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Multivariate Splines

Really early on there should be a reference to Hansen, Kooperberg, and
Sardy (1998).

9.1 Preliminaries

In Chapter 3, we made use of tensor products to describe functions of
more than one variable. This idea was motivated as an extension of clas-
sical d—way analysis of variance (ANOVA) models. The dependence of a
function f on collections of the input variables could be separated in terms
of main effects and interactions. At the heart of our analysis was the func-
tional ANOVA decomposition

f(xr, 22, 23,...) = fo+ fi(z1) + fa(x2) + fa(rs) +---
+fi2(x1, x2) + f13(w1, 23) + faz(w2,23) + -

+fias(z1, 22, 23) + -+,

(9.1.1)
where certain orthogonality constraints need to be applied to make this
expansion identifiable. When estimating f, we typically truncated (9.1.1)
to include only the main effects (an additive model) or perhaps only in-
teractions that involve two or fewer variables. While an estimate of the
complete expansion could require tremendous amounts of data, such re-
strictions make it possible to identify the important structural aspects of f
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FIGURE 9.1. Four ways to specify piecewise polynomials.

in problems with even modestly sized training sets. The natural estimators
in this context involve tensor products of univariate spline spaces. From a
methodological perspective, the use of tensor products is consistent with
the common statistical practice of generating interactions in classical re-
gression models. As an example, let G; be a spline space in the variable

x1 having basis Bii, ..., Bj1 and let Go be a spline space in xo with basis
Bia, ..., Bj,2. Then, the two-factor interaction between x; and zo can be
written as

f12($171'2) = Z Z ;i B (1) Bia(x2) (9.1.2)

%

a sum of products of the basis functions of G; and Gs.

In this chapter, we take a different approach. We begin by viewing each
separate element in (9.1.1) as a “surface,” and consider the performance
of maximum likelihood estimates taken from various flexible linear spaces.
For example, as tools for building surfaces, tensor product spline spaces
inherit structure from their constituent univariate components. Consider
the expression in (9.1.2) for the interaction between z; and x5. Suppose
G1 has knots t11,. .., t1m, located in the range of x1, and let Go have knots
ta1, ..., tam, positioned along the zs-axis. As a result, the partial derivative
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of the surface flg in the variable x; has breaks along the lines x1 = ty; for
each knot t1;; similarly, the partial derivative with respect to o has breaks
along the lines xo = t9; for each knot ¢9;. Viewed as a function over some
region in the x; X 2 plane, we can define f12 as a piecewise polynomial,
where the pieces are rectangles. If G; and G5 each consist of splines of order
k, then the polynomials in each rectangle can be written as a combination
of the monomials

ek, 0<ji<kand0<jp <k. (9.1.3)

In the upper leftmost panel of Figure 9.1, we present the grid lines 1 = ty;
and xo = t9; that form the borders of the rectangular regions.

For a 1-dimensional spline space, it was sufficient to think in terms of knot
sequences, or more precisely, the intervals on which we defined separate
polynomials (subject to continuity constraints). In higher dimensions, the
problem becomes much more complex, as there are simply many more ways
to create separate pieces. For many years, numerical analysts have studied
the properties of multivariate, piecewise-polynomials. One popular class of
such models involve grids formed from collections of triangles. Consider,
for example, the upper rightmost panel in Figure 9.1. Here, we again view
the lines running through the square region as defining segments along
which the piecewise polynomial surface is allowed to be discontinuous (or
have discontinuous partial derivatives in some direction); and within each
triangle, we assume the surface to be a (multivariate) polynomial. The grid
in this panel is often referred to as a 3-directional mesh because in addition
to the horizontal and vertical grid lines, there are breaks along the lines
with unit slope (in the same way, one might read that the tensor product
grid is a 2-directional mesh).

