most instances, the associations with 
stroke were attributed to individual subtypes of ischemic stroke, 
such as LAS5,8,9, CES3,4, and SVS10,12, or of ICH6, although some loci 
were associated with two or more stroke subtypes7,9,11,13 or with any 
stroke10. We hypothesized that combining a substantially larger 
sample size with a transancestral analytic approach would identify 
additional risk loci and improve fine mapping of causal variants. 
Hence, we combined all available stroke samples with published 
or unpublished GWAS data, including samples of non-European 
ancestry that were underrepresented in previous GWAS. We further 
hypothesized that stroke shares genetic influences with vascular risk 
factors, intermediate phenotypes for stroke (for example, carotid 
artery plaque (cPL)), and related phenotypes (for example, coronary 
artery disease (CAD)) and that a systematic approach to identify 
genetic influences shared among these traits would provide insights 
into stroke pathophysiology.

Results
We tested ~8 million SNPs and indels with minor-allele frequency 
(MAF) ≥​0.01 in up to 67,162 stroke cases and 454,450 controls for 
association with stroke. One analysis involved European participants 
only (40,585 cases; 406,111 controls), and a second involved par-
ticipants of European, East Asian (17,369; 28,195), African (5,541; 
15,154), South Asian (2,437; 6,707), mixed Asian (365; 333), and Latin 
American (865; 692) ancestry (Fig. 1). Participants were drawn from 
29 studies with genome-wide genotypes imputed to 1000 Genomes 
Project (1000G) phase 1v3 or similar14 (MEGASTROKE consortium; 
Supplementary Note and Supplementary Tables 1 and 2). Ancestry-
specific meta-analyses and subsequent fixed-effects transancestral 
meta-analyses and MANTRA transancestral meta-analyses were 

conducted15. Analyses were performed for any stroke (AS), compris-
ing ischemic stroke, ICH, and stroke of unknown or undetermined 
type (n =​ 67,162); any ischemic stroke (AIS) regardless of subtype 
(n =​ 60,341); and ischemic stroke subtypes (LAS, n =​ 6,688; CES, 
n =​ 9,006; SVS, n =​ 11,710).

New genome-wide-significant stroke loci. We identified 32 
genome-wide significant loci, 22 of which were novel (Table 1, Fig. 2, 
Supplementary Tables  3 and 4, and Supplementary Figs.  1–7). Of 
the 22 novel loci, 18 were identified by transancestral meta-analyses 
(fixed-effects P <​5.0 ×​ 10−8 or MANTRA log10(Bayes factor (BF)) >​6)  
(Fig.  2 and Supplementary Figs.  1–5), and the remaining four loci 
were identified by the ancestry-specific meta-analysis in European 
samples (fixed-effects P <​5.0 ×​ 10−8) (Fig.  2 and Supplementary 
Figs.  1–5). Apart from two novel loci with a MAF between 0.01 
and 0.05 and large effect-size estimates (odds ratios (ORs) of 2.33 
and 1.95), the remaining 20 novel loci contained common vari-
ants (MAF 0.16–0.48) with observed ORs between 1.05 and 1.20 
(Table  1). Comparison of the 32 loci across Europeans and East 
Asians, the two largest ancestral subgroups, demonstrated significant 
correlations of risk-allele frequencies and ORs between populations 
(Supplementary Fig.  8), although six loci exhibited population-
specific association (defined as P <​5.0 ×​ 10−8 in Europeans and  
P >​0.05 in East Asians or MAF in East Asians <​0.01) (Supplementary 
Table 5). Estimates for the phenotypic variance explained by the 32 
lead variants ranged between 0.6% and 1.8% (Supplementary Table 6).

Gene-based tests using VEGAS2 (ref. 16) (Supplementary Fig. 9) 
confirmed the loci identified by the GWAS analyses above and 
yielded a novel significant (P <​2.02 ×​ 10−6, Bonferroni corrected for 
the number of genes) association of the neighboring genes ICA1L 
and WDR12 with SVS (Supplementary Table 7 and Supplementary 
Figs.  9 and 10). Prior studies have demonstrated that variants in 
this region are associated with white-matter hyperintensity (WMH) 
burden17, a brain magnetic resonance imaging marker of small- 
vessel disease (SVD).

Twenty-one additional loci met a less stringent threshold for sug-
gestive evidence of association (log10(BF) >​5.0 or P <​1.0 ×​ 10−6 in 
the transancestral fixed-effects analysis) (Supplementary Table 8), 
including three loci previously implicated in Mendelian stroke 
(HTRA1, COL4A1, and COL4A2)18–21.
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Associations with etiological stroke subtypes. Genome-wide 
significance was reached for 18 loci (12 novel) for AS, 20 (12 
novel) for AIS, 6 (3 novel) for LAS, 4 (2 novel) for CES, and 2 
(ICA1L–WDR12 novel, discovered in gene-based tests) for SVS 
(Fig.  2, Table  1, and Supplementary Figs.  1–5 and 10). Several 
loci reaching genome-wide significance for one of the ischemic 
stroke subtypes were also genome-wide significant for AIS or AS, 
whereas none reached genome-wide significance for multiple 
ischemic stroke subtypes (Fig.  2 and Supplementary Table  9). 
For some novel loci, the association was strictly confined to a 
single subtype (P >​0.5 for other stroke subtypes): EDNRA and 
LINC01492 showed association with LAS only, thus suggesting 
mechanisms limited to atherosclerosis, and NKX2-5 showed asso-
ciation with CES only, thus suggesting that the association may be 
primarily mediated by cardioembolism. We also found subtype 
specificity for previously described loci (TSPAN2 for LAS and 
PITX2 for CES). We further investigated shared genetic influences 
of individual loci on different stroke subtypes by using gwas-pw 
analyses22, which estimate the posterior probability that a speci-
fied genomic region influences two different traits. By applying 
a posterior-probability cutoff of 90% for shared contribution at a 
given locus (model 3), we found shared genetic influence between 
LAS and SVS at SH2B3, and between LAS and CES at ABO 
(Supplementary Table 10 and Supplementary Fig. 11).

Conditional analysis to identify independent signals within loci. 
When conditioning all SNPs in a ±​0.5-Mb window on the lead SNPs 
in the Europeans-only analysis, we found two additional indepen-
dent genome-wide signals at the PITX2 locus for CES, in agreement 
with known multiple independent loci at PITX2 for atrial fibrilla-
tion (AF)23, thus suggesting that a similar genetic architecture at 
this locus influences both conditions (Supplementary Fig.  12). 
We  further found suggestive independent signals at MMP12, 
SH2B3, and HDAC9–TWIST1 that did not reach genome-wide 
significance (Supplementary Table 11).

