
This is page 1
Printer: Opaque this

Statistical Modeling with Spline Functions

Methodology and Theory

Mark H. Hansen

University of California at Los Angeles

Jianhua Z. Huang

University of Pennsylvania

Charles Kooperberg

Fred Hutchinson Cancer Research Center

Charles J. Stone

University of California at Berkeley

Young K. Truong

University of North Carolina at Chapel Hill

Copyright c©2006

by M. H. Hansen, J. Z. Huang, C. Kooperberg, C. J. Stone, and Y. K. Truong

January 5, 2006

2

This is page 25
Printer: Opaque this

2
Preliminaries

This chapter provides a detailed description of the basic elements in numer-
ical analysis that are especially useful for extended linear modeling. These
elements consist of approximation spaces, splines, concave functions, and
numerical optimization. While various descriptions of these elements are
given in the numerical analysis and function approximation literature, we
find that they are not specific enough to meet the needs of our treatment.
The aim of this chapter is to provide a reasonably self-contained exposition
of this background material.

Due to the important role of splines in the model building process through-
out the monograph, the chapter starts with a short introduction to uni-
variate splines. The exposition is based on a simple recursive definition
for B-splines having distinct knots. Our main objective is to reveal the
most important properties of B-splines as quickly as possible. Following
this is the description of their properties in function approximation and
a motivation for the choice of B splines over other spline basis functions.
Section 3 presents multivariate splines based on the tensor product of uni-
variate splines. Section 4 describes the notion of concavity and some of its
remarkable consequences in function estimation. Concavity also helps in
stabilizing the numerical procedures and otherwise in improving their per-
formance. Section 5 will be important in understanding the numerical im-
plementation of our methodology; it presents numerical optimization based
on the Newton (or Newton–Raphson), quasi-Newton, and conjugate gradi-
ent algorithms. The final three sections of this chapter provide background
material for handling free knot splines. Specificially, following the frame-
work described in this monograph, one task in working with such splines is

26 2. Preliminaries

•

•

•
•

1 2 3 4 5 6

1
2

3
4

5

FIGURE 2.1. The linear and quadratic splines.

to compute the partial derivatives of the B-splines with respect to the knot
locations. A systematic approach to this topic will call for a rigorous treat-
ment of B-splines involving repeated knots, which has not been considered
previously. In this respect, Section 6 is devoted to splines with repeated
knots based on divided differences. Interestingly, this approach allows the
splines to be constructed with more flexibility in terms of the smoothness
of the curve. That is, the spline can have different degree of smoothness at
different knot locations. Also, the computation of these splines is based on
the recursive nature of B-splines, which was used to define the special case
of B-splines with distinct knots. Consequently, there is no significant loss
of computational efficiency. Section 7 discusses the continuity property of
the divided difference, an essential topic for Section 8 in dealing with the
computation of the partial derivatives of the B-splines with respect to the
knot locations.

2.1 What is a Spline?

A spline is a curve formed by pasting several smaller pieces of curves to-
gether. Two such splines are shown in Figure 2.1. Splines were named by I.
J. Schoenberg after the draftman’s tool called spline — a thin flexible rod

2.1 What is a Spline? 27

made of metal, plastic or wood held in place by weights for drawing smooth
curves that go through certain indicated points. The formal definition of a
spline requires

• the description of knots, which are the locations where the joining or
gluing takes place;

• smaller curves used to form the larger one.

Since polynomials are the simplest among all the curves, it is natural to
utilize them as building blocks for splines. For example, in Figure 2.1,
the knots are defined by the set {1, 3, 4, 6} in the horizontal axis and the
smaller curves are constructed by either linear or quadratic polynomials. If
the points are joined by the straight lines, the resulting curve is said to be a
linear spline. If the points are joined by the quadratic curves, the resulting
curve is a quadratic spline. It may be possible to have splines which are
constructed by mixing linear and quadratic curves. For instance, one can
use linear splines for extending the quadratic spline to the whole real line.
Applications like these are plentiful in density and hazard estimation (see
Chapters 6 and 7). Most splines in practice are constructed using cubic
polynomials as we will see in later chapters. Nevertheless, all of the above
are examples of splines, which will be introduced and discussed in greater
detail in the next few sections.

2.1.1 Polynomials

Let k be a positive integer. A polynomial of order k is a function p(·) defined
by

p(x) = a0 + a1x + a2x
2 + · · · + ak−1x

k−1, x ∈ R,

where a0, . . . , ak−1 are real numbers. Thus a polynomial of order k has k
coefficients, and the term having the highest degree is xk−1.

A polynomial of order one is a constant function. Polynomials of order
two, three and four are referred to as linear, quadratic and cubic polynomi-
als, respectively. A polynomial of order k is also referred to as a polynomial
of degree k − 1. Thus, linear, quadratic and cubic polynomials are polyno-
mials of degree one, two and three, respectively.

2.1.2 Piecewise polynomials

For a non-negative integer m and a list of distinct numbers t1 < t2 <
· · · < tm, a piecewise polynomial of order k (or of degree k − 1) having
knots t1, t2, . . . , tm is a function whose restriction to each of the m − 1 in-
tervals [t1, t2), . . ., [tm−1, tm)is a polynomial of order k (or degree k − 1)
or less. A piecewise polynomial is usually defined on the whole real line
or on an interval [a, b] with a < t1 < t2 < · · · < tm < b by simply ex-
tending both pieces at the end. (With this, the t1 and tm are not really

28 2. Preliminaries

knots but we continue to keep them in as part of the definition of piecewise
polynomials.) Piecewise constant functions are the simplest of all piecewise
polynomials. Piecewise polynomials of orders k = 2, 3, 4 are called piece-
wise linear, quadratic, and cubic polynomials, respectively. For example,
Figure 2.1 presents the piecewise linear and quadratic polynomials having
knots 1, 3, 4 and 6.

The description of a piecewise polynomial of order k having m knots
would require k(m + 1) coefficients since there are k coefficients in each of
the m + 1 polynomials.

2.1.3 Splines

A spline function of order k (or of degree k−1) having simple distinct knots

t1, t2, . . ., tm has the appearance shown in Figure 2.1. It is a k − 2 (for the
case k ≥ 2) times continuously differentiable piecewise polynomial of order
k with knots t1, t2, . . ., tm. For example, a spline function of order one is a
piecewise constant function, a linear spline (k = 2) is a continuous piecewise
linear function. A quadratic spline (k = 3) is a (continuously) differentiable
piecewise quadratic polynomial. (See Figure 2.1.) A cubic spline (k = 4) is
a piecewise cubic polynomial with continuous second derivatives.

A spline function of order k can be written in the following more conve-
nient form:

s(x) = a0 + a1x + a2x
2 + · · · + ak−1x

k−1 +

m∑

i=1

bi(x − ti)
k−1
+ , k ≥ 2,

where (a)+ denotes the nonnegative part of a number a: (a)+ = a for a ≥ 0;
0 otherwise. For example, the linear, quadratic and cubic splines having the
indicated knots are given by

s1(x) = a0 + a1x +

m∑

i=1

bi(x − ti)+,

s2(x) = a0 + a1x + a2x
2 +

m∑

i=1

bi(x − ti)
2
+,

s3(x) = a0 + a1x + a2x
2 + a3x

3 +

m∑

i=1

bi(x − ti)
3
+.

The coefficients presented in this form can be determined explicitly as a
function of s. More specifically, we can express s as

s(x) =

k−1∑

i=0

s(i)(t1)

i!
(x − t1)

i +

m∑

j=2

k−1∑

i=0

∆s(i)(tj)

i!
(x − tj)

i,

2.1 What is a Spline? 29

where ∆g(x) = g(x+) − g(x−) with g(x±) = limε→0 g(x ± ε), ε > 0. In
fact, let s(x) denote a spline function on [a, b] whose restriction to the first
interval [a, t2) is the polynomial given by

p(x) = s(t1)+s(1)(t1)(x−t1)+· · ·+
s(k−1)(t1)

(k − 1)!
(x−t1)

k−1 =

k−1∑

i=0

s(i)(t1)

i!
(x−t1)

i.

Then s(x) − p(x) vanishes for x < t2 and satisfies, by the definition of
splines,

s(j)(t2) − p(j)(t2) = 0, j = 0, 1, . . . , k − 2.

Since s − p is also a polynomial on the interval [t2, t3), the above implies
that s(x) − p(x) = b1(x − t1)

k−1 on [t2, t3). Here b1 satisfies s(k−1)(t2+) −
p(k−1)(t2+) = (k − 1)!b1, or b1 = [s(k−1)(t2+)− s(k−1)(t2−)]/(k − 1)! since
p(k−1)(t2+) = p(k−1)(t2−) = s(k−1)(t2−). Thus

s(x) − p(x) =

{
0, x < t2,
∆s(k−1)(t2)

(k−1)! (x − t2)
k−1, t2 ≤ x < t3,

so

s(x) = p(x) +
∆s(k−1)(t2)

(k − 1)!
(x − t2)

k−2
+

=
k−1∑

i=0

s(i)(t1)

i!
(x − t1)

i +
∆s(k−1)(t2)

(k − 1)!
(x − t2)

k−1
+ , x < t3.

Repeat this argument to obtain

s(x)−p(x)−
∆s(k−1)(t2)

(k − 1)!
(x− t2)

k−1
+ −· · ·−

∆s(k−1)(tm−2)

(k − 1)!
(x− tm−2)

k−1
+

=

{
0, x < tm−1,
∆s(k−1)(tm−1)

(k−1)! (x − tm−1)
k−1, tm−1 ≤ x.

In describing such a spline function, we need m+k coefficients: a0, a1, . . .,
ak−1, b1, b2, . . . , bm. This can be confirmed by noting that there are (m+1)k
coefficients from the polynomials, less m(k − 1) continuity constraints at
the interior knots. Thus the splines of order k with the indicated knots
form a linear space of dimension m + k. A basis for this space is provided
by

1, x, x2, . . . , xk−1, (x − t1)
k−1
+ , . . . , (x − tm)k−1

+ .

This is usually referred to as the truncated power basis.
Although splines can be expressed directly in terms of the truncated

power basis, it is known that such a representation can be highly ill-
conditioned. Consider, for example, the truncated power basis

1, x, x2, x3, x3
+, (x − 1)3+, (x − 2)3+

30 2. Preliminaries

for the space of cubic splines having knots at 0, 1, and 2. On the interval
[−1, 3], the basis function x3 can very accurately be approximated by a
linear combination of the remaining basis functions. That is, any attempt
to fit a linear regression using the above truncated power basis functions is
likely to run into the colinearity problem. See also de Boor (1978, p.104).
We will present in the next section another basis, consisting of B-splines. In
addition to possessing excellent numerical properties, B-splines also provide
a powerful tool for establishing theoretical properties.

2.1.4 B-splines: Definition

There are several ways to introduce B-splines. In this section, we consider
the approach starting with the recursive relationship as described in Kin-
caid and Cheney (1996, p. 392). The approach has the advantage of being
simpler and making it easier to understand the most important properties
of B-splines. The properties to be developed here are justified based on the
assumption that the knots are distinct. The numerical procedure, however,
can be easily modified to accommodate repeated knots. A more general ap-
proach to the construction of B-splines in which repeated knots are allowed
will be given in Section 2.6. Repeated knots occur in connection with free
knot splines, which are discussed in Chapter 12.

Consider the doubly infinite knot sequence · · · < t−2 < t−1 < t0 < t1 <
t2 < · · · . We start with the piecewise constant splines and use them as
building blocks for higher order splines.

B-splines of order 1

The simplest B-splines have the appearance shown in Figure 2.2 and are
defined by

B1
i (x) = 1[ti,ti+1)(x) =

{
1, ti ≤ x < ti+1,

0, otherwise.

Figure 2.2 presents a sequence of order-one B-splines having knots 0, 1, 3,
4, 7, 8, 9, 10. We observe that they have the following properties:

1. The support of B1
i is [ti, ti+1); that is, it takes two knots to construct

a B-spline of order one,

2. B1
i is non-negative for all x and i,

3. B1
i is continuous from the right on the entire line,

4.
∑

i B1
i (x) = 1 for all x.

These splines will be used to construct B-splines of order two: the linear
B-splines.

2.1 What is a Spline? 31

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {0,1}

•

• • • •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {1,3}

•

•

• • •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {3,4}

• •

•

• •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {4,7}

• • •

•

•

FIGURE 2.2. A sequence of order-one B-splines having knots {0, 1, 3, 4, 7}.