In addition to entertaining different grids, we can also consider alter-
native polynomial specifications within each cell. The monomials given in
(9.1.3) are said to have coordinate order k because the highest order of any
individual component is k. For k£ = 2, 3 and 4, these spaces are known in
the engineering literature as bilinear, biquadratic and bicubic polynomials,
respectively. As we can see from (9.1.2), they arise naturally when mod-
eling with tensor products. When triangles are used to define the mesh,
however, it is typical to specify the polynomial pieces as combinations of
the monomials

ek, 0<ji+ja<k, (9.1.4)

for some order k. These terms are said to have coordinate order k. By way
of comparison, for k = 3, the spaces (9.1.3) and (9.1.4) differ only in the
monomial x3z3. While the classical Taylor’s expansion for smooth, mul-
tidimensional functions involves tensor-product or coordinate order poly-
nomials, a more general result covers the approximation power of total
order spaces as well. In general, the approximation error achievable by a
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polynomial in a neighborhood ¢ is given by
(size of §) x (size of high-order derivatives of f).

For the bivariate space (9.1.3), the term on the left consists of the partial
derivatives
ok f
(91‘1 ’

while for (9.1.4) we need a bound on

Ok f

Oy

o o'
6%1 (91‘2

f where Zl"’ZQ:k

The important point here is that there are numerous ways to specify the
ingredients necessary to define a spline space in several variables, including
what we mean by a multivariate polynomial. Readers interested in details
of this discussion are referred to Chapter 13 of Schumaker (1981).

As we have seen, the smoothness properties (the number of continuous
partial derivatives) of tensor product models can be derived easily from the
separate univariate spaces. An alternate recipe for constructing multivari-
ate splines starts with the mesh and the order of the separate polynomial
pieces. Then comes the difficult task of enforcing smoothness constraints
across the boundaries of each piece. The literature on finite element meth-
ods is rich with such constructions over very regular triangular and rectan-
gular meshes.? Spaces even exist for mixed grids consisting of both types
of cell (Schwartz 1981). In some cases, it is possible to define a locally sup-
ported basis, reminiscent of the B-splines. For the 3-directional mesh, for
example, the space of so-called box splines can be thought of as a multi-
variate version of the cardinal B-splines. Their support consists of a modest
number of neighboring triangles depending on the order of the spline space
and the smoothness desired. See de Boor, Hollig, and Riemenschneider
(1993) for a complete description of box splines.

In the lower, leftmost plot of Figure 9.1 the grid consists of a much freer
arrangement of triangles. Less regular meshes such as this one can be com-
plicated to work with. Enforcing smoothness constraints can be difficult,
and it is necessary to place restrictions on the number of continuous deriva-
tives achievable relative to the order of the polynomial. Typically, for the
spaces to not degenerate to a single polynomial or otherwise compromise

IThe basic concept of finite element analysis is that a body or structure may be di-
vided into smaller pieces of finite dimensions called as finite elements. Then the behavior
of physical quantities in each element is described, and the separate pieces are assembled
to form an approximation of the original system. When modeling quantities like stress
or strain across the structure, we expect a certain degree of continuity when moving
between elements. This provides us with a formal connection between these engineering
tools and the concepts we have discussed so far from approximation theory.
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FIGURE 9.2. Bias-variance characteristics of an OLS fit. The data have been
standardized to have a signal-to-noise ratio of 2-to-1. Observe how characteristics
of each spline space influences the look of the final fit.

the approximation rate of the space, the order of the splines needs to be
relatively large. In such settings, forming a local basis can be extremely
difficult, and the dimension of the resulting space is not entirely clear. We
examine these complications for bivariate surfaces in the next section. In
the final panel of Figure 9.1 we present a mesh in which the individual
pieces are no longer separated by line segments. Some results for this kind
of mesh exist, mainly establishing upper and lower bounds on the dimen-
sion of the space (Chui 1988). We mention the possibility of such wild
structures only to give the reader an idea of what is possible. For the rest
of this chapter, we will consider only meshes consisting of triangles. Still,
given the difficulties involved in working with such relatively straightfor-
ward grids, one may wonder why we should stray from tensor products at
all.

It should be intuitively clear that the grids given in Figure 9.1 differ in
their ability to resolve features in a bivariate function (although asymptot-
ically as long as the separate pieces shrink, they can be made to perform
similarly). While we motivated the use of tensor products mainly from a
statistical standpoint, it should be clear that if we are interested in esti-
mating a surface, a more efficient representation might be possible from
something other than a rectangular mesh. This suggests adapting the un-
derlying mesh to the characteristics of the surface. The idea is a logical
extension of our desire to place knots in a univariate fit near important
structures. In Figure 9.2 we illustrate three bivariate functions and paired
plots of squared bias and variance for the two meshes given in the top row
of Figure 9.1. In each case, we are working with quadratic splines and have
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FIGURE 9.3. The data, a MARS fit and a Triogram fit.

used the same degrees of freedom for the tensor product and box spline fits.
For the middle panel, the 3-directional mesh is much better able to capture
the strong diagonal orientation of this surface. As we have seen in earlier
chapters, adapting the structure of the spline space to characteristics of the
unknown function can improve the fit.