Association of individual stroke risk variants with related 
vascular traits. Several of our loci are in the genomic vicinity of 
established risk loci for vascular risk factors (for example, blood 
pressure (BP)), and related vascular phenotypes affecting the heart 
(for example, CAD), vasculature (for example, carotid intima media 
thickness (cIMT)), or the brain (WMH). To systematically explore 
the genetic overlap between stroke and these traits, we surveyed 
published GWAS for BP, blood lipids, type 2 diabetes (T2D), cIMT, 
cPL, AF, venous thromboembolism (VTE), CAD, and WMH, 
assembled through the IGEN-BP24, ENGAGE25, DIAGRAM26, 
CHARGE27,28, AFGen29, INVENT30, and CARDIoGRAMplusC4D31 
consortia (Supplementary Table  12). When constructing sets of 
index SNPs of the nonstroke phenotypes (Bonferroni-adjusted  
P <​1.3 ×​ 10−4 =​ 0.05/32 loci/12 related vascular traits) and SNPs in 
high linkage disequilibrium (LD) (r2 >​0.9 in the 1000G European-
ancestry dataset (EUR)) with those index variants, 17 of the 32 
stroke lead variants showed overlap with these sets (Fig.  3 and 
Supplementary Table 13). Fourteen loci reached genome-wide sig-
nificance (P <​5.0 ×​ 10−8) for association with one or more of the 
following phenotypes: BP (five loci), CAD (five loci), AF (two loci), 
VTE (two loci), low-density liproprotein (LDL) cholesterol (two 
loci), cPL (one locus), and WMH (one locus). Among the 21 addi-
tional subthreshold loci for stroke (Supplementary Table 8), six loci 
have previously been associated with related vascular traits, includ-
ing AF (PRRX and CAV1–CAV2)32, VTE (F11)30, CAD (SWAP70 
and LPA)31, blood lipids (LPA)31, and WMH (ICA1L–WDR12)28.

Association of genetic risk scores of related vascular traits. 
Second, we generated weighted genetic risk scores (wGRS) for VTE, 
BP-related traits, blood lipids, T2D, and CAD by using the lead SNPs 

from published GWAS and tested these wGRS for association with 
each stroke phenotype, implementing the inverse-variance weight-
ing approach (Methods and Supplementary Table 14). We found sig-
nificant associations (P <​5.6 ×​ 10−3, correcting for nine independent 
phenotypes; Methods) with wGRS for all traits examined, except for 
triglyceride and LDL-cholesterol levels, and observed clear differ-
ences between stroke subtypes (Fig.  4). The  strongest association 
was between the wGRS for CAD and LAS, in agreement with shared 
pathophysiology through atherosclerosis. We further found asso-
ciations of all stroke subtypes with wGRS for BP traits. The wGRS 
for VTE was significantly associated with both LAS and CES (all 
P <​1.0 ×​ 10−4) but not SVS. The wGRS for high-density lipoprotein 
(HDL) cholesterol showed a significant inverse association with SVS.

In the present setting, the wGRS analysis was used primarily to 
explore the genetic overlap with related vascular traits rather than 
as a tool for establishing causal inference. In sensitivity analyses, we 
conducted an MR–Egger regression to explore whether any of the 
significant associations between vascular wGRS and stroke might 
be partly driven by directional pleiotropy. There was no indication 
of directional pleiotropy except for the association between the SBP 
wGRS and AS (MR–Egger intercept estimate P =​ 0.015), which was 
no longer significant after removal of 6 of 37 SNPs appearing as 
outliers from the leave-one-out analysis (Methods), thus leading to 
causal estimates in broad agreement across regression techniques 
(Supplementary Table 15).

Shared genetic contribution to stroke and related vascular traits 
genome wide. Third, we applied LD-score regression to quan-
tify the extent of shared genetic contributions between traits at a 
genome-wide level33,34. Using available GWAS results from individ-
uals of European ancestry, we found significant positive correlations 
(rg >​0; P <​5.6 ×​ 10−3, correcting for nine independent phenotypes), 
mostly corroborating the wGRS results (Fig. 4 and Supplementary 
Table 16). In addition, we found significant genetic overlap between 
triglyceride levels and AIS, and similar results were obtained in 
available GWAS datasets from individuals of East Asian ancestry 
(Supplementary Table 16). The results did not substantially change 
after removal of genome-wide signals for stroke and related vascular 
traits and their proxies (r2 ≥​0.8 in 1000G EUR).

Global epigenetic patterns at the 32 stroke risk loci. To test for 
cell-specific enrichment in chromatin marks that were previously 
shown to be phenotypically cell-type specific in the Encyclopedia 
of DNA Elements (ENCODE)/RoadMap (histone H3 modifications 
H3K4me1, H3K4me3, and H3K9ac)35, we implemented the epigwas 
tool35 and the narrow peak information from the latest RoadMap 
dataset (127 tissues)36. Epigwas estimates the enrichment score (ratio 
of the height of the nearest narrow peak to the distance to the peak) 
for the lead variant and proxies (r2 ≥​0.8 in the 1000G cosmopolitan 
panel) and calculates statistical significance by examining the rela-
tive proximity and specificity of the test SNP set with 10,000 sets of 
matched background. The analysis showed significant enrichment of 
enhancer and promoter sites (marked by H3K4me1 and H3K4me3) 
in mesenchymal stem cells, embryonic stem cells, epithelial cells, and 
blood and T cells, and of active promoters (marked by H3K9ac) in 
embryonic stem cells and digestive tissue (Supplementary Table 17).

Pathway analyses. To identify pathways overrepresented in the stroke 
association results, we used the DEPICT gene-set enrichment tool37, 
using all SNPs with log10(BF) >​5 for the respective stroke subtype. We 
found three gene sets to be significantly (false discovery rate (FDR) 
<​5%) associated with AS: enlarged heart, decreased cardiac muscle 
contractility, and oxaloacetate metabolic process (Supplementary 
Table 18). Next, we used Ingenuity Pathway Analysis (IPA; URLs), 
examining genes within the 53 stroke loci with log10(BF) >​5. The 
extended gene list (r2 >​0.5 in 1000G Europeans or East Asians, or 
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located within 50 kb of the lead SNP) consisted of 214 genes. We 
found the coagulation system to be the most significant canoni-
cal pathway, followed by cardiomyocyte differentiation via bone-
morphogenetic-protein receptors (FDR of 5%) (Supplementary 
Table 19). Finally, we tested enrichment of VEGAS2-derived gene-
based P values in expert-curated and computationally predicted 
Biosystem gene sets38, adapting VEGAS2Pathway39, and identified 
significant association with 18 pathways, including various cardiac 
pathways, muscle-cell fate commitment, and nitric oxide metabolic 
process with CES (FDR of 5%) (Supplementary Table 20).

Fine mapping derived from credible SNP-set analyses. To 
decrease the number of candidate variants per locus to the most 
noteworthy associations, we constructed 95% credible SNP sets 
for each of the 32 loci (lead SNP and proxy SNPs r2 >​0.1 in 1000G 
panels), assuming one causal SNP per locus and uniform pri-
ors40. Credible SNP sets were generated in all stroke phenotypes 
and for European, East Asian, and African ancestries separately. 
We found a marked decrease in credible SNP sets for most loci, 
a result expectedly most pronounced for the phenotype show-
ing the strongest association signal (Supplementary Table  21). 
The greatest refinement was observed at RGS7, HDAC9–TWIST1, 
and SH2B3, where the lead SNP was the only SNP contained 
in the  95% credible set for the stroke phenotype showing the 
strongest association.

Stroke loci with nonsynonymous or predicted deleterious vari-
ants. To determine SNPs with protein-altering effects, we anno-
tated all SNPs by using ANNOVAR41. Of the 32 lead SNPs, three 
were exonic, of which two were nonsynonymous: rs3184504 
(p.Arg262Trp) in SH2B3 and rs1052053 (p.Gln75Arg) in PMF1. 
SH2B3 p.Arg262Trp is a loss-of function variant that leads to 
expansion of hematopoietic stem cells and enhanced megakaryo-
poiesis in humans42. Both variants are predicted to be benign or 
tolerated by PolyPhen43 and SIFT44. In addition, we identified a 
proxy SNP (r2 =​ 0.99 in 1000G EUR) for another lead SNP that was 

nonsynonymous, rs6050 (p.Thr331Ala) in FGA, also predicted to 
be benign or tolerated.