B-splines of order 2

The linear B-splines, denoted by B2
i (·), are constructed recursively from

those of order one according to

B2
i (x) =

x − ti
ti+1 − ti

· B1
i (x) +

ti+2 − x

ti+2 − ti+1
· B1

i+1(x), i = 0,±1,±2,

That is,

B2
i (x) =





x − ti
ti+1 − ti

, ti ≤ x ≤ ti+1,

ti+2 − x

ti+2 − ti+1
, ti+1 ≤ x ≤ ti+2,

i = 0,±1, . . . ,

and B2
i (x) = 0 for x < ti and for x > ti+2.

Figure 2.3 presents a sequence of linear B-splines with knots 0, 1, 3, 4, 7,
8, 9, 10. Note that it takes three knots to construct a linear B-spline. More

32 2. Preliminaries

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {0,1,3}

•

•

• • • •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {1,3,4}

• •

•

• • •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {3,4,7}

• • •

•

• •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {4,7,8}

• • • •

•

•

FIGURE 2.3. A sequence of linear B-splines having knots {0, 1, 3, 4, 7, 8}.

generally, we will show shortly that linear B-splines possess the following
properties:

1. The support of B2
i is (ti, ti+2);

2. B2
i is non-negative for all x and i;

3. B2
i is continuous on the entire line;

4.
∑

i B2
i (x) = 1 for all x.

We observe that linear B-splines have a wider support than the piecewise
constant ones. Moreover, they are unimodal.

2.1 What is a Spline? 33

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {0,1,3,4}

•

• •

• • • •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {1,3,4,7}

• •

•
•

• • •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {3,4,7,8}

• • •

• •

• •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {4,7,8,9}

• • • •

•

•

•

FIGURE 2.4. A sequence of quadratic B-splines having knots {0, 1, 3, 4, 7, 8, 9}.

B-splines of order k

In general, kth-order B-splines can be constructed recursively according to

Bk
i (x) =

x − ti
ti+k−1 − ti

· Bk−1
i (x) +

ti+k − x

ti+k − ti+1
· Bk−1

i+1 (x),

k = 2, 3, . . . , i = 0,±1,±2,

For examples, quadratic and cubic B-splines are constructed using the
above formula by setting k = 3, 4, respectively. Based on the same knots
considered previously, Figures 2.4 and 2.5 present a sequence of quadratic
and cubic B-splines. In these figures, we see that it takes two, three, four
and five knots to construct a B-splines of orders one, two, three and four,
respectively.

34 2. Preliminaries

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {0,1,3,4,7}

•
•

•

•

• • • •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {1,3,4,7,8}

• •

•

•

• • • •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {3,4,7,8,9}

• • • •

•

•
• •

0 2 4 6 8 10

0.
0

0.
4

0.
8

knots at {4,7,8,9,10}

• • • •

•

•

•

•

FIGURE 2.5. A sequence of cubic B-splines having knots {0, 1, 3, 4, 7, 8, 9, 10}.

2.1.5 Important properties of B-splines

Since B-splines will be used throughout the monograph as a basis for build-
ing extended linear models, it is essential to understand their properties.
This section compiles a list of the most important and relevant proper-
ties of B-splines that are used in this monograph. The reader is referred
to de Boor (1978), DeVore and Lorentz (1993), and Schumaker (1981) for
more in-depth treatments.

1. Support of B-splines: From the above examples, we have observed
that the supports of B-splines increase with the order. More formally,
starting with B1

i = 1[ti,ti+1),

Bk
i (x) = 0 for x 6∈ (ti, ti+k), k > 1, (2.1.1)

and
Bk

i (x) > 0 for x ∈ (ti, ti+k), k > 1. (2.1.2)

2.1 What is a Spline? 35

In fact, it is easy to see from the recursive formula that (2.1.1) is
valid for k = 2. We next show that it holds for the general case by
an inductive argument. Suppose it is true for k > 1. If x is outside
(ti, ti+k+1), then it is outside (ti, ti+k), and (ti+1, ti+k+1). By the
inductive hypothesis, Bk

i (x) = Bk
i+1(x) = 0. Hence, Bk+1

i (x) = 0
according to the recursive definition. The second statement follows
similarly.

This property shows that for a given x, there are only finitely many
nonzero B-splines at x. More specifically, only the k B-splines Bk

i−k+1,

Bk
i−k+2, . . . , B

k
i might be nonzero on [ti, ti+1).

2. Given a sequence of numbers {ck
i }, define

ck−1
i = ck

i

x − ti
ti+k−1 − ti

+ ck
i−1

ti+k−1 − x

ti+k−1 − ti
, k ≥ 1, i = 0,±1,

Set f(x) =
∑

i ck
i Bk

i (x). Then

f(x) =
∑

i

ck
i

[
x − ti

ti+k−1 − ti
· Bk−1

i (x) +
ti+k − x

ti+k − ti+1
· Bk−1

i+1 (x)

]

=
∑

i

[
ck
i

x − ti
ti+k−1 − ti

+ ck
i−1

ti+k−1 − x

ti+k−1 − ti

]
Bk−1

i (x)

=
∑

i

ck−1
i Bk−1

i (x)

= · · ·

=
∑

i

c1
i B

1
i (x).

This provides an efficient way to evaluate f(x) since f(x) = c0
i for

ti ≤ x < ti+1. The evaluation is usually carried out using the following
arrangement:

ck
i ck−1

i · · · c1
i

ck
i−1 ck−1

i−1 · · ·
... · · ·

ck
i−k+1

3.
∑

Bk
i (x) =

∑j

i=j+1−k Bk
i (x) = 1 for x ∈ [tj , tj+1]. In fact, from the

above recursive definition of ck−1
i , with ck

i = 1 for i = 0,±1,±2, . . . ,

ck−1
i = ck

i

x − ti
ti+k−1 − ti

+ ck
i−1

ti+k−1 − x

ti+k−1 − ti

= 1 ·
x − ti

ti+k−1 − ti
+ 1 ·

ti+k−1 − x

ti+k−1 − ti
= 1 for all i.

36 2. Preliminaries

It follows from induction that cj
i = 1 for all i and j = k, k − 1, . . . , 0.

4. Derivatives of B-splines:

d

dx
Bk

i (x) =
k − 1

ti+k−1 − ti
Bk−1

i (x) −
k − 1

ti+k − ti+1
Bk−1

i+1 (x).

This property can be verified directly by using the recursive defini-
tion. [See Kincaid and Cheney (1996, p.398) and Section 2.6.6.] The
result will be needed in showing that certain B-splines are linearly
independent.

5. The set {Bk
j−k+1, B

k
j−k+2, . . . , B

k
j } of B-splines is linearly indepen-

dent on (tj , tj+1).

The result is clearly true for k = 1. Supposing it is true for j = k, we
will show that it is also true for j = k + 1. Set s =

∑k

i=0 ciB
k+1
j−k+i

and suppose that s = 0 on (tj , tj+1). Then

0 = s′ = k

k∑

i=1

ci − ci−1

tj+i − tj−k+i

Bk
j−k+i on (tj , tj+1).

(Note that Bk
j−k = 0 = Bk

j+1 on (tj , tj+1).) By the inductive hypoth-

esis, the set {Bk
j−k+1, B

k
j−k+2, . . . , B

k
j } is linearly independent on the

interval (tj , tj+1), so c0 = c1 = · · · = ck. Denote this common value
by c. Then s(x) = c for all x. This implies that c = 0 since s(x) = 0
for all x.

6. The set {Bk
−k+1, B−k+2, . . . , B

k
m} of B-splines is linearly independent

on (t0, tm+1).

Set s =
∑m

i=−k+1 ciB
k
i and suppose that s = 0 on (t0, tm+1). By the

above property, {Bk
−k+1, B

k
−k+1, . . . , B

k
0} is linearly independent on

(t0, t1), so ci = 0 for i = −k + 1, . . . , 0. Suppose there exists the first
j ≥ 1 such that cj 6= 0. Then for any x ∈ (tj , tj+1) ⊂ (t0, tm+1),

0 = s(x) =

m∑

i=j

ciB
k
i (x) = cjB

k
j (x) 6= 0,

a contradiction. We conclude that ci = 0 for i = −k + 1, . . . , m.

7. On the interval [t0, tm+1], the set {Bk
−k+1, B−k+2, . . . , B

k
m} of B-

splines forms a basis for the space of all k-th order splines having
knots t1, t2, . . . , tm. That is, every k-th order splines s on [t0, tm+1]

can be written as s =
∑k+m

i=1 ciB
k
−k+i.

We first show that the dimension of the space of k-th order splines
on [t0, tm+1] is at most k + m by exhibiting a set of k + m functions

2.2 Function Approximation 37

that span that space. Recall that a spline function of order k defined
on [t0, tm+1] can be written as

s(x) = a0 + a1x + a2x
2 + · · · + ak−1x

k−1 +

m∑

i=1

bi(x − ti)
k−1
+ .

Thus the truncated power basis

1, x, x2, . . . , xk−1, (x − t1)
k−1
+ , . . . , (x − tm)k−1

+

spans the space of splines of order k defined on [t0, tm+1]. The desired
result follows from Property 6.

Property 7 is often used to motivate the use of the term B-splines,
B for “basis”. This property is very important, for a basis consisting
of B-splines yields more efficient and stable numerical procedures for
working with splines than does a truncated power basis.

8. B-splines of order two or higher are unimodal. See, for example, de
Boor (1978, p. 157).

2.2 Function Approximation

Even though we deal with noisy data in statistics, it is essential to under-
stand how a function is approximated from noisy-free data and to quantify
the properties of this approximation. The later usually enters the picture
of estimation through the bias term.

2.2.1 Properties of Polynomial Approximation

If the function being approximated is not continuous, there may be no
agreement at any given point except at the interpolating points. For ex-
ample, the Dirichlet function f is defined to be 1 for irrationals and zero
otherwise. If the interpolating points are chosen to be rationals, then the
interpolating polynomial is given by p(x) = 0 for all x, but f(x)−p(x) = 1
for irrational x. Thus continuity is essential in determining the quality
of approximation. But strange things can also happen even when f(·) is
continuous and possess continuous derivatives of all orders. Consider the
Runge function:

f(x) = 1/(1 + x2)

on the interval [−5, 5]. If we interpolate f using the polynomial pk of order
k based on k equally spaced points. Then

lim
k→∞

max
−5≤x≤5

|f(x) − pk(x)| = ∞.

38 2. Preliminaries

This example illustrates the danger of using high order polynomials in
approximation: requiring a polynomial to agree with the function at many
nodal points can significantly increase the error at non-nodal points.

Nevertheless, the error of interpolation can be described as follows. If pk

interpolates f at the k distinct nodes x1, x2, . . . , xk in [a, b] and if the k-th
derivative f (k) is continuous, then

|f(x) − pk(x)| ≤
1

4k
max

a≤x≤b
|f (k)(x)|

(
b − a

k − 1

)k

, k > 1.

2.2.2 Why Splines?

It is well known that splines have better approximation properties than
polynomials. In fact, the above Runge function has been shown to be bet-
ter approximated by spline functions. To appreciate this statement without
going too deeply into the details of function approximation, the most ef-
fective tool is Jackson’s theorem on the distance of a function to the space
of polynomials. We start with a few definitions.

The modulus of continuity of a function f on [a, b] is defined by

ω(f ; δ) = max{|f(x) − f(y)| : |x − y| ≤ δ, x, y ∈ [a, b]}, δ > 0.

The distance from f to the space of polynomials Pk of order at most k is
defined by

dist(f, Pk) = inf{‖f − g‖∞ : g ∈ Pk},

where
‖f‖∞ = sup

x

|f(x)|.

Suppose f possesses r continuous derivatives on the interval [a, b], and
k > r +1. It can be shown that there is a constant Cr depending on r such
that

dist(f, Pk) ≤ Cr

(b − a

k − 1

)r

ω
(
f (r),

b − a

2(k − 1 − r)

)
.

The above result is referred to as Jackson’s theorem. See, for example,
Rivlin (1969), p. 23. It is known that this bound is sharp (de Boor, p. 34).
The only way to reduce the error is to shrink the factor (b− a)/(k − 1) by
either making (b − a) smaller or increasing the order k of the approximat-
ing polynomial. The latter option is not desirable as discussed in the last
section. Since the interval [a, b] is given, the only way to reduce the error is
to partition it into smaller intervals and apply polynomial approximation
on each of these intervals.