We now explore the use of linear bivariate splines in a simple example.
We focus on continuous, piecewise linear functions and in so doing, sidestep
many of the issues introduced above. These simple spaces, however, pro-
vide us with sufficient flexibility to model strong features like peaks and
ridges. We will introduce a simple mechanism for mesh adaptation that is
easily motivated by our greedy schemes for knot addition and deletion in
a univariate fit.

9.2 An application

Cleveland and Fuentes (1996) analyze data collected as part of an exper-
iment on the processing of liquid crystal mixtures. The response is the
voltage V necessary to turn a mixture from opaque to clear. In our analy-
sis we use two predictors: the percentage P of liquid crystal in the mixture
and the temperature T' of the mixture, measured in degrees Celsius. The
experiment originally contained a third factor (the intensity of the light
used in the processing) that was dropped half way into the experiment.
After extensive exploratory data analysis, Cleveland and Fuentes (1996) fit
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FIGURE 9.4. Final Triogram fit for the crystal data.

a model consisting of two half planes that join along a line in 7" and P
space.

Two factors confound the usual application of a tensor product model
to these data. First, a mesh with axis-oriented grid lines will not be able
to efficiently represent the break observed by Cleveland and Fuentes. Next,
the data distribution is restricted to a triangle, and the bias-variance lesson
given above will confound a tensor product model. In In the leftmost panel
of Figure 9.3, we present the data in the T'— P plane and indicate the break
found by Cleveland and Fuentes. Note that there are only 47 data points
collected by experimenters across 3 separate experiments. In the middle
panel, we plot the grid associated with a MARS fit to these data. In the
final panel, we present the results of applying an adaptive fitting routine
that grows a triangulation in the same greedy fashion that univariate spline
models added knots to a curve estimate.

Starting from a simple linear fit defined over the triangular support of
the data, we added vertices sequentially subject to the constraint that
each triangle had to contain at least four data points. The largest model
fit during this addition phase consisted of nine vertices, and is shown in
Figure 9.3. From this maximal model, we deleted vertices sequentially, until
we returned to the original triangulation. These addition and deletion steps
generated a chain of nested models that we evaluated via generalized cross
validation (GCV). The best GCV model contained six vertices and is shown
in Figure 9.3. A perspective plot of this fit is given in Figure 9.4.

The largest model that was fitted had only 9 vertices, since none of the
triangles could be further subdivided without violating the requirement
on the minimum number of data points. The GCV criterion with penalty
parameter 4 selected a Triogram model with six vertices. The largest tri-
angulation encountered during the addition phase and the triangulation
associated with the best model are shown, respectively. A perspective plot
of the fit is given in the left hand panel.
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Non-Conforming Conforming

FIGURE 9.5. Non-conforming and conforming triangulations.

9.3 The methodology

9.3.1 Bivariate spline spaces

In this section, we will focus on piecewise polynomials (of some fixed total
order k) defined over a mesh consisting of triangles. We begin with some
basic notation about bivariate splines. Let X be a compact region in the
plane, and let /A be a collection of closed subsets of X having disjoint
interiors satisfying

X =Usen 0.

The set A is said to form a tessellation of X. In Figure 9.1, the region X
is a square, and the three grids represent tesselations. If each set § € A is
a planar triangle, then A represents a triangulation of X. A triangulation
A is said to be conforming if the nonempty intersection between pairs of
triangles in A consists of either a single shared vertex or an entire common
edge. The upper rightmost and lower leftmost panels in Figure 9.1 each
contain conforming triangulations. (See Figure 9.5 for a precise illustration
of this concept.)