Investigation of eQTLs, meQTLs, and pQTLs in different tis-
sues. To determine whether stroke risk SNPs influenced the cis 
regulation of nearby genes, we interrogated genome-wide quan-
titative information  (expression quantitative trait loci (eQTLs), 
methylation quantitative trait loci (meQTLs), and protein- 
expression quantitative trait loci (pQTLs)) in extensive publicly 
and nonpublicly available datasets. These datasets encompass 
numerous tissues and cell types, including cardiac, vascular, 
and brain tissue; circulating cells; and vascular endothelial cells 
(Methods). These comprised the following: for eQTLs, GTEx 
V6 (ref. 45), an expanded version of GRASP2 (refs 46,47), HGVD48, 
BIOS49, Blueprint epigenome project (subset)50, STARNET51, 
and the human aortic endothelial cell study52; for meQTLs, the 
Blueprint epigenome project (subset)50 and the ARIC cohort53; 
and for pQTLs, the KORA cohort54. Only cis eQTLs, meQTLs, and 
pQTLs were considered.

We found that in 18 of the 32 stroke risk loci, the lead stroke risk 
variant either overlapped or was in moderate to high LD (r2 >​0.8)  
with the most significant QTL variant for a nearby gene in at least 
one tissue or cell type (Supplementary Tables  22 and 23). For 
seven loci, we observed association of the lead SNP and proxies 
with expression of a single gene (or methylation or protein level), 
sometimes the nearest gene (LRCH1, CDK6, CDKN2B, PRPF8, and 
MMP12), and sometimes a more distant nearby gene (ZCCHC14 
for the ZCCHC14 locus, and TWIST1 for the HDAC9–TWIST1 
locus), within the datasets explored. Associations were found pri-
marily in stroke-relevant tissues and cell types, including vascular 
tissues, aortic endothelial cells, brain, blood, and immune cells. 
In most instances (11 loci, 61.1%), the risk SNP affected expression 
of multiple genes, thus suggesting that at individual loci, pleiotro-
pic mechanisms, which might differ according to tissue/cell type, 
may in some instances influence stroke susceptibility55,56. For several 
of these loci, there was a clear predominance of eQTL associations 

AFR
5 studies

5,541/15,154

EUR
17 studies

40,585/406,111

EAS
2 studies

17,369/28,195

SAS
3 studies

2,437/6,707

ASN
1 study
365/333

LAT
1 study
865/692

Central QC: –5 < β < 5; Imp > 0.5; MAF > 0.01; EAC/study > 10

Transancestral meta-analysis

22 new stroke-associated loci identified

 FE meta-analysis:
P < 5 × 10–8; Phet < 5 × 10–8 

MANTRA:
log10(BF) > 6 & PPhet < 0.95

Ancestry-specific FE meta-analysis*
AS, AIS, LAS, CES, SVS

29 studies = 67,162 cases/454,450 controls
~8 M variants imputed using 1000G or UK10K/HRC

Fig. 1 | MEGASTROKE study design. Variants were retained that passed central quality control (QC) criteria (Methods). The numbers of cases and 
controls are listed for each ancestry group. HRC, Haplotype Reference Consortium; imp, measure of imputation quality (Methods); FE, fixed effects; 
EUR, European ancestry; AFR, African ancestry; EAS, East Asian ancestry; SAS, South Asian ancestry; ASN, mixed Asian ancestry; LAT, Latin American 
ancestry; Phet, heterogeneity P value; PPhet, posterior probability of heterogeneity. *The ASN and LAT ancestries were composed of a single study and hence 
did not require ancestry-specific meta-analysis.
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with one gene in stroke-relevant tissues, such as ZNF318 (6p21), 
AL049919 (12q24), and FES (15q26) in brain tissues (Supplementary 
Tables 22 and 23).

At some loci, meQTLs and eQTLs provided complemen-
tary information on the regulatory pattern. For instance, for the 
SH3PXD2A locus, SNPs in high LD with the lead stroke risk 
variant were found to be eQTLs for multiple genes (SH3PXD2A, 
SLK, GSTO1, GSTO2, and LOC729081), whereas several high-LD 

proxies (r2 >​0.96) functioned as the most significant meQTL for 
CpG probes located in the promoter region of SH3PXD2A and not 
any of the other genes.

For the 149 genes located in the 32 genome-wide-significant 
loci (r2 >​0.5 in Europeans or East Asians, or located ±​50 kb from 
the lead SNP; Methods), we assigned an empirical functional score 
based on the presence and number of eQTLs, meQTLs, pQTLs, 
and other biological criteria57,58 (Methods and Supplementary 

Table 1 | Results from the MANTRA (transancestral) and METAL fixed-effects (transancestral and Europeans-only) GWAS meta-analyses

rsID Chromosome Gene(s) Location relative 
to gene

Risk 
allele/ 
reference 
allele

Risk-allele 
frequency 
(%)

Phenotype Analysis OR 95% CI P value log10 
(BF)

Novel associations

 rs880315 1p36 CASZ1 Intronic C/T 40 AS TRANS 1.05 1.04–1.07 3.62 ×​ 10–10 8.09

 rs12037987 1p13 WNT2B Intronic C/T 16 AS TRANS 1.07 1.05–1.10 2.73 ×​ 10–8 6.33

 rs146390073 1q43 RGS7 Intronic T/C 2 CES EUR 1.95 1.54–2.47 2.20 ×​ 10–8 NAa

 rs12476527 2p23 KCNK3 5′​-UTR G/T 48 AS TRANS 1.05 1.03–1.07 6.44 ×​ 10–8 6.47

 rs7610618 3q25 TM4SF4–TM4SF1 Intergenic T/C 1 LAS EUR 2.33 1.74–3.12 1.44 ×​ 10–8 NAb

 rs34311906 4q25 ANK2 Intergenic C/T 41 AIS EUR 1.07 1.04–1.09 1.07 ×​ 10–8 5.67

 rs17612742 4q31 EDNRA Intronic C/T 21 LAS TRANS 1.19 1.13–1.26 1.46 ×​ 10–11 9.47

 rs6825454 4q31 FGA Intergenic C/T 31 AIS TRANS 1.06 1.04–1.08 7.43 ×​ 10–10 7.53

 rs11957829 5q23 LOC100505841 Intronic A/G 82 AIS TRANS 1.07 1.05–1.10 7.51 ×​ 10–9 6.67

 rs6891174 5q35 NKX2-5 Intergenic A/G 35 CES TRANS 1.11 1.07–1.16 5.82 ×​ 10–9 6.96

 rs16896398 6p21 SLC22A7–ZNF318 Intergenic T/A 34 AS TRANS 1.05 1.03–1.07 1.30 ×​ 10–8 6.60

 rs42039 7q21 CDK6 3′​-UTR C/T 77 AIS TRANS 1.07 1.04–1.09 6.55 ×​ 10–9 6.84

 rs7859727 9p21 Chr9p21 ncRNA intronic T/C 53 AS TRANS 1.05 1.03–1.07 4.22 ×​ 10–10 8.01

 rs10820405 9q31 LINC01492 ncRNA intronic G/A 82 LAS EUR 1.20 1.12–1.28 4.51 ×​ 10–8 4.74

 rs2295786 10q24 SH3PXD2A Intergenic A/T 60 AS TRANS 1.05 1.04–1.07 1.80 ×​ 10–10 8.34

 rs7304841 12p12 PDE3A Intronic A/C 59 AIS TRANS 1.05 1.03–1.07 4.93 ×​ 10–8 5.87

 rs35436 12q24 TBX3 Intergenic C/T 62 AS TRANS 1.05 1.03–1.06 2.87 ×​ 10–8 6.29

 rs9526212 13q14 LRCH1 Intronic G/A 76 AS TRANS 1.06 1.04–1.08 5.03 ×​ 10–10 7.97

 rs4932370 15q26 FURIN–FES Intergenic A/G 33 AIS TRANS 1.05 1.03–1.07 2.88 ×​ 10–8 6.05

 rs11867415 17p13 PRPF8 Intronic G/A 18 AIS TRANS 1.09 1.06–1.13 4.81 ×​ 10–8 6.06

 rs2229383 19p13 ILF3–SLC44A2 Exonic; 
synonymous

T/G 65 AIS TRANS 1.05 1.03–1.07 4.72 ×​ 10–8 6.02

 rs8103309 19p13 SMARCA4–LDLR Intergenic T/C 65 AS TRANS 1.05 1.03–1.07 3.40 ×​ 10–8 5.85