Using m partitioned intervals has the same effect as utilizing the poly-
nomial of order km as far as the bound is concerned. This amounts to
a m-fold increase in the degrees of freedom. But the degrees of freedom
enter the picture of approximation differently. Evaluating a polynomial of

2.2 Function Approximation 39

order km requires km coefficients and basis functions whose complexity in-
creases with km, while the evaluation of a piecewise polynomial function of
order k and m segments involves only k +1 coefficients and a local basis of
fixed complexity regardless of the value of m. This structural difference also
strongly influences the construction of approximations, which requires the
solution of a full system involving polynomials and usually only a banded
system in the case of piecewise polynomials.

2.2.3 Why B-splines?

It was demonstrated in Section 2.1.5 that a basis for the space of splines
of order k having knots t1, t2, . . . , tm is provided by B-splines of order k
constructed with the indicated knots. That is, any spline of order k can be
expressed as a linear combination of B-splines.

In addition to being a useful and powerful tool in spline theory, B-splines
have another desirable property in that their support consists of a small
fixed, finite number of intervals between knots. The practical implication is
that these basis functions provide a stable numerical method for evaluating
splines. For example, in the regression context, the B-spline representation
yields a banded design matrix which is more efficient in computation than
the design matrix corresponding to the truncated power basis.

Moreover, to describe and explain the data better, it is necessary to
modify the construction of the basis functions by tailoring them to certain
features of the problem being considered. This can be carried out effec-
tively using the B-spline approach, both numerically and methodologically.
For examples, to consider the tail behavior of the density estimate as de-
scribed in Chapters 6, it will be useful to modify the basis by utilizing
cubic splines with linear tails. To enhance its flexibility in fitting various
hazard functions in survival analysis considered in Chapter 7, special bases
are introduced to describe the behavior near the time point at zero as well
as the tail. In handling the estimation of line spectra involving stationary
time series analysis, special basis functions are needed in estimating the
spectral density function of time series, which is discussed in Chapter 8.

2.2.4 Distance from a function to a spline space

One of our objectives is to recover the function of interest from a set of
noisy data by using spline approximation. The performance of this proce-
dure is normally quantified in terms of the bias and the variance of the
estimate. In this section, we will consider the description of the former by
presenting one of the numerical properties of splines in approximating func-
tions. Specifically, we will establish the fact that the distance between the
function of interest and the space of polynomial splines is dominated by the
size of the inter-distances between knots. This distance will be described in
later chapters of this monograph as the bias of the spline based estimate.

40 2. Preliminaries

Let f denote a real-valued function defined on the interval [a, b]. For a
non-negative integer m and a list of distinct numbers a = t0 < t1 < t2 <
· · · < tm < tm+1 = b, the space Sk

m of kth order polynomial splines on
[a, b] with the knot sequence {t1, t2, . . . , tm} will be described in terms of
the kth order B-splines {Bk

i } as discussed in Section 2.1.4 using the doubly
infinite knot sequence {ti, i = 0,±1,±2, . . .}. According to Property 7 of
Section 2.1.5, {Bk

−k+1, B
k
−k+2, . . . , B

k
m} is a basis for the linear space Sk

m.
Let δ = max{|tj+1 − tj | : j = 0, 1, . . . , m} denote the size of the inter-

distances between knots. In order to find an upper bound to dist(f, Sk
m), the

distance from the function f to the space Sk
m, we need a simple property

concerning the modulus of continuity ω(f ; δ): If f is differentiable and
|f ′| ≤ M on [a, b], then by the mean value theorem,

ω(f ; δ) ≤ δ sup
a≤x≤b

|f ′(x)| ≤ Mδ.

Now we proceed to establish such a bound by starting with a key member
of Sk

m. Choose any point xi from the intersection of the support of Bk
i with

[a, b], i = −k + 1,−k + 2, . . . , m, and set

s =

m∑

i=−k+1

f(xi)B
k
i ∈ Sk

m.

To see the role of this element, we take a point z from one of the intervals
[tj , tj+1] in [a, b]. Property 1 of Section 2.1.5 implies that z belongs to the
supports only of Bk

j−k+1, . . . , B
k
j and |z − xi| ≤ kδ for i = j − k + 1, . . . , j.

It follows from Properties 1 and 3 of Section 2.1.5 that

|s(z) − f(z)| =
∣∣∣
∑

[f(xi) − f(z)]Bk
i (z)

∣∣∣

≤

j∑

i=j−k+1

|f(xi) − f(z)|Bk
i (z)

≤ ω(f, kδ).

Since z is arbitrary, we have ‖s − f‖∞ ≤ ω(f, kδ). Therefore,

dist(f, Sk
m) ≤ ω(f, kδ). (2.2.1)

For a continuously differentiable function f on [a, b] and s ∈ Sk
m, using the

simple property of the modulus of continuity mentioned above and (2.2.1),
we get that

dist(f, Sk
m) = dist(f − s, Sk

m) ≤ ω(f − s, kδ) ≤ kδ‖f ′ − s′‖∞.

As s ranges over Sk
m, s′ ranges over Sk−1

m . By taking the infimum over s,
we conclude that

dist(f, Sk
m) ≤ kδ · dist(f ′, Sk−1

m).

2.3 Tensor products of splines 41

Suppose r < k < m. If f ∈ Cr[a, b], then by repeating the above argument
(r − 2) times, we have

dist(f, Sk
m) ≤ k(k − 1) · · · (k − r + 2)δr−1dist(f (r−1), Sk−r+1

m)

≤ k(k − 1) · · · (k − r + 2)δr−1ω(f (r−1), (k − r + 1)δ)

≤ k(k − 1) · · · (k − r + 1)δr‖f (r)‖∞.

This result indicates that the bias of the splines based estimates is
dist(f, Sk

m), and is dominated by the size of the inter-distance δ of the
knots.

2.3 Tensor products of splines

Up to now splines have been discussed for one dimensional data. It is possi-
ble to define splines in higher dimensions. There are multivariate version of
B-splines, which are piecewise polynomials having compact support. Typi-
cally, we will use tensor products of B-splines. See Chapter 9 for a different
approach.

2.3.1 Tensor products of linear spaces

Given functions g1 on X1 and g2 on X2, their tensor product g1 ⊗ g2 is
the function g1(x1)g2(x2) on X1 × X2. Given linear spaces G1 and G2 of
functions on X1 and X2, respectively, their tensor product G1 ⊗ G2 is the
linear space spanned by g1 ⊗ g2 as g1 runs over G1 and g2 runs over G2.

More generally, given functions g1, g2, . . . , gM on X1,X2, . . . ,XM respec-
tively, their tensor g1 ⊗ · · · ⊗ gM is the function g1(x1)g2(x2) . . . gM (xM)
defined on X1 × · · · ×XM . Given linear spaces G1, G2, . . . , GM of functions
on X1,X2, . . . ,XM , respectively, their tensor product G1 ⊗ G2 ⊗ · · · ⊗ GM

is the linear space spanned by g1 ⊗ g2 ⊗ · · · ⊗ gM as gi runs over Gi for
i = 1, 2, . . . , M .

If Gi has dimension di and that {Bi1, . . . , Bidi
} is a set of basis functions

in Gi, i = 1, 2, . . . , M , then

{B1i1 ⊗ · · · ⊗ BMiM
: 1 ≤ ij ≤ dj , 1 ≤ j ≤ M}

is a set of basis functions of G1 ⊗ G2 ⊗ · · · ⊗ GM .

2.3.2 Tensor products of B-splines

Let Gj denote a dj-dimensional linear space of splines on the real line,
j = 1, 2, . . . , M . Then G1 ⊗ G2 ⊗ · · · ⊗ GM is the linear space spanned
by the tensor products g1 ⊗ · · · ⊗ gM of functions in Gj , j = 1, . . . , M ,

42 2. Preliminaries

 0
2

4
6

8
10

 0
2

4
6

8
10

 0
0.

10
.2

0.
30

.4
0.

5

 0
2

4
6

8
10

 0
2

4
6

8
10

 0
0.

1
0.

2
0.

3
0.

4

 0
2

4
6

8
10

 0
2

4
6

8
10

 0
0.

1
0.

2
0.

3
0.

4

 0
2

4
6

8
10

 0
2

4
6

8
10

 0
0.

10
.2

0.
30

.4
0.

5

FIGURE 2.6. Tensor products of the cubic B-splines in Figure 2.5 with the cubic

B-spline with knots {1, 3, 4, 7, 8}.

respectively. If {Bi1, . . . , Bidi
} is the set of B-splines in Gi, i = 1, 2, . . . , M ,

then

{B1i1 ⊗ · · · ⊗ BMiM
: 1 ≤ ij ≤ dj , 1 ≤ j ≤ M}

is a set of basis functions of G1⊗G2⊗· · ·⊗GM . We refer to B1i1⊗· · ·⊗BMiM
,

where 1 ≤ ij ≤ dj for 1 ≤ j ≤ M , as tensor product B-splines.

2.3.3 Approximation properties

Waiting for Schumaker’s book, it’s been missing ... the lib has re-ordered.

2.4 Concavity 43

2.4 Concavity

This section is devoted to the description of concavity, which plays an
important role in optimization for maximum likelihood estimation. One of
the most striking consequences of imposing concavity in a problem is that
a local maximum is also a global maximum. Due to the geometric nature
of concavity, we start with the concave function involving one variable and
then proceed to higher dimensions.

2.4.1 One-dimensional case

Even though our applications will be in the context of high dimensional
parameter spaces, there are several reasons to examine the one-dimensional
case.

• Concavity is essentially a one-dimensional concept since it involves a
straight line connecting two points.

• For theoretical and methodological purposes, it is necessary to study
the one-dimensional trace t 7→ f(x + td), t ∈ R, thoroughly.

Let f denote a real-valued function on R. Then f is said to be concave

if for every a, b in R, the line segment connecting the points (a, f(a)) and
(b, f(b)) is never above the graph of f . See Figure 2.7. In other words, f is
concave if

f(ta + (1 − t)b) ≥ tf(a) + (1 − t)f(b), 0 ≤ t ≤ 1, a, b ∈ R.

It is said to be strictly concave if

f(ta + (1 − t)b) > tf(a) + (1 − t)f(b), 0 < t < 1, a, b ∈ R with a 6= b.

Let a < b < c. From

b =
c − b

c − a
a +

b − a

c − a
c

and the concavity of f , we see that (Figure 2.7)

f(b) − f(a)

b − a
≥

f(c) − f(a)

c − a
≥

f(c) − f(b)

c − b
, a < b < c. (2.4.1)

For a fixed number x, it follows from the above inequality that the quotient
function q defined on a neighborhood of 0 by

q(h) = (f(x + h) − f(x))/h, h 6= 0

is non-increasing. Thus the derivatives from the left and the right, f ′
− and

f ′
+, exist and

f ′
−(x) = lim

h↑0
q(h) = inf{q(h) : h < 0}

≥ sup{q(h) : h > 0} = lim
h↓0

q(h) = f ′
+(x).

44 2. Preliminaries

•

••

•

•

•

x

f(x
)

FIGURE 2.7. Concave function.

Moreover, for a < b, (2.4.1) shows that

f ′
+(a) ≥

f(b) − f(a)

b − a
≥ lim

c↓b

f(c) − f(b)

c − b
= f ′

+(b). (2.4.2)

That is, f ′
+ and f ′

− are non-increasing on R.
Let a ≤ x < y ≤ b and set M = max{|f ′

−(a)|, |f ′
+(b)|}. Then

−M ≤ f ′
+(b) ≤ f ′

+(y) ≤
f(x) − f(y)

x − y
≤ f ′

−(x) ≤ f ′
−(a) ≤ M.

Thus

|f(x) − f(y)| ≤ M |x − y|.

It follows from this that a concave function also satisfies the Lipschitz
condition.

In summary, a concave function is continuous and differentiable from the
left and the right.

2.4 Concavity 45

2.4.2 Multi-dimensional case

All the above results hold analogously in higher dimensional space. Let f
denote a real-valued function on Rm. Then f is said to be concave if for
every a, b, the line segment connecting the points (a, f(a)) and (b, f(b))
is never above the graph of f . In other words, f is concave if

f(ta + (1 − t)b) ≥ tf(a) + (1 − t)f(b), 0 ≤ t ≤ 1.

f is strictly concave if

f(ta + (1 − t)b) > tf(a) + (1 − t)f(b), 0 < t < 1 with a 6= b.

Another method for recognizing concavity will be given in Section 2.4.3.

2.4.3 Checking concavity

For the applications to be described in this monograph, we will be consid-
ering statistical modeling problems involving twice differentiable likelihood
functions. Thus it is natural to consider twice differentiable concave func-
tions.