Constructing multivariate spline spaces

Following the approach in Chapter 3, it seems natural to define a spline
space in terms of a mesh and the smoothness conditions that the surface
should satisfy across each segment. When we move to even two dimen-
sions, however, we are limited in what we can say about spaces of piecewise
polynomials defined in this way, even if we restrict our attention to trian-
gulations. For example, the dimension of such a space can depend on the
geometry of the mesh. A simple example of this was given in Morgan and
Scott (1975) and is reproduced in Figure 9.6. A space of quadratic poly-
nomials with continuious first partial derivatives defined over the mesh in
this figure is either 6 or 7, depending on whether or not the grey triangle
in the center is symmetric. Complications such as this make it difficult to
derive polynomial spaces that are usable in statistical applications.
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FIGURE 9.6. The dimension of the space of quadratic polynomials with con-
tinuious first partial derivatives defined over the mesh above is 6 or 7 depending
on whether or not the grey triangle in the center is symmetric.

Aside from characterizing the space, we also need to derive an basis.
Even a brief survey of the literature on multivariate approximation theory
indicates that there are many ways to generalize the classical univariate
B-splines. Some procedures start with a triangulation A and attempt to
construct smooth, piecewise polynomial basis functions that have small
support by enforcing smoothness conditions across the edges in A. This
so-called finite element construction imposes rather severe restrictions on
the resulting spline spaces even for functions in two variables. For example,
given an arbitrary triangulation in the plane, any spline space consisting
of functions possessing r continuous derivatives must have (total) order at
least 37+ 3 (see de Boor and Hollig 1988). We can remove these restrictions
by either considering only extremely regular meshes (like the 3-directional
grid in Figure 9.1); or by subdividing the triangles in A. In Figure 9.7, we
present one type of subdivision that has proved useful in designing spline
models. The class is known as vertex splines and was introduced in Chui
and He (1990). Given this elaborate expansion of the mesh, these authors
buy enough flexibility to derive explicit equations for a locally supported
basis. In this case, local means having support restricted to all the triangles
sharing a common vertex.

Other approaches define the mesh and the basis functions at the same
time, a procedure that is analogous to “pulling apart knots” in a space
of univariate B-splines. Recall from Chapter 2 that as knots coalesce in
a univariate spline space, the functions have fewer continuous derivatives.
One can envision reversing this process by starting with a space of dis-
continuous, piecewise polynomials having multiple knots at a single point
and smoothing the space out by separating or pulling the knots apart. In
the plane, one can start with discontinuous, piecewise polynomials over a
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FIGURE 9.7. Introducing 12 new triangles (dashed lines) for each triangle in the
original mesh (solid lines).

triangulation A (see the description at the end of this section) that can be
smoothed by separating multiple knots occurring at the vertices in the tri-
angulation. Interestingly, in both the univariate and the multivariate case,
the resulting functions can be described by considering marginal distri-
butions of random vectors having support on high dimensional polyhedra.
The resulting polyhedral splines also come with considerable computational
complexity (see Dahmen 1980; (de Boor 1976). For a probabilistic interpre-
tation, the reader is referred to Karlin, Micchelli, and Rinott (1986). The
simplest examples of this type of spline are the so-called box splines, which
are defined with respect to very regular grids (see de Boor and Hollig 1982;
de Boor, Héllig, and Riemenschneider 1993).

Complications in both the characterization and specification of arbitrary
piecewise polynomials has led to the development of several important spe-
cial cases, like those based on regular meshes (see the 3-directional grid
given in the middle panel of Figure 9.1). Rather than limit the structure of
the approximation space, we will prefer to restrict the order of the polyno-
mial pieces. By focusing on continuous, piecewise linear functions or linear
splines, these difficulties disappear. Throughout this chapter, we will focus
mainly on surfaces, or bivariate characterizations (although the construc-
tion can be easily generalized to higher dimensions). We have also chosen
linear splines because data-driven rules for adaptively choosing /A are more
easily explored in this rather simple setting. We will have more to say on
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this topic when we compare the Triogram algorithm (Hansen, Kooperberg,
and Sardy 1998) with well-known techniques from approximation theory.