Previously known associations

 rs12124533 1p13 TSPAN2 Intergenic T/C 24 LAS TRANS 1.17 1.11–1.23 1.22 ×​ 10–8 6.60

 rs1052053 1q22 PMF1–SEMA4A Exonic; 
nonsynonymous

G/A 40 AS TRANS 1.06 1.05–1.08 2.70 ×​ 10–14 11.92

 rs13143308 4q25 PITX2 Intergenic T/G 28 CES TRANS 1.32 1.27–1.37 1.86 ×​ 10–47 45.10

 rs4959130 6p25 FOXF2 Intergenic A/G 14 AS TRANS 1.08 1.05–1.11 1.42 ×​ 10–9 7.52

 rs2107595 7p21 HDAC9–TWIST1 Intergenic A/G 24 LAS TRANS 1.21 1.15–1.26 3.65 ×​ 10–15 12.99

 rs635634 9q34 ABO Intergenic T/C 19 AIS EUR 1.08 1.05–1.11 9.18 ×​ 10–9 4.99

 rs2005108 11q22 MMP12 Intergenic T/C 12 AIS TRANS 1.08 1.05–1.11 3.33 ×​ 10–8 6.12

 rs3184504 12q24 SH2B3 Exonic; 
nonsynonymous

T/C 45 AIS TRANS 1.08 1.06–1.10 2.17 ×​ 10–14 12.04

 rs12932445 16q22 ZFHX3 Intronic C/T 21 CES TRANS 1.20 1.15–1.25 6.86 ×​ 10–18 15.49

 rs12445022 16q24 ZCCHC14 Intergenic A/G 31 AS TRANS 1.06 1.04–1.08 1.05 ×​ 10–10 8.57

For each locus, the variant reaching the highest BF in the MANTRA or the lowest P value in the fixed-effects transancestral meta-analysis or the fixed-effects Europeans-only meta-analysis, respectively, 
is shown, and the respective stroke phenotype showing the strongest association is specified. Gene names in bold indicate that the variant is located within the gene; in other cases, the first gene 
corresponds to the closest gene, whereas additional gene names indicate eQTL signals from multiple studies, or from both eQTLs and meQTLs, or genes previously suspected to be causal (LDLR), with 
a maximum of two genes reported. The lead SNPs in ILF3–SLC44A2 and SMARCA–LDLR are in low LD (r2 =​ 0.082). TRANS, MANTRA transancestral meta-analysis; EUR, Europeans-only fixed-effects 
meta-analysis; OR, odds ratio; CI, confidence interval; NA, not assessed; UTR, untranslated region. a rs146390073 did not meet the MAF threshold of 0.01 in samples other than those of European 
ancestry. b rs7610618: The transancestral meta-analysis results showed high heterogeneity (PPhet =​ 0.96) and were thus excluded.
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Table  24), reasoning that genes with a higher functional score 
would be more likely to be causal, although this score requires vali-
dation by experimental data.

Joint modeling of epigenetic marks and association statistics. 
In an additional approach to identify the most plausible causal 
variants and genes, we used RiVIERA59, which jointly models 
summary association statistics and corresponding epigenetic 
regulatory information in a Bayesian framework to estimate the 
posterior probability of association (PPA). RiVIERA uses the 
RoadMap epigenome data of 127 tissue types and information 
on chromatin (H3K4me1, H3K4me3, H3K36me3, H3K27me3, 
H3K9me3, H3K27ac, and H3K9ac) and DNA-accessibility 
(DNase I) marks. Three of the stroke risk loci (PMF1–SEMA4A, 
SH3PXD2A, and EDNRA) displayed a pattern in which the asso-
ciation statistics and epigenetic regulatory information jointly 
contributed to the modeling of the RiVIERA credible SNP set 
(the minimum number of SNPs whose PPA, accounting for both 
association statistics and epigenetic regulatory information, sum 
to ≥​95%) (Supplementary Fig.  13). The variants identified by 
RiVIERA as having the highest PPA were in moderate to high 
LD in the 1000G cosmopolitan panel with the respective lead 
SNP (rs7534434 for PMF1–SEMA4A, r2 =​ 0.79 with lead SNP; 
rs11191829 for SH3PXD2A, r2 =​ 0.99 with lead SNP; rs4835084 
for EDNRA, r2 =​ 0.35 with lead SNP). Two of these (at PMF1–
SEMA4A and SH3PXD2A) were significantly enriched in RNA 
polymerase II binding in ENCODE cell types60, including H1 
human embryonic stem cells (Supplementary Fig. 13).

Enrichment in drug-target genes. Given the previous evidence of 
the utility of GWAS in drug discovery and drug repositioning57,61,62,  
we evaluated the overlap between stroke-associated genes and 
known drug targets. Among the 149 genes located within the 32 
stroke risk loci, 16 (11%) were registered as targets of currently 
approved drugs in the DrugBank database and the Therapeutic 
Target Database (Supplementary Table  25). Of these, two genes 
(FGA and PDE3A) were targets of approved drugs for antithrom-
botic therapy (ATC B01), i.e., alteplase, tenecteplase, reteplase, 
and anistreplase for FGA, and cilostazol for PDE3A (enrichment 
OR =​ 5.46, P =​ 0.0369; Fig.  5). This enrichment was strengthened 
after removal of the locus with the largest number of genes (SH2B3, 
73 genes) (OR =​ 8.89, P =​ 0.0166) and after addition of 65 genes in 
21 suggestive stroke risk loci (OR =​ 7.83, P =​ 0.00606).

Discussion
The current transancestral meta-analysis more than triples the 
number of stroke risk loci and identifies novel loci for AS, AIS, and 
all major subtypes of ischemic stroke. Our results highlight several 
major features of stroke genomics: (i) Approximately half of the 
identified stroke loci showed shared genetic association with other 
vascular traits, and the largest genetic correlation was found for 
blood pressure. We also identified shared genetic association with 
VTE, and distinct patterns of individual stroke subtypes provided 
further mechanistic insight. (ii) Eleven of the novel stroke risk loci 
(ANK2, CDK6, KCNK3, LINC01492, LRCH1, NKX2-5, PDE3A, 
PRPF8, RGS7, TM4SF4–TM4SF1, and WNT2B) suggest mecha-
nisms not previously implicated in stroke pathophysiology; some 
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of these suggest a strong link with cardiac mechanisms beyond 
those expected from established sources of cardioembolism. (iii) 
The 32 stroke risk loci were significantly enriched in drug targets 
for antithrombotic therapy—one for an approved thrombolytic 
drug (alteplase) and the other for an antiplatelet agent (cilostazol) 
approved for stroke prevention in Asia. (iv) Through incorporation 
of extensive functional datasets and bioinformatics analyses, we 
provide detailed information on prioritization of stroke risk vari-
ants and genes as a resource for further experimental follow-up.