According to (2.4.2), the derivative of a concave function is non-increasing.
It turns out that the converse is also true, which provides an easy way to
detect concavity. In fact, if f is differentiable and f ′ is non-increasing, then
f is concave on R. For if f is not concave, there exists a < x < b such that

f(x) <
b − x

b − a
f(a) +

x − a

b − a
f(b).

This is equivalent to

f(x) − f(a)

x − a
<

f(b) − f(x)

b − x
.

Now apply the Mean Value Theorem to each of the intervals [a, x] and [x, b]
to see that there exist a < ξ < x < η < b such that f ′(ξ) < f ′(η). Thus f ′

fails to be non-increasing on R. This result provides a simple way to check
concavity. That is, a function f is concave on R if it has nonpositive second
derivative on R.

The multi-dimensional case can be handled similarly. Recall that the
gradient of a function f is the m-dimensional vector:

∇f(x) =

(
∂f

∂x1
,

∂f

∂x2
, · · · ,

∂f

∂xm

)T

, x = (x1, . . . , xm)T ∈ R
m.

46 2. Preliminaries

The Hessian of f at x is the m × m matrix:

H(x) =




∂2f

∂x1∂x1

∂2f

∂x1∂x2
· · ·

∂2f

∂x1∂xm

∂2f

∂x2∂x1

∂2f

∂x2∂x2
· · ·

∂2f

∂x2∂xm

...
...

...
...

∂2f

∂xm∂x1

∂2f

∂xm∂x2
· · ·

∂2f

∂xm∂xm




.

If f is concave, then H is non-positive definite; that is,

xT H(x)x ≤ 0, x ∈ R
m.

Conversely, if H is negative definite in the sense that

xT H(x)x < 0, x ∈ R
m with x 6= 0,

then f is strictly concave. These results follow because if a function is
concave on Rm, then its restriction to any line is also concave. The above
condition for checking concavity turns out to be very convenient in verifying
the concavity of the log-likelihood functions for various applications to be
discussed later in this monograph.

2.4.4 Existence and the uniqueness of the maximum

Concavity is a remarkable property for working with a class of problems in
which the maximum of a function is used for the determination of certain
properties, either in estimation or in model formulation. It will be seen
below that a simple condition will ensure the existence of the maximum
of a concave function. But it is not necessarily true that the maximum of
a concave function exists. The logarithm function is such an example. See
Figure 2.8.

A necessary and sufficient condition for the existence of the maximum
of a concave function is that its gradient vector vanishes at some point in
the domain of that function. That is, ∇f(x) = 0 for some x. This can be
seen as follows. According to the definition of the directional derivative and
concavity:

∇f(x)T (y − x) = lim
t↓0

f(x + t(y − x)) − f(x)

t

≥ lim
t↓0

tf(y) + (1 − t)f(x) − f(x)

t

= f(y) − f(x).

2.4 Concavity 47

x

lo
g(

x)

0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

FIGURE 2.8. Concave function.

Or,
f(y) ≤ f(x) + ∇f(x)T (y − x), x, y ∈ R

m.

This implies that if f is concave and ∇f(x) = 0, then x is a maximum
point of f .

A strictly concave function f has at most one maximum point; that is,
there is at most one point x0 ∈ R

m such that f(x0) = maxx∈Rm f(x).
Suppose f has a maximum point x0. Then there is a positive number ε
such that

f(x) ≤ f(x0) − ε, x ∈ R
m with |x − x0| = 1;

here

|x| =
√

x2
1 + · · · + x2

m, x = (x1, . . . , xm)T .

It now follows from the concavity of f that

f(x) ≤ f(x0) − ε|x − x0|, x ∈ R
m with |x − x0| ≥ 1,

and hence that
lim

|x|→∞
f(x) = −∞. (2.4.3)

48 2. Preliminaries

Conversely, if f is concave and satisfies (2.4.3), then it has a maximum
point.

Let f now be a concave function such that

lim
s→∞

f(sx) = −∞, x ∈ R
m with x 6= 0. (2.4.4)

Then f has a maximum point. To verify this result, set B = {x ∈ Rm :
|x| = 1 } and Bn = {x ∈ B : f(nx) < f(0) − 1 }. It follows from the
concavity of f that B1 ⊂ B2 ⊂ Since f is continuous, Bn is an open
subset of B for n ≥ 1. It follows from (2.4.4) that ∪n≥1Bn = B. Since B is
compact, there is a positive integer n such that Bn = B1∪ . . .∪Bn = B and
hence f(nx) < f(0) − 1 for x ∈ B. Arguing as in the previous paragraph,
we conclude that (2.4.3) holds and hence that f has a maximum point.

We will see that (2.4.4) is easily satisfied in a wide variety of applications
described in this monograph.

2.5 Optimization

In previous sections we discussed properties of a concave function and some
of their useful consequences. The most important feature is the uniqueness
and the existence of the maximum of the concave likelihood function. Our
theoretical and methodological developments rely on this to address the
identifiability issue in estimation. In practical applications, however, the
existence is not enough as the likelihood function may be so flat that lo-
cating the optimal solution can be immensely difficult, especially in high
dimensional situations. This section is devoted to address the problem of
finding the maximum of a function. Here is a brief overview. The Newton–
Raphson procedure with good starting values is quite efficient in most of
our applications. Occasionally step halving in the search direction is needed
to improve its efficiency. One exception is the polychotomous regression to
be discussed in Chapter 5.

The function that we want to maximize is called the objective function.
In our applications to be discussed later, this will be described in the form
of a log-likelihood function. Maximum likelihood estimates are obtained
by maximizing this function. This problem can be described formally as
follows. Let f denote a concave function on Rm and suppose that the
maximum of the function exists. We want to locate β̂ ∈ Rm so that

f(β̂) = max{f(β) : β ∈ R
m}.

The literature for optimization is huge and here we give a brief account of
the subject to help our readers understand the methodology discussed in
later chapters. A point of entry to numerical optimization in statistics is
Kennedy and Gentle (1980). Recent accounts can be found in Polak (1997),
Nocedal and Wright (1999).

2.5 Optimization 49

2.5.1 Preview of the methods

In general, the optimal solution can be only approximated by iterative
method. Since our applications will be based on a smooth objective func-
tion (that is, the log-likelihood function), we will focus on methods that
utilize the function itself, the first and second derivatives. Within this class,
there are several algorithms that are distinguished by their strategy in mov-
ing one iteration to the next. Some procedures accumulate information
collected at previous steps, while others use only local information from
the current iteration. Neverthless all reliable algorithms should possess the
following properties:

• Robustness. They should perform well on a wide variety of situations,
under reasonable choices of the starting values.

• Efficiency. The required computing time should be as little as possi-
ble, without sacrificing a lot of storage space.

• Accuracy. They should be able to produce a solution with high pre-
cision, without being overly sensitive to noise in the data or to the
computer rounding errors.

An approach that fits these descriptions well is the line search method.
Typically, we start with an initial guess β0 and proceed to search for a
direction d0 that yields a reasonable ascent or climb, and then determine
how far we should go along this direction. This distance, λ0, will be selected
to maximize or close to maximize the function at the new location given by
β1 = β0 + λ0d0. Upon arriving at β1, a new direction d1 and step size λ1

will be chosen to optimize the ascent. The new location is then computed
according to β2 = β1 + λ1d1. The iteration process, which is summarized
by

βj+1 = βj + λjdj , j ≥ 0,

repeats until no more ascent can be achieved. (This is governed by a stop-
ping rule to be discussed later.) Here dj is the step direction at the jth
step, the step size λj is the distance along this direction before stopping.
Computation at the jth step consists of the determination of these two
quantities. That is, any optimization involving dimensionality greater than
two will consist of a one-dimensional optimization problem and the search
for good directions in the high dimensional space. A good procedure will
ensure that the final location is in the vicinity of the optimal solution β̂.

How are we going to search for the step direction? We address this issue
by finding a simple condition that will ensure that the function increases.
To motivate this, we say that a direction dj is acceptable if the function
climbs up along that direction. That is, f(βj + λjdj) > f(βj) for some
λj > 0. According to a Taylor’s expansion (up to the linear term),

f(βj + λjdj) = f(βj) + ∇f(βj + λ̄jdj)
T λjdj , for some 0 < λ̄j < λj ;

50 2. Preliminaries

the acceptability condition amounts to requiring that ∇f(βj + λ̄jdj)
T dj >

0. If f is continuously differentiable and λj is sufficiently small, then ∇f(βj+

λ̄jdj)
T dj ≈ ∇f(βj)

T dj . Thus dj is acceptable if

∇f(βj)
T dj > 0. (2.5.1)

Incidentally, ∇f(β)T d is the directional derivative of f at β with respect
to the direction d:

d

dλ
f(β + λd)

∣∣∣∣
λ=0

= ∇f(β)T d.

In other words, any direction that yields a positive directional derivative is
acceptable.

The above analysis provides a simple way to determine a search direction
at a given iteration. That is, to find a direction that satisfies (2.5.1), it is
sufficient to search it in the form given by

d = B∇f(β), where B is a positive definite matrix. (2.5.2)

It turns out that such a condition is not only sufficient, it is also necessary.
In fact, if (2.5.1) holds, then B = I − ∇f(β)∇f(β)T /∇f(β)T∇f(β) +
ddT /dT∇f(β) is positive definite and satisfies d = B∇f(β).

The choice of the matrix B in practice has led to the following popular
methods.

• The gradient or the steepest ascent method is obtained by setting
B = I .

• The Newton–Raphson (NR) method is obtained by using B = −H−1,
where H is the Hessian matrix of f .

• Quasi-Newton method is obtained when B is generated by the adding
a rank one or rank two symmetric matrix. This popular method is also
known as the Davidon–Fletcher–Powell (DFP) when the update is
carried out by using a rank-one matrix, while it is called the Fletcher-
Powell-Gofarb-Shanno (FPGS) method when a rank-two matrix is
used.

• A related popular method that does not belong to this group is called
the conjugate gradient method, which was originally developed to
solve a large system of linear equations.

Here is a quick comparison of these methods: The steepest ascent is
slowest method among the competitors. NR is effective when there is good
initial guess and the computation of the Hessian matrix is easy. Quasi-
Newton uses the secant method to approximate the Hessian used in the

2.5 Optimization 51

NR method, and it is useful when the latter is difficult to compute. The
conjugate gradient method is faster than steepest ascent, though it is not as
fast as the Newton-Raphson method. It can be useful when the dimension-
ality of the problem is large or the storage of the Hessian matrix becomes
an issue.

We should remark that the provision of a decent initial value is prob-
lem specific. It is very important that such initial value be as accurate as
possible. A bad initial value may not lead to the optimal solution.

Before describing these methods in greater detail, it is helpful to review
what efficiency means.

Efficiency.

It will be helpful to discuss the efficiency of the above methods in terms
of rates of convergence. A sequence βj is said to converge to the optimal

solution β̂ if limj ‖βj − β̂‖ = 0. It is said to converge super-linearly if

lim
j→∞

‖βj+1 − β̂‖

‖βj − β̂‖
= 0.

It is said to converge quadratically iff

lim
j→∞

‖βj+1 − β̂‖

‖βj − β̂‖2
= c ∈ R.

Quadratically convergence is a nice property in the sense that the num-
ber of significant digits is doubled at each iteration. For example, suppose
the error in the current iteration is 10−4, a quadratic convergence method
would produce an error of 10−8 in the next iteration. Quadratic convergence
is currently the benchmark for optimization algorithms, but achieving it is
not always feasible. Consequently, most accounts for large scale problems
would view super-linear convergence as acceptable.

2.5.2 Gradient Methods – steepest ascent

It was observed in the last section that the function f climbs if ∇f(βj +

λ̄jdj)
T dj ≈ ∇f(βj)

T dj > 0. By the Cauchy-Schwarz inequality, the amount
of ascent (ignoring the step size) is given by

|∇f(βj)
T dj | ≤ ‖∇f(βj)‖ · ‖dj‖

with equality if and only if dj is a multiple of ∇f(βj). This implies that
the steepest ascent direction is given by dj = ∇f(βj), which is of the form
(2.5.2) with B = I , the identity matrix. This search direction method is
referred to as steepest ascent in the literature.

52 2. Preliminaries

The method is normally coupled for the search of optimal step size.
Specifically, suppose we start with the initial position β0 and the direction
g0 = ∇f(β0), and iterate according to

βj+1 = βj + λjgj , where gj = ∇f(βj), j ≥ 0,

with λj satisfying

φ′(λj) =
d

dλ
f(βj + λgj)

∣∣∣∣
λ=λj

= ∇f(βj + λjgj)
T gj = 0.