Linear splines

Let G denote the space of continuous, piecewise linear functions over a given
triangulation A: Each g € G is continuous on X', and the restriction of g to
0 € A is a linear function. Defined in this way, G is a finite dimensional, lin-
ear space and there is a natural association between the vertices v1,...,v
of the triangles in A and a set of basis functions Bi(x),..., By(x) that
span G. Define Bj(x) to be the unique function that is linear on each of
the triangles in A and takes on the value 1 at v; and 0 at the remaining
vertices in the triangulation. This collection of tent functions was originally
proposed in Courant (1943), and is frequently used in the finite element
method. As we will see at the end of this section, these simple elements
have also been used as the starting point for defining multivariate splines
of higher degrees (see Chui 1988; de Boor 1987; Farin 1986).

Many of the important properties of this basis can be obtained from a
local representation of the tent functions. For the moment, we focus our
attention on a single triangle § € A having vertices v, vo and vs. The
barycentric coordinates of any point = (x1,72) € R? are defined as a

triple ¢(x) = (p1(x), p2(x), p3(x)), such that
T = p1(x)v1 + p2(T)v2 + p3(w)v3

and
o1(x) + pa(x) + @3(x) = 1.

These conditions are equivalent to the following set of linear equations

V11 V21 V31 <P1(35) X1
Uiz V22 V32 pa(x) | = 22 |, (9.3.1)
11 1 p3() 1

which can be solved explicitly using Cramer’s method provided § has a
nonempty interior. The solution to this system of equations is best ex-
pressed in terms of the function SignedArea(wv;,vs,v3), which we define
by
1]t V21 vs
SignedArea(vi,va,v3) = = | V12 Va2 Usa
1 1 1

As its name suggests, the absolute value of SignedArea(vy,v2,v3) is just
the area of the triangle with vertices vy, v2 and vs. By applying Cramer’s
method to the set of equations (9.3.1) we find that ¢1(x) is given by the

ratio
SignedArea(z, v2, v3)

_ _ ) 3.2
p1(x) = p1(x1, x2) SignedArea(v1, v, v3) (8:3.2)
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vi v3
FIGURE 9.8. The barycentric coordinates of a point = relative to the triangle
with vertices v1, v2 and w3 are expressed as ratios of signed areas. In this case,
the function ¢ () is the ratio SignedArea(u,v2,v3)/SignedArea(vi, vz, vs)

This relationship is illustrated in Figure 9.8.

From the expression in (9.3.2), we see that the barycentric coordinates
are linear functions of x; and x9, where @ = (z1,22), and satisfy the
interpolation conditions

oi(v;) = { (1) 177 i,j=1,2,3; (9.3.3)

=1

hence the vertices v, vy and ws have barycentric coordinates (1,0,0),
(0,1,0) and (0,0,1), respectively. Furthermore, from (9.3.2) we see that
the points on the edge connecting vs and w3 have barycentric coordinates
of the form (0,,1 — ), a € [0,1]. In general, any point on the boundary
of § has at least one zero coordinate. The interpolation conditions (9.3.3)
can be used to demonstrate that the functions ¢ (x), w2(x), and @3(x)
are linearly independent and hence constitute a basis of the space of linear
functions of ¢ = (x1,22) € R2. While it is customary in statistical applica-
tions to choose the basis comprised of the constant function 1 and the two
coordinate functions x7 and xs, the barycentric basis has the advantage
that it is invariant under affine transformations such as rotations: given
any nonsingular, 2-by-2 matrix A and any vector b € R?,

vi(z) = ¢} (Ax 4+ b), for i =1,2,3 and = € R?, (9.3.4)

where o7 (), ¢5(x) and @} (x) are the barycentric coordinate functions of
the vertices Av; + b, i = 1,2, 3. For our applications, this means that the
barycentric coordinate basis functions possess a natural invariance under
rotations and translations.

Returning to our triangulation A and the space of continuous, piecewise
linear functions G, we let § € A be a triangle with vertices vy, v2 and v3
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and observe that from the interpolation conditions (9.3.3), the functions
v1(x), p2(x) and p3(x) are exactly the basis functions Bi(x), Ba(x) and
Bs(x) for € 6. As an immediate consequence of this construction, we find
that the basis of tent functions By, ..., By associated with the triangulation
A are bounded between zero and one and satisfy

Bi(x)+---+ By(x) =1, reX’

a property shared by univariate B-spline bases. From (9.3.2) we also find
that for any nonsingular, 2-by-2 matrix A and any vector b € R?,

Bj(x) = B (Az +b), for all z € R? |,

where BY, ..., B} is the basis associated with vertices Avi+b,...,Av;+b
of the transformed set X* = {Azx+b,x € X'}. This means that models built
from functions in G have a natural invariance under affine transformations.
Using the barycentric coordinate functions, we will see in the next section
that this invariance carries over to our adaptive methodology as well.