Most of the genome-wide associations were identified with both 
AS and AIS. Although this result relates in part to a greater statisti-
cal power compared with that in subtype analysis, we also found 
shared genetic influences between stroke subtypes, as exemplified 
by the gwas-pw analyses (SH2B3 and ABO). A notable finding was 
the identification of PMF1–SEMA4A as a risk locus for AIS. PMF1–
SEMA4A is an established risk locus for nonlobar ICH6 and thus is, 
to our knowledge, the first reported locus reaching genome-wide 
significance for ischemic as well as hemorrhagic stroke. PMF1–
SEMA4A further reached genome-wide association for WMH bur-
den28 (Fig. 3), an established marker for SVD, and showed a strong 
signal in the SVS subtype, thus suggesting that the association with 

stroke is at least in part mediated by SVD. The underlying biological 
pathways do not seem to involve known vascular risk factors and 
may thus identify new targets for stroke prevention.

Among the novel loci showing associations restricted to specific 
stroke subtypes, EDNRA is consistent with atherosclerotic mecha-
nisms, given its association with LAS, cPL27, and CAD31 (Fig.  3). 
LINC01492 and the previously reported TSPAN2 locus likewise dis-
played associations restricted to LAS but showed no association with 
related phenotypes in our look-ups and in prior literature, thus evi-
dencing mechanisms more specific for LAS. NKX2-5, showing associ-
ation restricted to CES, has previously been reported as a genome-wide 
risk locus for heart rate and PR interval63,64 but not consistently for 
AF63,65, thus implicating cardiac mechanisms other than AF.

Although the number of loci reaching genome-wide signifi-
cance for association with SVS remained low, our results suggest an 
important role of common genetic variation in SVS. First, several 
of the associations with AS or AIS, including those at novel loci 
(CASZ1, LOC100505841, SH3PXD2A, and ICA1L–WDR12), showed 
predominant association with the SVS subtype (Supplementary 
Tables  7 and 9). Second, three of the top loci (PMF1–SEMA4A, 
LOC100505841, and SH3PXD2A) showed genetic overlap with 
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loci for WMH. Third, several suggestive loci (log10(BF) ≥​5) for AS 
and SVS contained genes implicated in monogenic SVD (HTRA1, 
COL4A1, and COL4A2) (Supplementary Table 8).

Our extensive exploration of shared genetic variation between 
stroke and related vascular traits found the most widespread corre-
lations with BP phenotypes, in agreement with epidemiological data 
showing that high BP is the leading risk factor for stroke. A quarter 
of the 32 genome-wide-significant stroke loci were BP loci, most of 
which were novel with respect to stroke risk and showed associa-
tion with risk of AS or AIS. Aside from the expected genetic overlap 
between LAS and CAD, we identified significant overlap between 
a wGRS for VTE and both LAS, and CES, but not SVS (Fig. 4 and 
Supplementary Table 14) despite a greater statistical power for this 
subtype, thus potentially suggesting that thrombotic processes play 
a less important role in SVS.

Three of our novel loci (NKX2-5, ANK2, and LRCH1) have 
previously been associated with cardiac pacing63,64,66. NKX2-5 and 
ANK2 have been further implicated in familial forms of cardiac 
disease67–70, but none of the three loci were associated with AF or 
CAD in the latest published GWAS31,65. Apart from NKX2-5, these 
loci were not specifically associated with CES, thus possibly indicat-
ing an involvement of the underlying genes in roles beyond cardiac 
development and function. rs9526212, the lead variant in LRCH1, 
was an eQTL for LRCH1 in multiple tissues, including the left 
ventricle, atherosclerotic aorta, atherosclerotic-lesion-free arteries, 
and blood (Supplementary Table 22). Pathway analyses further sup-
ported a strong link with cardiac mechanisms.

The extensive in silico functional annotation of identified stroke 
risk loci provides informative elements for future prioritization and 
follow-up of the most compelling biological candidates. In some 
instances, the eQTL, meQTL, and pQTL information strongly sup-
ports involvement of one gene over others in the region, for exam-
ple, for SH3PXD2A, encoding SH3 and PX-domain-containing 
protein  2A, an adaptor protein involved in formation of invado-
podia and podosomes as well as extracellular-matrix degradation. 
For  some loci, joint analysis of epigenetic regulatory effects and 
association statistics enabled prioritization of credible SNPs. When 
exploring the overall epigenetic patterns of identified stroke risk 
loci, we observed some enrichment in enhancer and promoter sites 
in developmental tissues, thus suggesting that some associations 

may be driven by developmental effects, as has recently been pro-
posed for the FOXF2 locus10.

RGS7 and TM4SF4–TM4SF1 showed low MAFs, high heteroge-
neity, poor imputation quality in non-Europeans, and large effect-
size estimates, and they must therefore be interpreted with caution. 
Moreover, although our extensive functional exploration provides 
guidance on gene prioritization for further exploration, additional 
experiments are required to identify the causal genes and variants. 
Several studies have provided limited information on stroke sub-
types. Hence, the sample sizes for ischemic stroke subtypes were 
still relatively small. In addition, the proportion of the phenotypic 
variance explained by the 32 lead SNPs was relatively small but 
comparable to that in other complex diseases71. Collectively, these 
aspects highlight the potential for gene discovery in the future.

In conclusion, we identified 22 novel stroke risk loci and demon-
strated shared genetic variation with multiple related vascular traits. 
We further identified new loci offering mechanisms not previously 
implicated in stroke pathophysiology and provided a framework for 
prioritization of stroke risk variants and genes for further functional 
and experimental follow-up. Stroke risk loci were significantly 
enriched in drug targets for antithrombotic therapy, thus highlight-
ing the potential of stroke genetics for drug discovery. Collectively, 
these findings represent a major advance in understanding the 
genetic underpinnings of stroke.

URLs. Ingenuity Pathway Analysis, https://www.qiagenbioinfor-
matics.com/products/ingenuity-pathway-analysis/.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0058-3.
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Methods
Study design and phenotyping. A detailed description of the study design, 
participating studies, and phenotype definitions for stroke and stroke subtypes 
is provided in the Supplementary Note. Characteristics of study participants are 
shown in Supplementary Table 2 for each study. All participants provided written 
informed consent, and local research ethics committees and institutional review 
boards approved the individual studies.

Genotyping, imputation, and quality control. Genotyping platforms and 
imputation methods for each participating study are described in Supplementary 
Table 2. All studies used imputed genotypes based on at least the 1000G phase 1 
multiancestral reference panel and conducted logistic regression analyses (or Cox 
regression for longitudinal population-based cohort studies) for five stroke traits 
(AS, AIS, LAS, CES, and SVS) with all measured and imputed genetic variants in 
dosage format by using appropriate software under an additive genetic model with 
a minimum of sex and age as covariates. Information on additional covariates is 
given in Supplementary Table 2.

Before ancestry-specific meta-analysis, QC was performed on each study 
by two independent researchers following a standardized protocol based on the 
suggestions of Winkler et al.74. Marker names and alleles were harmonized across 
studies. Meta-analyses were restricted to autosomal biallelic markers from the 
1000G phase 1 v3. Duplicate markers were removed from each study. P–Z plots, 
QQ plots and allele-frequency-plots were constructed for each study. After visual 
inspection, analysis and QC were repeated if deemed necessary. QC was conducted 
independently for all participating studies in at least two sites.