That is, the step size is maximized during each iteration. In this case,
steepest ascent method is said to be exact. Note that gj+1 := ∇f(βj+1) =
∇f(βj + λjgj) is perpendicular to gj .

Unfortunately, steepest ascent method is sensitive to small deviations in
direction and step size, so these quantities must be computed with rela-
tively high accuracy. See Kennedy and Gentle (1980, p.440). Moreover, the
method is very inefficient, requiring a large number of steps which produces
a zigzag pattern as indicated in trying to find the maximum of the func-
tion f(β1, β2) = −β2

1 − cβ2
2 , c > 0. It can be easily seen that if the current

iteration is of the form βj = a(c,±1)T , then the next one is given by

βj+1 = a
c − 1

c + 1
(c,∓1)T ,

that is, the error is reduced by the factor (c − 1)/(c + 1). For example, if
c = 100 and the starting value is β0 = (1, 0.01)T , then after 100 iterations,

β100 =

(
c − 1

c + 1

)100

(1, 0.01)T = (0.135..., 0.00135...).

The steepest ascent is usually used to supply initial values since it tends
to make good progress initially and then slows down as the iteration ap-
proach a solution.

2.5.3 Newton–Raphson Method

This is probably the most popular method for numerical optimization. It
requires the computation of the gradient vector and the Hessian matrix,
which may be important for likelihood based estimation, where the stan-
dard errors of the estimates are computed through the Hessian matrix.
While steepest ascent is using the Taylor’s formula only up to the linear
term, the Newton–Raphson method is based on the quadratic approxima-
tion given by

f(β + d) ≈ f(β) + ∇f(β)T d +
1

2
dT H(β)d,

2.5 Optimization 53

where H is negative definite. Maximize the above function to yield

0 = ∇f(β) + H(β)d.

The optimal direction, called the Newton direction, is given by

d = −[H(β)]−1∇f(β),

which is (2.5.2) with B = −H−1 and λ = 1. Thus the iteration process can
be described by

βj+1 = βj −H(βj)
−1∇f(βj), j ≥ 0.

Under appropriate conditions, if the sequence {βj} converges, it converges

to β̂. This is usually summarized as follows. Suppose f is continuously
differentiable in an open convex set of Rm, its Hessian is Lipschitz and the
inverse is also bounded. Suppsose ∇f has a zero over that set. Then the
sequence is well defined, converges to the zero of ∇f quadratically. In the
following discussion, it will be helpful to examine the practical implications
of this important result.

1. It is known that this method is very sensitive to the initial values. In
order to ensure convergence, it may be helpful to modify the Newton–
Raphson method using the step-halving procedure by shrinking back
the step-search appropriately. See Section 2.5.7 for more detail.

2. The computation of the Hessian matrix is required. This is one of
the weaknesses of the method. Namely, in some problem such a com-
putation can be tedious and is error-prone. For large scale problems,
the computational time and the storage of the Hessian can be serious
obstacles.

3. It requires m2 function evaluations of the Hessian matrix and m eval-
uations of the gradient vector.

4. The next direction requires O(m3) operations in solving the Newton
equation

5. This method is very efficient if one can overcome the above issues.
This efficiency is described in terms of quadratic convergence: the it-
erates converge to the true maximum quadratically. In other words,
the number of significant digits in βk as an approximation to β̂ dou-
bles at each iteration once it is near the optimal value. We illustrate
this using the algorithm for the one-dimensional case:

λj+1 = λj − φ′(λj)/φ′′(λj).

Set f = φ′ ∈ C2 so that f(λ) = 0. Then there is a neighborhood of
λ and a constant c such that if Newton’s method is started in that

54 2. Preliminaries

neighborhood, the successive points become steadily closer to λ and
satisfy

|λj+1 − λ| ≤ c|λj − λ|2.

To see this, set ej = λj − λ. Then

ej+1 = λj+1 − λ = λj − f(λj)/f ′(λj) − λ = ej − f(λj)/f ′(λj).

By Taylor’s Theorem,

0 = f(λ) = f(λj − ej) = f(λj) − ejf
′(λj) +

1

2
e2

jf
′′(ξj),

where ξj is between λj and λ. Rearranging

ej − f(λj)/f ′(λj) =
1

2

f ′′(ξj)

f ′(λj)
e2

j .

Thus

ej+1 =
1

2

f ′′(ξj)

f ′(λj)
e2

j = const. × e2
j ,

which is a quadratic convergence.

Most of our applications have the Hessian matrix computed explicitly.
With moderate m and appropriately chosen starting values, the Newton–
Raphson method has been very effective. However, the efficiency decreases
with increasing dimensionality m due to the computation of the of the
Hessian matrix and the cost for solving the system of linear equations. See
Chapter 5 for details. In this situation, it may be helpful to consider the
modified Newton methods, which will be discussed next.

2.5.4 Quasi-Newton Method

In an attempt to perform a large optimization computation, a physicist
W. C. Davidon in the mid 1950s developed an idea to approximate the
error-prone Hessian matrix used in the Newton–Raphson method. His idea
can be described as follows. At the ith iteration, the objective function is
approximated by the quadratic model:

mi(d) = fi + gT
i d +

1

2
dT Bid,

where fi and gi are the function and the gradient values at βi, and Bi is an
m×m symmetric negative definite matrix that will be updated during the
iteration process. Maximize the function mi to obtain the updated search
direction:

di = −B−1
i gi.

2.5 Optimization 55

The new iterate is
βi+1 = βi + λidi,

where the step size λi is along the direction di given by

φ′(λi) =
d

dλ
f(βi + λdi) = ∇f(βi + λdi)

T di = 0.

To obtain the update Bi+1 from Bi, construct a quadratic model of the
form

mi+1(d) = fi+1 + gT
i+1d +

1

2
dT Bi+1d

so that its gradient matches the gradient of f at βi and βi+1. The second
condition is clearly satisfied since ∇mi+1(0) = gi+1. The first condition is
satisfied if

∇mi+1(−λidi) = gi+1 − λiBi+1di = gi.

That is,
λiBi+1di = Bi+1(xi+1 − xi) = gi+1 − gi.

Set
ri = βi+1 − βi, yi = gi+1 − gi.

Then we obtain the so-called secant equation:

Bi+1ri = yi. (2.5.3)

This relationship indicates that the quasi-Newton method actually employs
a discrete approximation of the Hessian matrix using the secant method.

We now derive the popular Davidon–Fletcher–Powell (DFP) and Broyden–
Fletcher–Goldfarb–Shanno (BFGS) updated formulas. We start with the
symmetric rank-one update method, follow with the rank-two method,
which then yields the desired updated formulas for the Hessian and its
inverse.

Symmetric rank-one update:

Start with a symmetric matrix B0 (say, the identity matrix), then update
it according to

Bi+1 = Bi + ziz
T
i , i ≥ 1,

where zi is selected to satisfy (2.5.3). Now multiply the above by ri and
use (2.5.3) to get

zi(z
T
i ri) = yi −Biri,

so that
(zT

i ri)
2 = (yi −Biri)

T ri.

Consequently,

Bi+1 = Bi +
(yi −Biri)(yi −Biri)

T

(yi −Biri)T ri

.

56 2. Preliminaries

Although one can obtain the inverse of the Hessian matrix using the
Sherman–Morrison–Woodbury formula, we prefer to derive it using the
above idea since it will provide insight for the methods to be discussed
later. Start with a symmetric G0, then update it according to

Gi+1 = Gi + ziz
T
i , j ≥ 1,

where zi is chosen to satisfy

Gi+1yi = ri.

By an argument similar to the one given above, we obtain the updated
formula for the inverse of the Hessian matrix:

Gi+1 = Gi +
(ri −Giyi)(ri −Giyi)

T

(ri −Giyi)
T yi

.

Symmetric rank-two update:

This method is developed by expanding the updated formula for Gi+1:

Gi+1 = Gi + a1rir
T
i + a2(Giyi)(Giyi)

T + a3[ri(Giyi)
T + (Giyi)r

T
i].

Simplify by dropping the asymmetric terms, yielding

Gi+1 = Gi + a1rir
T
i + a2(Giyi)(Giyi)

T .

Now determine the coefficients a1 and a2 to ensure that Gi+1yi = ri. From

ri = Giyi + a1(r
T
i yi)ri + a2[(Giyi)

T yi](Giyi)

we see that setting a1 = 1/rT
i yi and a2 = −1/(Giyi)

T yi would meet the
requirement. Thereby we obtain the well-known Davidon–Fletcher–Powell
(DFP) updated formula for the inverse of the Hessian matrix:

Gi+1 = Gi +
rir

T
i

yT
i ri

−
(Giyi)(Giyi)

T

yT
i Giyi

.

Using the same reasoning, the (BFGS) updated formula for the Hessian
matrix is given by

Hi+1 = Hi +
yiy

T
i

yT
i ri

−
(Hiri)(Hiri)

T

rT
i Hiri

.

We summarize these in the following algorithms.

2.5 Optimization 57

DFP Algorithm:

1. Starting values: β0, g0 = ∇f(β0), G0, i = 0.

2. If gi = 0, stop. Else, compute

λi = argmin
λ≥0

f(βi − λGigi).

3. Compute

βi+1 = βi − λiGigi,

gi+1 = ∇f(βi+1),

ri = βi+1 − βi,

yi = gi+1 − gi,

Gi+1 = Gi +
rir

T
i

yT
i ri

−
(Giyi)(Giyi)

T

yT
i Giyi

.

4. Set i = i + 1, goto step 2.

BFGS Algorithm:

1. Starting values: β0, g0 = ∇f(β0), H0, i = 0.

2. If gi = 0, stop. Else, compute

λi = argmin
λ≥0

f(βi − λH−1
i gi).

3. Compute

βi+1 = βi − λiH
−1
i gi,

gi+1 = ∇f(βi+1),

ri = βi+1 − βi,

yi = gi+1 − gi,

Hi+1 = Hi +
yiy

T
i

yT
i ri

−
(Hiri)(Hiri)

T

rT
i Hiri

.

4. Set i = i + 1, goto step 2.

Remark.

The quasi-Newton method, also known as the variable metric method, was
introduced by Davidon (1959) and was further investigated by Fletcher
and Powell (1963). Subsequently, it has been referred to as the Davidon–
Fletcher–Powell (DFP) method. For a survey of this work, see Dennis and

58 2. Preliminaries

Schnabel (1983), which also contains a long list of references. Broyden
(1967) used the symmetric rank-one update method. More efficient methods
have been introduced by Broyden (1970), Fletcher (1970), Goldfarb (1970)
and Shanno (1970), these can be abbreviated as the BFGS methods. The
quasi-Newton method is known to have a super-linear performance [see, for
example, Nocedal and Wright (1999), p. 216)].

2.5.5 Conjugate Directions

This method was proposed by Hestenes and Stiefel in 1952 in solving large
systems of linear equations of the form Hv = g. The method was subse-
quently developed to handle optimization problems by Fletcher and Reeves
(1964) and Polak and Ribière (1969) based on the idea that the local be-
havior of the function to be optimized is quite similar to that of a quadratic
function.

For the purpose of motivation, we start with the linear conjugate problem
in which the objective function is exactly quadratic. Suppose the function
being maximized is given by

f(β) = −
1

2
βT Hβ + bT β,

where H denotes an m × m, symmetric, positive-definite matrix. If H is
diagonal, then the optimization problem is reduced to m one-dimensional
(coordinate-wise) optimization problems. If H is not diagonal, the m one-
dimensional problems can still be achieved by changing the coordinates.
Suppose this is done through

β = β0 +
m−1∑

j=0

λjvj , β ∈ R
m,

where the set of nonzero vectors {v0, v1, . . . , vm−1} satisfies

vT
i Hvj = 0 for all i 6= j. (2.5.4)

Then

f(β) = f
(
β0 +

m−1∑

j=0

λjvj

)

= f(β0) +

m−1∑

j=0

(
−

1

2
(vT

j Hvj)λ
2
j + (b −Hβ0)

T vjλj

)
,

which can be seen as decomposing the original optimization problem in Rm

into m one-dimensional problems involving λj , j = 0, 1, . . . , m − 1.