The price for this simplicity is that our Triogram estimates are crude.
At the end of this chapter, we make this notion precise by demonstrating
how the Lo rate of convergence for a nonadaptive version of our procedures
depends on the approximation rate of the underlying spline space. By se-
lecting linear splines, we are certain to suffer when estimating functions
that are known to be very smooth. These suboptimal theoretical results
for nonadaptive Triograms are less of a problem in practice, however, be-
cause our adaptive procedure uses the data to decide where to introduce
new vertices. This effect was observed by Rippa (1992) when he noted
that even (theoretically) badly behaved triangulations consisting of long,
thin triangles can have exceptional performance in bivariate interpolation
problems when used in conjunction with an adaptive procedure.

Higher-order bivariate splines

As mentioned above, the barycentric coordinate functions can be used to
generate spaces of higher-order polynomials defined relative to a triangle
in the plane. For example, the space of quadratic polynomials spanned by
the functions

1, x1, x%, T3, x%, T1X2

is also spanned by the functions
O (x) o8 () o5 (z) for i1 + i +i3 =2, (9.3.5)

where © = (z1,z2) and i1, i2, and i3 are nonnegative integers. For polyno-
mials defined over triangles, this basis is again more natural because of the
invariance given in (9.3.4). When moving from a single triangle to a col-
lection of triangles A, the B-net representation (Chui 1988; de Boor 1987;
Farin 1986) can be used to define these basis functions so that the resulting
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spline spaces are continuous. Using this framework, elegant conditions can
be derived to enforce higher-order smoothness across edges and vertices in
A, reducing the task to a straightforward accounting problem (see Chui
and Lai 1990). While this procedure is still subject to the severe conditions
linking smoothness and degree, regular subdivision of A can also make use
of the B-net structure to generate, for example, quadratic splines with con-
tinuous first partial derivatives in each coordinate direction can be defined
over arbitrary triangulations (see Chui and He 1990).

9.3.2  Maximum likelihood estimation.

In the previous section, we derived some simple properties of a basis for
the space G of continuous, piecewise linear functions defined over a con-
forming triangulation A of a region X. In a Triogram model we estimate
an unknown, bivariate function f(x), € X, as a member of G. To be
more precise, let W1,... W, be a random sample from the distribution
of a random vector W, and let I(g, W), g € G, denote the log-likelihood
linking the distribution of W to functions in G. Using this notation, the
Triogram estimate § € G is given by

n

5 = 1(9), h Lig) =S (g, W) 9.3.6
§ = argmax In(g) where (9) ; (9, W3) (9.3.6)

~

Equivalently, ,(g) can be written as [,,(6) where 8 = (6y,...,0;) € R/
and
gx)=01B1(x)+---+0;B;(x), rekX.

Seen in this way, the estimate § is obtained by choosing the coefficients 0
that maximize the log-likelihood. In many cases, the random vector W can
be partitioned into (X, V), where X is a random vector over X € R? and
V is a response vector.

Consider the normal regression model. Let W = (X, V) with V € R and
set f(X) = E(V|X). Then, given observations W,..., W, we estimate

g(-) by .
§(x) = argmax _z;(g(Xi) - Vi)?,
yielding the normal equations -
01(Bi,Bi)n + -+ 0,(Bi, Bj)u = (Bi, V())n,  1<i<J, (9.3.7)

where V(x), ¢ € X, is any function that interpolates the value V; at X,
1 < i < n; here, for any two functions ¢g; and gs defined on X, we define
the inner product (-, ), by

(91,92)n = %Zgl(Ui)gz(Ui)-



9.3 The methodology 379

FIGURE 9.9. Three standard initial triangulations.

By construction, the ith equation in (9.3.7) involves only those coefficients
éj for which the vertices v; and v; are joined by an edge in A. The maxi-
mum of |i — j|, taken over all pairs i, j such that v; and v, are connected
by an edge in A, is referred to as the bandwidth of A. Schwarz (1988)
describes a number of well-known algorithms that renumber the vertices
of an existing triangulation A to minimize its bandwidth. In our imple-
mentation of the Triogram fitting routine, we use one such procedure in
conjunction with a band-limited Cholesky decomposition (Golub and Loan
1989) to solve the normal equations (9.3.7).