Individual study-level filters were set to remove extreme effect values (β >​5 or  
β <​–5), rare SNPs (MAF <​0.01) and variants with low imputation accuracy (oevar_
imp or info score <​0.5). The effective allele count was defined as twice the product 
of the MAF, imputation accuracy (r2, info score or oevar_imp), and number of 
cases. Variants with an effective allele count <​10 were excluded74. The number of 
SNPs passing QC for each study is given in Supplementary Table 26.

Genome-wide-association meta-analyses. The overall analytical strategy is 
shown in Fig. 1. We first conducted fixed-effects inverse-variance-weighted 
meta-analysis with METAL75 in each ancestral group (EUR, EAS, AFR, SAS, LAT, 
and other ASN), then performed meta-analysis of the ancestry-specific meta-
analysis results. We constructed two versions of each meta-analysis: one with 
single genomic control applied and one without genomic control (for LD-score 
regression analysis).

The EUR-specific and transancestral fixed-effects meta-analyses were further 
filtered for heterogeneity (Phet <​5.0 ×​ 10−8) and for the number of cases included 
for a specific marker (<​50% of stroke cases were excluded). In addition, we ran 
a transancestral GWAS meta-analysis, using MANTRA15, which was based on 
ancestry-specific meta-analysis results. The final MANTRA results were filtered for 
a MANTRA posterior-probability heterogeneity P <​0.95. SNPs with log10(BF) >​6 
were considered to be genome-wide significant, whereas SNPs with 6 >​ log10(BF) 
>​5 were considered to show suggestive association. We used a method based on 
summary statistics76 to estimate the variance in liability explained by each lead 
variant. Disease prevalence was set to 5.5% for AS, to 4.4% for AIS, and to 0.11% 
for IS subtype in Europeans77. Disease prevalence was set to 2.97% for AIS, to 
0.91% for LAS, to 0.24% for CES, and to 1.76% for SVS in East Asians (Hisayama 
study, J. Hata unpublished data and ref. 90). We used summary statistics from the 
Europeans-only fixed-effects meta-analysis and the East Asian–only fixed-effects 
meta-analysis. Genomic inflation was calculated as lambda in the GenABEL 
package (available through CRAN repositories). In addition, we calculated the 
LD-score-regression intercepts for the Europeans-only fixed-effects meta-analysis, 
using European LD scores.

Shared genetic influences of individual loci on mechanistically defined 
stroke subtypes. We used gwas-pw22 to detect shared genetic influences of 
LAS, CES, and SVS, aiming to identify genetic variants that influence respective 
pairs of these traits. Gwas-pw estimates the PPA for four models. Model 3 is 
the model in which a given genomic region contains a genetic variant that 
influences both traits. We used the fixed-effects transancestral meta-analysis 
results as input, transforming results into signed Z scores based on the P value 
and sign of the log(OR). The chunk size (number of SNPs included in each 
chunk analyzed) was set automatically by using an approximately independent 
block file (ld-select), as provided by the software. Correlation was set to 
reflect the overlap in controls. We deemed the results of model 3 with  
a PPA >​0.9 significant22.

Conditional analysis. We used GCTA-COJO78 to perform conditional association 
analysis in each of the stroke loci in Europeans. We first fit a stepwise joint 
regression model including all SNPs with joint P <​5.0 ×​ 10−8. In instances in which 
regions included only one SNP, we fit a model including the top two SNPs from 
each region. The models made use of (i) summary statistics from the Europeans-
only meta-analysis presented herein and (ii) genotype data for 3,291 stroke cases 
and 11,820 controls of North European ancestry from NINDS-SiGN as an LD 
reference for each region.

Gene-based analysis. We performed gene-based tests by using the VEGAS 
approach79 implemented in VEGAS2 software16. We used 24,769 autosomal 
refseq genes to perform gene-based association studies. To perform gene-based 
association tests, we used the 1000G phase 3 super populations African (AFR), 
East Asian (EAS), European (EUR), American (AMR) and South Asian (SAS) as 
a reference to compute the pairwise LD between variants residing within a gene. 
We performed gene-based tests, using the ‘-top 10’ parameter in VEGAS2, which 
tests enrichment of the top 10% of association P values within a gene. To maintain 
specificity while including cis-regulatory variants, we included variants located 
within 10 kb of a gene’s 3′​ and 5′​ UTRs. We performed 1 ×​ 106 simulations to 
compute empirical P values for association with each gene. For genes with  
P <​1 ×​ 10−5, we increased the number of simulations to 1 ×​ 108 to increase the 
accuracy of the association P values. For individual stroke subtypes, we performed 
ancestry-specific gene-based association followed by meta-analysis of gene 
association P values by using Stouffer’s method, based on sample size.

Association of individual stroke risk variants with related vascular traits. 
We systematically explored genetic overlap with AF, CAD, cIMT, cPL, diastolic 
BP, systolic BP, HDL-cholesterol levels, LDL-cholesterol levels, triglyceride levels, 
T2D, VTE, and WMH. First, we acquired summary statistics from the appropriate 
consortia (Supplementary Table 12). For each of the nonstroke phenotypes, we 
constructed a SNP set including the index variant of the nonstroke phenotype 
with P <​1.3 ×​ 10−4 plus all variants in high LD (r2 in 1000G EUR >​0.9 with this 
index variant). If the MEGASTROKE lead SNP was included in this set of SNPs, 
we deemed the overlap with the nonstroke phenotype to be significant. We show 
two different tiers: (i) variants that showed genome-wide significance in the 
related vascular trait (P <​5.0 ×​ 10−8) and (ii) variants that were not genome-wide 
significant but passed Bonferroni correction (P =​ 1.3 ×​ 10−4).

Association of genetic risk scores of related vascular traits with stroke and 
stroke subtypes. Genetic risk scores generated from variants shown to have 
genome-wide association with various vascular risk factors (VTE, DBP, SBP, MAP, 
PP, HTN, HDL cholesterol, LDL cholesterol, triglycerides, T2D, and CAD) were 
used to estimate the overlap between vascular traits and stroke and its subtypes. 
The effect allele for each risk-factor variant was defined as the allele associated with 
increased risk-factor levels. The corresponding allele information, β coefficients 
and standard errors from different stroke subtypes were extracted and used as 
input. Association was tested with the inverse-variance weighting (IVW) method 
implemented as an R package gtx V 0.0.8 (available through CRAN repositories).

We further conducted sensitivity analyses, using the MR–Egger method 
implemented as an R package (TwoSampleMR, available through CRAN 
repositories)80, which, unlike the IVW method, estimates the intercept term as part 
of the analysis. An intercept term significantly differing from zero suggests the 
presence of directional pleiotropy. We used a conservative significance threshold of 
P <​0.05 for the intercept. In the presence of directional pleiotropy, leave-one-out 
analysis was carried out by retesting the association of the vascular GRS with the 
outcome (stroke), leaving out each SNP in turn to determine whether a single SNP 
drives the association. We manually identified outlier SNPs that might drive the 
observed directional pleiotropy and then repeated the analyses (IVW and  
MR–Egger) after excluding the variants exhibiting directional pleiotropy.