2.5 Optimization 59

The vectors v0, v1, . . . , vm−1 satisfying (2.5.4) are called the conjugate

directions. It can be easily verified that the set of conjugate directions is
linearly independent, thereby forming a basis for Rm. There are many ways
to select conjugate directions. For example, one can select the eigenvectors
of H. But this is not efficient for large scale problems. Alternatively, one can
modify the Gram–Schmidt orthogonalization process to produce such a set,
but this is also not practical because of the storage requirement. In practice,
the conjugate directions are generated by using an updating method, that
is, the new direction vi+1 is produced by using only the previous direction
vi. Before giving the details, we write the intermediate solution as (with
β0 being the starting value)

βj+1 = βj + λjvj = β0 +

j∑

i=0

λivi, j = 0, 1, . . . , m − 2,

where

λj = −
(b −Hβ0)

T vj

vT
j Hvj

maximizes f along the direction vj . Set gj = ∇f(βj) for j = 0, 1, . . . , m.
Then by the definition of λj ,

gT
j vj−1 = 0 j = 1, . . . , m. (2.5.5)

Moreover,

gj+1 = gj − λjHvj , j = 0, 1, . . . , m − 1.

Here is the detail for generating the conjugate directions recursively. Start
with v0 = −g0 and update it via

vj+1 = −gj+1 + αj+1vj , j ≥ 0, (2.5.6)

with αj+1 selected so that vj and vj+1 are conjugate with respect to H;
that is,

αj+1 =
gT

j+1Hvj

vT
j Hvj

.

Then the vectors v0, . . . , vm−1 are conjugate directions. The method is
efficient and requires less storage in that the new direction is produced by
the previous one, not the whole past.

We summarize this process as follows.

1. Start with β0 as initial value, evaluate g0 = ∇f(β0) and v0 = −g0.

60 2. Preliminaries

2. For j = 0, 1, . . . , m − 1, evaluate

λj = gT
0 vj/vT

j Hvj ,

βj+1 = βj + λjvj ,

gj+1 = gj − λjHvj ,

αj+1 = gT
j+1Hvj/vT

j Hvj ,

vj+1 = −gj+1 + λj+1αjvj .

Note that the solutions, gradients and the conjugate directions are updated
automatically. It can be shown that it takes m steps to solve the quadratic
problem where Newton’s method obtains the solution in one iteration. In
general the one-dimensional problem is very computing intensive, so the
use of the conjugate approach can be justified only if the calculation of the
Hessian matrix can be avoided.

From (2.5.5) and (2.5.6),

λj = gT
j vj/vT

j Hvj ,

gT
j vj = gT

j (−gj + αjvj−1) = −gT
j gj ,

vT
j Hvj = (−gj + αjvj−1)

T Hvj = −gT
j Hvj ,

gT
j gj+1 = gT

j gj − (gT
j vj/vT

j Hvj)g
T
j Hvj = 0.

Thus,

αj+1 =
gT

j+1Hvj

vT
j Hvj

=
gT

j+1(gj+1 − gj)

vT
j (gj+1 − gj)

= −
gT

j+1(gj+1 − gj)

vT
j gj

=
gT

j+1(gj+1 − gj)

gT
j gj

=
gT

j+1gj+1

gT
j gj

.

For quadratic functions, there are many equivalent ways to compute the
coefficient αj . However, these methods yield quite different results for gen-
eral function f . In this case, the solution to the optimization is still given
by the line search method:

βj+1 = βj + λjvj = β0 +

j∑

i=0

λivi, j = 0, 1, . . . , m − 2,

where
λj = argmax

λ

f(βj + λvj),

2.5 Optimization 61

with the conjugate directions generated by

vj+1 = −gj+1 + αj+1vj , j ≥ 0.

Typical choices for αj are

1. the Polak–Ribière formula:

αj+1 =
(gj+1 − gj)

T gj+1

‖gj‖
2

,

2. the Fletcher–Reeves formula:

αj+1 =
‖gj+1‖

2

‖gj‖
2

,

3. the Hestenes–Stiefel formula:

αj+1 =
(gj+1 − gj)

T gj+1

(gj+1 − gj)
T vj

.

Among these methods, the Fletcher–Reeves is the least efficient. The
methods by Polak–Ribière and Hestenes–Stiefel are considered to be more
practical. See Gilbet and Nocedal (1992) for an extensive comparative nu-
merical study. For high dimensional problems such as the speech problem in
Chapter 5, these methods are more efficient than Newton’s method since
the Hessian matrix is not required. The above paper also contains some
convergent results. See also the illuminating discussion in Section 5.2 of
Nocedal and Wright (1999).

2.5.6 One-Dimensional Optimization — step length search

In the previous discussion, we were led to consider the one-dimensional
search problem:

max φ(λ), φ(λ) = f(β + λd).

Or equivalently,

φ′(λ) =
d

dλ
f(βj + λgj) = 〈∇f(βj + λgj), gj〉 = 0.

Sophisticated line search can be quite complicated. Here is preview of the
popular methods. If the computation of the second derivative is not an
issue, then by far the Newton’s method is the most efficient as it has
the quadratically convergence property. The secant method uses a discrete
method to approximate the derivative of the Newton method. The trade-
off is the efficiency, it has the super-linear convergence rate. The bisection
method is the slowest among the three. The success of these methods de-
pends on the initial value.

62 2. Preliminaries

2.5.7 Step-halving

Suppose the Hessian is everywhere negative definite and that the objective
function has a (necessarily unique) maximum β̂. The Newton–Raphson

method for computing β̂ is to start with an initial approximation β0 and
iteratively determine βm+1 from βm according to

βm+1 = βm − [H(βm)]−1∇f(βm), m ≥ 0.

If the initial approximation β0 to β̂ is sufficiently accurate, then βm con-

verges to β̂ as m → ∞ and, in fact, the convergence is of second order;
that is, |βm+1 − β̂| = O(|βm − β̂|2). Thus, roughly speaking, the number

of accurate digits in the approximation βm to β̂ doubles at each iteration.
We stop the interations when f(βm+1)− f(βm) ≤ ε, where (say) ε = 10−6

If the initial approximation is not sufficiently accurate, however, then
βm can diverge as m → ∞. In order to guarantee convergence from any
starting value, we use the Newton–Raphson method with step-halving, in
which βm+1 is determined from βm according to the formula

βm+1 = βm − 2−νm [H(βm)]−1∇f(βm);

here νm is the smallest nonnegative integer such that

f(βm − 2−νm [H(βm)]−1∇f(βm)) ≥ f(βm − 2−νm−1[H(βm)]−1∇f(βm))

≥ f(βm).

(Here, the second inequality is redundant, being a consequence of the first
inequality and the concavity of the function.)

In verifying the global convergence of the Newton–Raphson method with
step-halving, we can assume that ∇f(βm) 6= 0 for m ≥ 0 (otherwise the

stopping rule will lead to stopping at some βm = β̂). Then νm is well
defined for m ≥ 0 and, by the strict concavity of the function, f(βm+1) >

f(βm) for m ≥ 0. Consequently, f(βm) increases to a finite limit f̂ as
m → ∞. Also, the points βm, m ≥ 0, are distinct and lie in a compact
set and hence they have an accumulation point β′. Moreover, the integers
νm, m ≥ 0, are bounded. Letting m increase along a sequence such that
βm → β

′ and νm = ν, we conclude that

f̂ ≥ f(β′ − 2−ν [H(β′)]−1∇f(β′))

≥ f(β′ − 2−ν−1[H(β′)]−1∇f(β′))

≥ f(β′)

≥ f̂

and hence that

f(β′ − 2−ν [H(β′)]−1∇f(β′)) = f(β′ − 2−ν−1[H(β′)]−1∇f(β′)) = f(β′).

2.6 B-splines with repeated knots 63

Since the objective function is concave and its Hessian is negative definite,
we see that ∇f(β′) = 0 and hence that β′ = β̂. Therefore, βm → β̂ as
m → ∞.

2.5.8 How to terminate an iteration

To guard against a particular method from running into an infinite loop,
some rule would have be adopted to halt the iterations. In fact, at some
step of the iteration where the improvement or displacement is less than a
prespecified small constant, the iteration will be forced to stop. The stop-
ping rule is problem specific, more details and examples will be described
in later chapters.

2.6 B-splines with repeated knots

There are several ways to introduce B-splines. One could start with the
recursive relationship as described in Kincaid and Cheney (1996, p.392),
or the determinant approach as given in Schumaker (1981), or the divided
difference in de Boor (1978). The first approach is very elegant, but it
suffers the drawback of not being able to handle duplicated or repeated
knots. The second approach demands a working knowledge of matrices and
determinants and many of their properties in addition to the divided differ-
ence. For all of our practical purposes, the approach considered by de Boor
seems to be the most appropriate since it strikes the balance between nu-
merical properties and the theoretical development having repeated knots.
The easiest way to understand divided differences is through polynomial
interpolation, which will be discussed next.

2.6.1 Polynomial interpolation

For a given function f(·) and a list of distinct real numbers x0, x1, . . . , xn,
there exists a unique polynomial p of order at most n such that

p(xi) = f(xi), i = 0, 1, . . . , n.

Such a polynomial p is said to interpolate f at x0, x1, . . . , xn and can be
easily constructed via the Newton form:

p0(x0) = f(x0),

pk(x) = pk−1(x) + ck(x − x0)(x − x1) · · · (x − xk−1), k = 1, . . . , n,

where ck is chosen such that pk(xk) = f(xk), k = 1, 2, . . . , n. Note that pk

interpolates f at x0, x1, . . . , xk−1, and the desired interpolating polynomial
is p = pn.

64 2. Preliminaries

There is only one such polynomial. In fact, let q be another polynomial
that interpolates f at x0, x1, . . . , xn. Then p− q is a polynomial of order at
most n + 1 having n + 1 distinct zeros, so it must be the zero polynomial.
Hence p = q.

2.6.2 Divided difference – efficient way to evaluate the

coefficients

In practice, the coefficients ck are computed by a more efficient algo-
rithm. We observe that each leading coefficient ck of pk depends on f and
x0, x1, . . . , xk−1. It is convenient to denote it by ck = [x0, x1, · · · , xk−1]f
and refer it to as the divided difference of order k. To see the reason behind
this terminology, it is instructive to consider the case when k = 2. We have

f(x1) = p1(x1) = p0(x1) + c1(x1 − x0)

with

c1 =
f(x1) − f(x0)

x1 − x0
,

which is in a form of divided difference. It is even more instructive to
examine the case when x1 is approaching x0. In this case,

c1 = lim
x1→x0

f(x1) − f(x0)

x1 − x0
= f ′(x0).

This suggests a way to extend the notion of interpolating polynomials to a
list of repeated numbers. This will be discussed next.

2.6.3 Divided differences with repetition

The polynomial p is said to interpolate f at x0, x1, . . . , xn if

p(j)(x) = f (j)(x), j = 0, 1, . . . , k − 1,

for each x that occurs k times in the list x0, x1, . . . , xn.
Let x0, x1, . . . , xn be a list of real numbers in which no element is repeated

more than k times. Let f belong to Ck−1 on an interval containing these
numbers. Then there exists a unique polynomial of order at most n + 1
that interpolates f at these points.

The desired polynomial has n+1 coefficients. These and the n+1 inter-
polating conditions set up a square system of n + 1 linear equations with
n + 1 unknowns. This system is solvable if and only if the solution to the
homogeneous equation Au = 0 is u = 0. In the current interpolation prob-
lem, the homogeneous problem is to find a polynomial p of order at most
n + 1 interpolating 0 at the given points. Such a polynomial has the form

p(x) = c

n∏

i=0

(x − xi).

2.6 B-splines with repeated knots 65

But p has order at most n + 1, so p = 0 as claimed.
In the general case, we define [x0, x1, . . . , xn]f as the coefficient of xn of a

polynomial p that interpolates f at x0, x1, . . . , xn. If there are k repetitions
in the list, then this definition requires the existence f (k−1). Otherwise, the
divided difference is not well defined.

With this definition in mind, we claim that the interpolating polynomial
takes the form

p(x) = f(x0) +
n∑

j=1

[x0, . . . , xj]f

j−1∏

i=0

(x − xi). (2.6.1)

In fact, n = 0 asserts that p(x) = f(x0) interpolates f at x0. Suppose now
that the polynomial

q(x) = f(x0) +

n−1∑

j=1

[x0, . . . , xj]f

j−1∏

i=0

(x − xi)

interpolates f at x0, x1, . . . , xn−1. Then

p(x) − [x0, . . . , xn]f

n−1∏

i=0

(x − xi)

is of order at most n, which also interpolates f at x0, x1, . . . , xn−1. It follows
from the uniqueness of q that

p(x) − [x0, . . . , xn]f

n−1∏

i=0

(x − xi) = q(x),

or,

p(x) = f(x0) +

n∑

j=1

[x0, . . . , xj]f

j−1∏

i=0

(x − xi)

as desired.

2.6.4 Properties of the divided difference

This section describes some of the important properties of the divided
difference. The list is not an exhausted account but it serves to provide
enough information for us to establish the important results for B-splines.
More detailed discussions of this topic can be found in de Boor (1978),
DeVore and Lorentz (1993), and Schumaker (1981).