The selection of SNPs for the vascular GRS was based on literature (PubMed) 
searches and the GWAS catalog (http://www.ebi.ac.uk/gwas/), and was used to 
identify studies that performed GWAS of the various risk factors. The most recent 
and largest GWAS of each risk factor was selected, and the associated variant 
details were retrieved. For the GRS analysis, only independent variants  
(r2 <​0.01, based on the 1000G EUR panel) were used for the analysis 
(Supplementary Table 27). Risk-variant selection for BP traits (SBP, DBP, MAP, 
and PP) was further extended to studies with gene-centric chips. We used β 
coefficients extracted from the summary statistics of the International Consortium 
of BP GWAS81,82 as weights for this GRS analysis. A P-value <​5.6 ×​ 10−3 correcting 
for nine independent phenotypes was considered significant. The number of 
independent vascular phenotypes, taking into account the correlation between 
the phenotypes considered, was estimated on the basis of individual-level data 
from the 3C study by using the online tool matSpDlite (http://neurogenetics.
qimrberghofer.edu.au/matSpDlite/).

Shared genetic contribution to stroke and related vascular traits at the genome-
wide level. We used LD-score regression to estimate the genetic correlation 
between stroke and related vascular traits33,34. We conducted analyses on the 
European and East Asian stroke GWAS summary statistics only. Summary 
statistics from the GWAS meta-analyses for vascular risk factors and intermediate 
or related vascular phenotypes (BP, blood lipids, T2D, cIMT, cPL, AF, VTE, 
CAD, and WMH) were acquired from the respective consortia, as detailed in 
Supplementary Table 12. For LD-score regression in East Asians, we further 
received prepublication access to summary statistics of GWAS for blood lipids 
conducted in BioBank Japan 91, as described in the Supplementary Note. For each 
trait, we filtered the summary statistics to the subset of HapMap 3 SNPs to decrease 
the potential for bias due to poor imputation quality. Analyses were performed 
separately by using summary statistics from the European- and East Asian–specific 
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meta-analysis. We used the European or East Asian LD-score files calculated from 
the 1000G reference panel and provided by the developers. A P value <​5.6 ×​ 10−3 
correcting for nine independent phenotypes was considered significant. All 
analyses were performed with the ldsc package (https://github.com/bulik/ldsc/).

Global epigenetic patterns at the 32 stroke risk loci. We used the epigwas tool35 
to test for cell-specific enrichment in chromatin marks that have previously been 
shown to be phenotypically cell-type specific in ENCODE and/or RoadMap 
epigenome data (H3K4me1, H3K4me3, and H3K9ac)35, leveraging the recent 
release of ENCODE/RoadMap epigenome data from 127 tissue types36. Histone 
ChIP–seq data for narrow contiguous regions of enrichment were used to calculate 
the enrichment score (height of the nearest tall peak/distance to the peak) for the 
lead variant and proxies (r2 >​0.8 in the 1000G cosmopolitan panel). Significance 
was estimated by examining the relative proximity and specificity of the test SNP 
set with 10,000 sets (permutation) of matched background. In addition, Bonferroni 
correction for the number of chromatin marks tested was applied.

Pathway analyses. To identify pathways overrepresented in the stroke association 
results, we used data-driven expression-prioritized integration for complex traits 
(DEPICT37), IPA (https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis/), and VEGAS2Pathway39. DEPICT version 1 release 194 was 
used to identify biological pathways, tissues, and cell types enriched among 
suggestive associations (log10(BF) >​5) for any stroke and stroke subtypes in 
the MANTRA transancestral GWAS. Results are presented for the MANTRA 
transancestral analysis. We deemed DEPICT pathways with an FDR <​0.05 
statistically significant.

IPA was conducted by using an extended list comprising 214 genes located  
in the boundaries defined by r2 >​0.5 with the lead SNP in Europeans or  
East Asians, or located +​50 kb from the lead SNP, for all suggestive loci reaching  
P <​1.0 ×​ 10−5 or log10(BF) >​5 (Supplementary Table 25). This gene list was taken 
as an input for IPA using only findings from human and experimentally verified 
results. Otherwise, standard parameters were used for the analysis. We corrected 
canonical pathway P-value analysis with the Benjamini–Hochberg method and 
deemed an FDR <​0.05 significant.

We performed gene-wide gene-set enrichment analysis, using the 
VEGAS2Pathway approach39 to test which Biosystem terms38 were enriched with 
VEGAS2-derived gene association P values for stroke subtypes. VEGAS2Pathway 
performs a competitive gene-set enrichment test while accounting for gene density 
in LD blocks (or correlated association P values of neighboring genes), SNP 
density, and pathway size by using a resampling strategy.

For individual stroke subtypes, we performed separate ancestry-specific gene-
set enrichment analysis. Next, we combined the gene-set-enrichment association 
P values across ancestries by using Stouffer’s method for sample-size-weighted 
combinations of P values. For each stroke subtype, we tested the association of 
9,981 Biosystem gene-set terms.

Fine mapping derived from credible SNP-set analyses. We implemented the 
method of Maller et al.83, converting our ancestry-specific meta-analysis P values 
to Bayes factors through Wakefield’s approximation40 in all stroke phenotypes in 
the EU- only, EAS-only, and AFR-only analysis. We used all SNPs in LD with the 
lead SNP (r2 >​0.1, ancestry specific). The Bayes factors were then used to calculate 
posterior probabilities on the basis of the assumption of a single causal SNP in each 
region. For all regions, we constructed 95% credible sets of potentially causal SNPs.

Investigation of eQTLs, pQTLs, meQTLs, and regulatory marks in different 
tissues. The following datasets, covering a large variety of tissue and cell types, 
were interrogated for eQTLs, pQTLs, and meQTLs:

1. � The Genotype-Tissue Expression (GTEx-V6) project data, providing 
significant eQTL information from 44 postmortem tissues (449 individuals) 
(http://biorxiv.org/content/early/2016/09/09/074450/), with significance based 
on a gene-specific P-value threshold that is permutation-adjusted for multiple 
SNPs per gene

2. � The Genome-wide Repository of Associations between SNPs and Phenotypes, 
build 2.0 (GRASP2)46,47, as well as a collected expression and epigenetic 
QTL database of >​100 sources covering a wide range of cell and tissue types 
(Supplementary Note), using P <​5 ×​ 10−6 as a significance threshold for 
association with expression of a transcript in the original study

3. � The Human Genetic Variation Database (HGVD)48, providing eQTL 
information from peripheral-blood cells in a Japanese population (n =​ 1,208), 
with significance defined by FDR <​5%

4. � The Biobank-based Integrative Omics Studies (BIOS), providing eQTLs 
from peripheral-blood RNA-seq data in 2,116 unrelated individuals49, with 
significance defined by FDR <​5%

5. � A subset of the Blueprint epigenome project50 with eQTL, meQTL, and 
histone-modification data (H3K4me1 and H3K27ac) in CD14+ monocytes, 
CD16+ neutrophils, and CD4+ naive T cells from 197 individuals; these were 
mapped through the classical QTL association test, allele-specific-expression 
test, and combined haplotype test, with significance defined by FDR <​5%

6. � The Stockholm–Tartu Atherosclerosis Reverse Networks Engineering Task 
study (STARNET)51, providing eQTL data from vascular and metabolic tissues 
in 600 patients with CAD, with Benjamini–Hochberg–corrected association 
P values (P <​0.05)

7. � The aortic endothelial cell study52, providing eQTL data from human aortic 
endothelial cells in 147 individuals, with Bonferroni multiple testing correction 
for the number of independent SNPs (P <​1.0 ×​ 10−4)

8. � The ARIC cohort53, providing meQTL information from peripheral blood in 
794 individuals of European ancestry and 784 individuals of African American 
ancestry, with multiple testing correction for the number of unique CpG 
probes in the look-up

9. � The Cooperative Health Research in the Region of Augsburg (KORA) cohort, 
with pQTL information from the human blood plasma proteome54, measuring 
1,124 proteins on the SomaSCAN platform in 1,000 participants; significance 
for each association was set at P <​5.0 ×​ 10−8

In each of these datasets, we report the most significant cis-QTL, meQTL, 
or pQTL surpassing a study-specific predefined significance level or FDR, 
considering only QTLs in LD with the lead stroke SNP at an r2 >​0.8 (in 1000G, 
as well as queries of multiple builds of SNAP84 and SNiPA85), thus suggesting 
high concordance. The results are presented grouped per tissue or cell type 
(Supplementary Table 23), or per stroke risk locus (Supplementary Table 22). 
In addition, we also systematically report the association of the top QTL with 
stroke risk and of the lead stroke risk variant with the corresponding transcript 
expression, methylation level, or protein level (Supplementary Table 23).

In addition, we used a subset of the Blueprint epigenome project in CD14+ 
monocytes, CD16+ neutrophils, and CD4+ naive T cells from 197 individuals50 
and Haploreg V4 (ref. 86) to annotate the lead variants and proxies for enrichment 
in specific histone-modification marks for the chromatin state, on the basis of 
ChIP–seq data from multiple cell/tissue types from ENCODE87 and NIH RoadMap 
epigenome36. The results for each of the lead SNPs and its proxies are displayed in 
detail in Supplementary Table 22.

Integration of association statistics and in silico functional information in 
RiVIERA-beta. To identify the most plausible causal variants and genes, we used 
RiVIERA software59, which jointly models the summary association statistics and 
the corresponding epigenetic regulatory information in a Bayesian framework 
to estimate the PPA. The empirical prior of a variant to be associated with the 
respective trait through regulatory features was generated by using the 848 tissue-
specific epigenomic data in seven chromatin (H3K4me1, H3K4me3, H3K36me3, 
H3K27me3, H3K9me3, H3K27ac, and H3K9ac) and DNA-accessibility (DNase I) 
marks from the ENCODE/RoadMap epigenome data. Binary epigenomic 
annotation matrices of a variant overlapping the narrow peaks were generated. 
For inferring the causal region, RiVIERA-beta performs a repeated (n =​ 1,000) 
random-sampling step per locus, with the step size set to 1.0 ×​ 10−4. Iteration is 
performed until convergence (acceptance rate >​60%) is achieved, which is critical 
for the accurate estimation of PPA. We generated 95% credible sets in each region 
on the basis of the PPA. Regional plots were generated by using the association 
statistics and the PPA. Epigenetic enrichment over a fixed window size (50 bp) 
per tissue group was generated by taking the cumulative sum of empirical prior 
weighted global epigenetic enrichment. Tissues were divided into 19 groups, as 
defined in the NIH RoadMap epigenome project.

Scoring method. To prioritize the most likely biological-candidate genes, 
we integrated functional and biological information into an empirical score for 
each of the genes residing in the 32 genome-wide-significant loci. These comprised 
149 genes within the region defined by an r2 >​0.5 in any of the 1000G European 
or East Asian populations or physical distances of ±​50 kb from the lead SNP 
of the respective locus (Supplementary Table 25). A score of 1 was assigned for 
being the nearest gene to the lead SNP, for containing a missense variant, for 
containing histone-mark H3K4me3, H3K9ac, and H3K4me1 peaks in cell types 
that showed significant enrichment in epigwas analysis, and for functioning as an 
eGene for an eQTL, meQTL, or pQTL (one point for each) in at least one study 
and one cell/tissue type. In addition, a score of 1 was assigned for each stroke 
phenotype showing evidence of being a drug-target gene in the DrugBank database 
(ATC-C and ATC-B01) and the Therapeutic Target Database (Supplementary 
Table 25), and for overlap with biological pathways in DEPICT, IPA, or VEGAS2 
(Supplementary Tables 18–20).

Drug-target gene-enrichment analysis. For each locus containing a variant with 
log10(BF) >​5 in the MANTRA analysis, we annotated the genes by considering 
LD structures (r2 >​0.5 in any of 1000G EUR or ASN populations) or physical 
distances (±​50 kb) from the lead SNP of the respective locus. Drug-target genes 
were extracted from the DrugBank database88 (considering those registered as 
pharmacological active targets; https://www.drugbank.ca/) and Therapeutic 
Target Database89 (TTD; http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp), 
thus resulting in a list of 1,123 genes (and corresponding proteins) annotated to 
currently approved drugs indicated for any diseases (Supplementary Table 25). 
Drugs indicated for antithrombotic therapy (n =​ 69) and cardiovascular diseases 
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(n =​ 324) were curated from Anatomical Therapeutic Chemical (ATC) codes 
(Supplementary Table 25). Enrichment of overlap between stroke-associated genes 
with drug targets for antithrombotic therapy and cardiovascular diseases was 
assessed with Fisher’s exact test.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. The datasets generated and/or analyzed during the current study 
are available from the corresponding authors upon reasonable request.
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promote consistency and transparency in reporting. All life sciences submissions use this form; while some list items might not apply to an individual 
manuscript, all fields must be completed for clarity. 
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    Experimental design
1.   Sample size

Describe how sample size was determined. No pre-defined power analysis was carried out. We used all currently 
available stroke samples and controls for this study, therefore reaching the 
maximum sample size possible.

2.   Data exclusions

Describe any data exclusions. Inclusion and exclusion criteria for each study in MEGASTROKE are given in 
the Supplementary Material, Section 3,  pages  64-97. Due to the extensive 
nature of our analysis, we cannot provide all details in this form.

3.   Replication

Describe whether the experimental findings were reliably reproduced. Experimental replication was not performed

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

Cases were defined as ischemic stroke (IS) or intracerebral hemorrhage 
(ICH) based on clinical and imaging criteria. IS was further subdivided into 
the following categories mostly using the Trial of Org 10172 in Acute 
Stroke Treatment (TOAST) criteria): i) large vessel ischemic stroke (LV-IS); 
ii) cardioembolic ischemic stroke (CE-IS); iii) small vessel ischemic stroke 
(SV-IS). Subarachnoid hemorrhages were excluded from all analyses. 
Controls were  stroke-free. Where possible, cases and controls were 
matched for relevant covariates. Association models were additionally 
corrected for relevant covariates.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

Blinding was not relevant for this study, as group allocation was based on 
clinical and imaging criteria

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. R 3.2.5 (https://www.r-project.org/) 
VEGAS2 (https://vegas2.qimrberghofer.edu.au/) 
METAL (http://csg.sph.umich.edu/abecasis/metal/) 
MANTRA 
LD score regression (https://github.com/bulik/ldsc) 
epigwas (http://archive.broadinstitute.org/mpg/epigwas/) 
DEPICT (https://github.com/perslab/depict) 
Ingenuity Pathway Analysis (https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis/) 
gwas-pw (https://github.com/joepickrell/gwas-pw) 
GCTA (http://cnsgenomics.com/software/gcta/) 
RiVIERA  beta (https://yueli-compbio.github.io/RiVIERA-beta/) 
GenABEL (http://www.genabel.org) 
gtx 0.0.8 (https://cran.r-project.org/web/packages/gtx/index.html) 
matSpDlite (http://neurogenetics.qimrberghofer.edu.au/matSpDlite/) 
TwoSampleMR (https://github.com/MRCIEU/TwoSampleMR)

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No unique materials were used

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

No antibodies were used
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

No eukaryotic cell lines were used

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

No cell lines were used

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

No animals were used

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

Ascertainment criteria for each study in MEGASTROKE are given in the 
Supplementary Note, Section 3.1. An overview of population 
characteristics for each study can be seen in Supplementary Table 2. Due 
to the extensive nature of these data, please refer to this table.
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