1. Symmetry: [x0, x1, . . . , xn]f depends only on the numbers x0, . . . , xn

and not on the order in which they appear. This is because the in-
terpolating polynomial depends only on the points of interpolation.

66 2. Preliminaries

2. Divided difference for the product of two functions: Let g and h be
two functions, then

[x0, x1, . . . , xn](gh) =

n∑

r=0

([x0, x1, . . . , xr]g)([xr , xr+1, . . . , xn]h).

This is called the Leibniz’s formula which will be used to derive the
recursive relationship for B-splines. According to (2.6.1), the function

F (x) =

n∑

r=0

[x0, x1, . . . , xr]g

r−1∏

i=0

(x − xi)

×
n∑

s=0

[xs, xs+1, . . . , xn]h
n∏

j=s+1

(x − xj)

agrees with f = gh at x0, x1, . . . , xn. To write it as

F (x) =

n∑

r,s=0

=
∑

r≤s

+
∑

r>s

.

With
∑

r>s vanishing at x0, . . . , xn, the first sum
∑

r≤s is a polyno-
mial of order n + 1 which agrees with f = gh. Its leading coefficient

∑

r=s

([x0, x1, . . . , xr]g)([xr, x1, . . . , xn]h)

must be [x0, x1, . . . , xn]f .

3. [x0, x1, . . . , xn]g = 0 for polynomial g of order less than n + 1. This
will be used to show that B-splines have compact support.

4. If f is n times differentiable in (a, b) and if x0, x1, . . . , xn are distinct
points in [a, b], then there exists ξ ∈ (a, b) such that

[x0, x1, . . . , xn]f =
f (n)(ξ)

n!
(2.6.2)

In fact, let pn+1 be the polynomial of order n + 1 that agrees with f
at the indicated points. Then the function e(n) = f − pn is n times
differentiable and has n + 1 zeros in (a, b). Apply Rolle’s theorem n
times to conclude that e(n) has a zero ξ in (a, b):

0 = e(n)(ξ) = f (n)(ξ) − p(n)
n (ξ).

Now the desired results from the definition of the divided difference:

p(n)
n (ξ) = n![x0, x1, . . . , xn]f.

2.6 B-splines with repeated knots 67

2.6.5 Computing the divided differences recursively

Let x0 ≤ x1 ≤ · · · ≤ xn. Then

[x0, x1, . . . , xn]f =





[x1, x2, . . . , xn]f − [x0, x1, . . . , xn−1]f

xn − x0
, if xn 6= x0,

f (n)(x0)/n!, otherwise.

(2.6.3)
In fact, if xn = x0, then it is easy to see that f (n)(x0)/n! is the leading
coefficient of the polynomial

p(x) =

n∑

k=0

1

k!
f (k)(x0)(x − x0)

k,

which interpolates f at x0 = x1 = · · · = xn. Suppose now that x0 6=
xn. Let pk+1 denote the polynomial of order k + 1 that interpolates f at
x0, x1, . . . , xk. Let q be the polynomial interpolating f at x1, . . . , xn. Then
by the uniqueness of the interpolating polynomials:

pn(x) = q(x) +
x − xn

xn − x0
[q(x) − pn−1(x)], xn 6= x0.

Equating the leading coefficients, we have

[x0, x1, . . . , xn]f =
[x1, x2, . . . , xn]f − [x0, x1, . . . , xn−1]f

xn − x0
, xn 6= x0.

Alternatively, the recursive formula can also be written as

[x0, x1, . . . , xn−1, xn]f = [x0, xn][x1, x2, . . . , xn−1, ·]f. (2.6.4)

The computation of the divided differences is most conveniently carried
out using the following table.

x f [] f [,] f [, ,] f [, , ,]

x0 f [x0]
f [x0, x1]

x1 f [x1] f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f [x2] f [x1, x2, x3]
f [x2, x3]

x3 f [x3]

To save storage space in a computer, the following version is preferred in
numerical implementation of the procedure:

x0 f [x0] f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]
x1 f [x1] f [x1, x2] f [x1, x2, x3]
x2 f [x2] f [x2, x3]
x3 f [x3]

68 2. Preliminaries

Example. Compute the divided differences based on the following func-
tion values.

x 3 1 5 6

f(x) 1 −3 2 4

Divided differences:

3 1 2 −3/8 7/40
1 −3 5/4 3/20
5 2 2
6 4/3

2.6.6 B-Splines with repeated knots

Let (ti) denote a non-decreasing sequence of numbers. The i-th B-spline of
order k (or degree k − 1) is defined by

Bi(x) = Bi,k(x) = (ti+k − ti)[ti, . . . , ti+k](· − x)k−1
+ . (2.6.5)

Here (y − x)0+ = ind(y ≥ x) = 1 if y ≥ x, and zero otherwise; (y − x)k−1
+ =

(y − x)k−1ind(y ≥ x) for k ≥ 2.
We should remark that the current definition includes the previous one

with distinct knots as a special case. For example, suppose t1 < t2 < t3.
Then by the first part of (2.6.3), or simply apply (2.6.4),

B1,1(x) = (t2 − x)0+ − (t1 − x)0+ = ind(t1 ≤ x < t2),

and

Bi,2(x) = (t3 − t1)[t1, t2, t3](· − x)+

= (t3 − t1)[t1, t3] [t2, ·](· − x)+

= [t2, t3](· − x)+ − [t2, t1](· − x)+

=





x − t1
t2 − t1

, t1 ≤ x < t2;

t3 − x

t3 − t2
, t2 ≤ x < t3.

These agree with the those given in Section 2.1.5. In fact, one can also write
the linear B-splines according to

Bi,2(x) =
x − t1
t2 − t1

Bi,1(x) +
t3 − x

t3 − t2
Bi+1,1(x),

which reminds us the recursive formula for computing the B-splines de-
scribed in Section 2.1.5. As we will see shortly, the important properties
developed previously for distinct knots in fact hold for the B-splines having
repeated knots. Some of these are easy consequences of the properties of
the divided differences; others are more complicated to establish. We begin
with the easy ones.

2.6 B-splines with repeated knots 69

1. Support of B-splines:

Bi,k(x) = 0 for x 6∈ [ti, ti+k].

For if x is outside [ti, ti+k], (· − x)k−1
+ is either zero or a polynomial

of order at most k. In either case, [ti, . . . , ti+k](· − x)k−1
+ = 0 by

Property 3 of Section 2.6.4. That is, there are only k B-splines having
any particular interval [ti, ti+1] in their support.

2.
∑

Bi(x) =
∑v

i=u+1−k Bi(x) = 1 for tu < x < tv. This follows from
(2.6.3). The result indicates that B-splines form a partition of unity.

3. Recursive formula. Write

(y − x)k−1
+ = (y − x)(y − x)k−2

+ .

By the Leibniz’s formula,

[ti, . . . , ti+k](y − x)k−1
+ = (ti − x)[ti, . . . , ti+k](y − x)k−2

+

+ 1 · [ti+1, . . . , ti+k](y − x)k−2
+ .

Apply (2.6.3) to the first term on the right hand side to obtain,

[ti, . . . , ti+k](y − x)k−1
+ =

x − ti
ti+k − ti

[ti, . . . , ti+k−1](y − x)k−2
+

+
ti+k − x

ti+k − ti
[ti+1, . . . , ti+k](y − x)k−2

+ .

Therefore,

Bi,k(x) =
x − ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x

ti+k − ti+1
Bi+1,k−1(x), k ≥ 2.

Here we adopt the convention that zero divided by zero is zero. This
recursive formula is very important for computing the B-splines in
practice. It is numerically stable and efficient. See de Boor (1978)
for more details. Figures 2.9–2.12 present a sequence of B-splines of
orders 1, 2, 3 and 4 computed using this formula.

4. It follows from the recursive relationship that Bi(·) ≥ 0 for all x.
In fact, by the inductive argument given in Property 2.1.2 of Sec-
tion 2.1.5, Bi,k(x) > 0 on (ti, ti+k).

5. Derivatives of B-splines:

d

dx
Bk

i (x) =
k − 1

ti+k−1 − ti
Bk−1

i (x) −
k − 1

ti+k − ti+1
Bk−1

i+1 (x).

70 2. Preliminaries

In fact, this follows from

d

dx
(· − x)j

+ = j(· − x)j−1
+

and

d

dx
Bk

i (x) = −(k − 1)([ti+1 · · · ti+k] − [ti · · · ti+k−1])(· − x)k−2
+ .

6. According to Theorem 4.2 of DeVore and Lorentz (1993), there is a
positive constant M0 such that

M−1
0 J−1|β|2 ≤

∫ ∣∣∣
∑

j

βjBj

∣∣∣
2

≤ M0J
−1|β|2, β ∈ R

J .

Remark.

Our definition of B-spline is adapted from de Boor (1978, p.108), which is
referred to as the normalized B-splines in Schumaker (1981, p.124) with a
slightly different appearance given by

Ni(x) = Nk
i (x) = (−1)k(ti+k − ti)[ti, . . . , ti+k](x − ·)k−1

+ .

It is easy to see that this is identical to (2.6.5).

2.6.7 Basis: Curry–Schoenberg Theorem

It was established in Section 2.1.5 that the B-splines of order k with distinct
knots form a basis for the space of splines of order k. In establishing that
result, we employed k − 1 times differentiable splines by requiring knots
to be distinct. We now consider a generalization based on B-splines with
repeated knots in which a variable differentiability condition at each knot
(but up to the order k) is allowed. This result is known as the Curry–

Schoenberg Theorem.
Let m denote a positive integer. Let τ = (τ0, τ1, . . . , τm, τm+1) denote a

sequence of strictly increasing numbers with −∞ ≤ τ0 < τm+1 ≤ ∞ and
let ν = (ν1, ν2, . . . , νm) denote a sequence of integers satisfying νj ≤ k,
j = 1, . . . , m. Let Pk,τ ,ν denote the space of piecewise polynomials having
order k, knot sequence τ and satisfying

jumpτi
Dj−1f := Dj−1f(τ+

i) − Dj−1f(τ−
i) = 0,

j = 1, . . . , νi, i = 1, . . . , m.

Set

d ≡ dk,ν = k +

m∑

i=1

(k − νi) = k(m + 1) − (ν1 + · · · + νm) = dimPk,τ ,ν ,

2.6 B-splines with repeated knots 71

0 2 4 6

0.
0

0.
4

0.
8

knots at {0,1}

•

• • •

0 2 4 6

0.
0

0.
4

0.
8

knots at {1,1}

• • • •

0 2 4 6

0.
0

0.
4

0.
8

knots at {1,3}

•

•

• •

0 2 4 6

0.
0

0.
4

0.
8

knots at {3,6}

• •

•

•

FIGURE 2.9. A sequence of piecewise constant B-splines having knots

{0, 1, 1, 3, 6}.

and let t = (t1, t2, . . . , td+k) denote a sequence of non-decreasing numbers
such that

1. τ0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ τ1 and τm ≤ td+1 ≤ td+2 ≤ · · · ≤ td+k ≤
τm+1;

2. the number τi occur exactly k − νi times in t, i = 1, 2, . . . , m.

Then, the sequence B1,k, . . . , Bd,k of B-splines of order k having the knot
sequence t is a basis for Pk,τ ,ν .

A proof of this important result is given in Schumaker (1981, pp 123–
124) and de Boor (1978, pp 113–118). In associating with this result, it is
always helpful to remember that

number of continuity conditions at τ︸ ︷︷ ︸
ν

+ number of knots at τ︸ ︷︷ ︸
(k − ν)

= k.

72 2. Preliminaries

0 2 4 6

0.
0

0.
4

0.
8

knots at {0,1,1}

• • • •

0 2 4 6

0.
0

0.
4

0.
8

knots at {1,1,3}

•

•

• •

0 2 4 6

0.
0

0.
4

0.
8

knots at {1,3,6}

• •

•

•

0 2 4 6

0.
0

0.
4

0.
8

knots at {3,6,6}

• • • •

FIGURE 2.10. A sequence of linear B-splines having knots {0, 1, 1, 3, 6, 6}.

2.6.8 Examples

Figure 2.9 – 2.12 present a sequence of piecewise constant, linear, quadratic
and cubic B-splines with knots {0, 1, 1, 3, 4, 6, 6, 7}. The computation of
these splines was carried out using the recursive formula and the additional
routine for identifying repeated knots.

Note that the B-spline of order one over the repeated knots is defined
as zero. This is illustrated in the second picture of Figure 2.9. Also, at the
repeated knot location, the basis function is less smooth according to the
above remark. This feature appears in the remaining figures.

2.6.9 Interpolation Errors via divided difference

Note that the error bound in approximating the function f can also be
expressed in terms of divided differences.

2.6 B-splines with repeated knots 73

0 2 4 6

0.
0

0.
4

0.
8

knots at {0,1,1,3}

•

•

• •

0 2 4 6

0.
0

0.
4

0.
8

knots at {1,1,3,6}

• •

•

•

0 2 4 6

0.
0

0.
4

0.
8

knots at {1,3,6,6}

• •

•

•

0 2 4 6

0.
0

0.
4

0.
8

knots at {3,6,6,6}

• • • •

FIGURE 2.11. A sequence of quadratic B-splines having knots {0, 1, 1, 3, 6, 6, 6}.

If p interpolates f at the n+1 distinct nodes x0, x1, . . . , xn in [a, b], then
for x not a node

f(x) − p(x) = f [x0, x1, . . . , xn, x]

n∏

i=0

(x − xi).

In fact, let p and q denote the polynomials interpolating f at x0, . . . , xn

and x0, . . . , xn, t, respectively. Then by the Newton form:

q(x) = p(x) + [x0, . . . , xn, t]f

n∏

i=0

(x − xi).

Thus

f(t) = q(t) = p(t) + [x0, . . . , xn, t]f

n∏

i=0

(t − xi).

This property is known as the osculatory interpolation.

74 2. Preliminaries

0 2 4 6

0.
0

0.
4

0.
8

knots at {0,1,1,3,6}

•

• •

• •

0 2 4 6

0.
0

0.
4

0.
8

knots at {1,1,3,6,6}

• •

•

• •

0 2 4 6

0.
0

0.
4

0.
8

knots at {1,3,6,6,6}

• •

•

• •

0 2 4 6

0.
0

0.
4

0.
8

knots at {3,6,6,6,7}

• • •

•

•

FIGURE 2.12. A sequence of cubic B-splines having knots {0, 1, 1, 3, 6, 6, 6, 7}.

2.7 Continuity of divided differences

When view as a function of the knots, the divided difference has the same
smoothness as the function being interpolated. To see this, suppose f is n
times continuously differentiable on [a, b], and let t0, t1, . . . , tn be points in
[a, b], distinct or not. Then

1. There exists ξ ∈ [min ti, max ti] such that

[t0, t1, . . . , tn]f = f (n)(ξ)/n!.

2. If, for each m, t0,m, t1,m, . . . , tn,m are n + 1 points, and ti,m → ti as
m → ∞, i = 0, 1, . . . , n, then

[t0,m, t1,m, . . . , tn,m]f → [t0, t1, . . . , tn]f.

2.8 Partial derivatives of B-splines with respect to knot locations 75

These can be verified as follows. One first shows that the second result
holds for t0 < tn. This follows easily from (2.6.4) and induction. Using
this result, the first statement will be proven by considering either: (i)
t0 = · · · = tn, or (ii) t0 < tn. Case (i) is just the definition of the divided
difference. To see case (ii), let t0,m < t1,m < · · · < tn,m so that ti,m → ti
as m → ∞, i = 0, 1, . . . , n. By (2.6.2), there exist ξm ∈ [t0, tn] such that

[t0,m, t1,m, . . . , tn,m]f = f (n)(ξm)/n!, m ≥ 1.

From the result just proven, the continuity of f (n) and the compactness of
[t0, tm],

[t0, t1, . . . , tn]f = lim
m→∞

[t0,m, t1,m, . . . , tn,m]f = lim
m→∞

f (n)(ξm)/n!

= f (n)(ξ)/n!

for some ξ ∈ [lim t0,m, lim tn,m] = [t0, tn]. This proves the first assertion.
To complete the second, let t0 = · · · = tn. Then

[t0, t1, . . . , tn]f = f (n)(t0)/n! = lim
m→∞

f (n)(ξm)/n!

= lim
m→∞

[t0,m, t1,m, . . . , tn,m]f.

As an important application of the above result, consider

gn(t) = [t0, t1, . . . , tn, t]f

for some sufficiently often differentiable function f . By (2.6.4) and the
continuity of the divided difference,

[t, t + h]gn = [t0, t1, . . . , tn, t, t + h]f → [t0, t1, . . . , tn, t, t]f.

Thus

∂

∂t
[t0, . . . , tn, t]f = g′n(t) = lim

h→0
[t, t + h]gn = [t0, . . . , tn, t, t]f. (2.7.1)

This result is very important for the development of the free knot spline
procedures to be discussed later in the monograph.

2.8 Partial derivatives of B-splines with respect to
knot locations

Let m denote a nonnegative integer; let y1, . . . , ym+1 be not necessarily
distinct real numbers; let τ1, . . . , τd be the distinct values of y1, . . . , ym+1;
and let lj =

∑
k ind(yk = τj) ≥ 1 denote the multiplicity of τj among

76 2. Preliminaries

y1, . . . ym+1. Then l1 + · · ·+ ld = m + 1 and hence lj ≤ m + 2− d ≤ m + 1.
In particular, if y1 < ym+1 or, equivalently, if d ≥ 2, then lj ≤ m. The
number lj is related to the number of continuity condition at the jth knot
νj according to lj = k − νj . See Section 2.6.7.

Let f be a function such that f (0), . . . , f (lj−1) (that is, f and its first
lj − 1 derivatives) are well defined at τj . If the numbers y1, . . . , ym+1 are
in nondecreasing order and their distinct values τ1, . . . , τd are in strictly
increasing order, we can write

[y1, . . . , ym+1] =

[
l1 · · · ld
τ1 · · · τd

]

and we can rewrite (2.6.3) or (2.6.4) as

[
l1 · · · ld
τ1 · · · τd

]
f

=

[
l1 − 1 l2 · · · ld

τ1 τ2 · · · τd

]
f −

[
l1 · · · ld−1 ld − 1
τ1 · · · τd−1 τd

]
f

τd − τ1
if d ≥ 2.

(2.8.1)

(In the numerator of the right side of (2.8.1) we ignore the first column of
the first array if l1 = 1 and the dth column of the second array if ld = 1.)

The next result is taken from Theorem 2.55 of Schumaker (1981), which
follows by repeatedly applying (2.7.1).

Lemma 2.8.1.

∂

∂τj

[
l1 · · · ld
τ1 · · · τd

]
f = lj

[
l1 · · · lj + 1 · · · ld
τ1 · · · τj · · · τd

]
f.

Let m now be a positive integer and suppose y1 < ym+1. We can rewrite
the mth order (normalized) B-spline associated with the knots y1, . . . , ym+1

as [see (2.6.5)]

Bm(x) = (ym+1 − y1)[y1, . . . , ym+1](· − x)m−1
+

= (τd − τ1)

[
l1 · · · ld
τ1 · · · τd

]
(· − x)m−1

+ . (2.8.2)

In particular,

B1(x) = ind(τ2 ≥ x) − ind(τ1 ≥ x) = ind(τ1 ≤ x < τ2). (2.8.3)

2.8 Partial derivatives of B-splines with respect to knot locations 77

If d = 2, l1 = 1 and l2 = 2, then for τ1 ≤ x < τ2,

B2(x) = (τ2 − τ1)[τ1, τ2, τ2](· − x)+

= (τ2 − τ1)[τ1, τ2][τ2, ·](· − x)+

= [τ2, τ2](· − x)+ − [τ2, τ1](· − x).

= 1 −
τ2 − x

τ2 − τ1

=
x − τ1

τ2 − τ1
.

[Note that [τ2, τ2](·−x)+ is undefined at x = τ2.] Similarly, for τ1 ≤ x < τ2,
d = 2, l1 = 1 and l2 = 3,

B3(x) = (τ2 − τ1)[τ1, τ2, τ2, τ2](· − x)2+

= (τ2 − τ1)[τ1, τ2][τ2, τ2, ·](· − x)+

=
(x − τ1

τ2 − τ1

)2

.

By induction, if d = 2 and l1 = 1, then m = l2 and

Bm(x) =
(x − τ1

τ2 − τ1

)l2−1

ind(τ1 ≤ x < τ2). (2.8.4)

Similarly, if d = 2 and l2 = 1, then m = l1 and

Bm(x) =
(τ2 − x

τ2 − τ1

)l1−1

ind(τ1 ≤ x < τ2). (2.8.5)

The next result is taken from Theorem 4.27 of Schumaker (1981), which
is an easy consequence of (2.8.1).

Lemma 2.8.2. Fix 1 ≤ j ≤ d and suppose that lj ≤ m − 2.
(a) (j = 1)

∂

∂τ1
B(x) = (l1 − 1)

[
l1 · · · ld
τ1 · · · τd

]
(· − x)m−1

+

− l1

[
l1 + 1 · · · ld − 1

τ1 · · · τd

]
(· − x)m−1

+ ;

(b) (j = d)

∂

∂τd

B(x) = ld

[
l1 − 1 · · · ld + 1

τ1 . . . τd

]
(· − x)m−1

+

− (ld − 1)

[
l1 · · · ld
τ1 · · · τd

]
(· − x)m−1

+ ;

78 2. Preliminaries

(c) if 2 ≤ j ≤ d − 1, then

∂

∂τj

B(x) = lj

[
l1 − 1 · · · lj + 1 · · · ld

τ1 · · · τj · · · τd

]
(· − x)m−1

+

− lj

[
l1 · · · lj + 1 · · · ld − 1
τ1 · · · τj · · · τd

]
(· − x)m−1

+ .

The same formulas are valid when lj is m − 1 or m for all x excluding

x = τj .

For 1 ≤ j1, j2 ≤ d with j1 6= j2 and either lj2 ≥ 2 or d ≥ 3, let Bj1j2 be
the B-spline obtained from B by increasing the multiplicity lj1 of τj1 and
decreasing the multiplicity of lj2 of τj2 each by 1. The next result follows
from (2.8.1), (2.8.2), (2.8.4), (2.8.5), and Lemma 2.8.2.

Lemma 2.8.3. Fix 1 ≤ j ≤ d and suppose that lj ≤ m − 2.
(a) (j = 1)

∂

∂τ1
B(x) = (l1 − 1)

B(x)

τd − τ1
− l1

B1d(x)

τ ′
d − τ1

,

where the second term is replaced by zero when its denominator equals zero

(that is, when d = 2 and l2 = 1);
(b) (j = d)

∂

∂τd

B(x) = ld
Bd1(x)

τd − τ ′
1

− (ld − 1)
B(x)

τd − τ1
,

where the first term is replaced by zero when its denominator equals zero

(that is, when d = 2 and l1 = 1);
(c) if 2 ≤ j ≤ d − 1, then

∂

∂τj

B(x) = lj

(Bj1(x)

τd − τ ′
1

−
Bjd(x)

τ ′
d − τ1

)
.

The same formulas for ∂B(x)/∂τj are valid when lj is m − 1 or m for

x 6= τj . Here τ ′
1 = τ1 if τ1 is a knot of the B-spline in the corresponding

numerator, and τ ′
1 = τ2 otherwise (that is, when l1 = 1). Similarly, τ ′

d = τd

if τd is a knot of the B-spline in the numerator, and τ ′
d = τd−1 otherwise

(that is, when ld = 1).

Notes

Section 2.1. By browsing through any book on numerical analysis, one can
easily conclude that polynomials have played an essential role in approxi-
mation theory. See, for example, Conte and de Boor (1972), Kincaid and
Cheney (1996), DeVore and Lorentz (1993) and Schumaker (1981).

It is not easy to trace the complete history of piecewise polynomials, but
there is no doubt that they have been very useful in numerical analysis

100 2. Preliminaries

for a long time. See DeVore and Lorentz (1993) and Schumaker (1981) for
more details.

Spline function was introduced by Schoenberg (1946). Our exposition to
B-splines involving non-multiple knots is based on the recursive retionship
described in Kincaid and Cheney (1996). According to Schumaker (1981),
B-spline was discovered by at least three different authors.

Section 2.2. The main references are de Boor (1978), DeVore and Lorentz
(1993) and Schumaker (1981). For more information on moduli of smooth-
ness and approximation properties, see DeVore and Lorentz (1993).

Section 2.3. See Chapter 12 of Schumaker (1981) for more information
on tensor-product splines.

Section 2.4. The main reference is Rocketfellow (1980)???
Section 2.5.
Section 2.6. We follow the exposition for B-spline with possibly multi-

variate types. described in ...
Section 2.7. de Boor ...
Section 2.8. Diff wrt knots.