So far in this section, we have considered applying maximum likelihood to
fit a Triogram model only for a fixed mesh A (and hence a fixed space G). In
the remainder of the section, we describe a stepwise approach to Triogram
model building that at each step alters an existing triangulation by adding
or deleting a single vertex. After describing this algorithm in the context
of estimation problems, we will end this section by making connections
between Triograms and similar adaptive procedures in the literature on
approximation theory.

9.3.3 A stepwise algorithm

The adaptive Triogram procedure starts with an initial triangulation /g
and a maximum likelihood estimate gy € Gp. In many applications a natu-
ral initial configuration may be determined by the shape of X or a priori
knowledge about f. For situations in which the initial triangulation is not so
clearly defined, there are some default alternatives: one might consider the
smallest triangle, the smallest equilateral triangle, and the smallest axis-
oriented rectangle that contain all the data X4,...,X,,, with a possible
magnification factor to avoid boundary problems. Note that only the pro-
cedures for determining the first two of these triangulations are invariant
under affine transformations of the data. In Figure 9.9 we present an exam-
ple of each of these three initial triangulations corresponding to a random
sample of 75 pairs of bivariate normal observations. From the discussion in
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the previous section it is clear that for the first two configurations in this
figure, the initial fit §g is just a plane. In general, if the initial model is not
sufficiently flexible to capture the major features of the data, we enrich G
by stepwise refinements to the triangles § € Ag.

During the addition phase we produce a sequence of nested spaces Gy C
G1 C -+ C G, of continuous, piecewise linear functions having dimensions
p,p+1,...,p+ m, respectively. As usual, associated with each space G; is
a conforming triangulation A; of X. Given the strong connection between
vertices in a triangulation and the basis of tent functions described in the
previous section, the most natural procedure for constructing the space
Gi+1 from G; involves adding a single new vertex to the underlying triangu-
lation A\;. There are obvious constraints on this process because the mesh
Ai+1 corresponding to G;11 must also be a conforming triangulation, and
G; must be a subspace of G;y;. In addition, we must only make changes
to /\; that yield a space G;+1 in which the maximum likelihood equations
(9.3.6) can be solved uniquely.

For the moment, however, assume that at the ¢th stage in the addition
process, we generate a number of candidate vertices that can be added to A;
to produce a refined triangulation A;y; and a new space G,;41 representing
a single degree-of-freedom change to G;. We choose between these candidate
vertices by a heuristic search that is designed approximately to maximize
the Rao statistic (score statistic) associated with adding the corresponding
new basis function. When f is a regression function, for example, we select
the vertex that has the greatest decrease in the residual sum of squares
when it is added to A;. The user can specify the maximum number of
vertices to add to an initial triangulation, and the addition phase continues
until either this maximum is reached or we have exhausted the set of viable
candidate vertices.

During the deletion phase of our Triogram procedure, we again con-
struct a set of nested spaces Gy O G] D --- D G/ ,, this time of decreasing
dimension p’,p’ — 1,...,p" — m’. By again appealing to the close connec-
tion between vertices and basis elements in spaces of continuous, piecewise
linear functions, we see that the most natural process for generating these
subspaces involves sequentially removing vertices from the maximal tri-
angulation Aj. This process is also subject to a number of constraints
imposed by our requirements that G/, ; be a subspace of G; and that the
mesh associated with each space must be a conforming triangulation. De-
tails about how vertices are identified as candidates for deletion will be
given in the Section 9.3.4. For the purpose of this discussion, however, we
simply assume that at each step ¢ there are a number of vertices that can
be removed from Aj to produce a smaller triangulation A}, ; and a new
space G, representing a single degree of freedom change to G;. We choose
from among these candidates the one that minimizes the Wald statistic
associated with deleting the corresponding basis element from G;, ;. For
example, when f is a regression function, we select the vertex that yields
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the least increase in the residual sum of squares when it is deleted from A.
As was the case with the addition phase, the user can specify the size of the
smallest triangulation to be considered, and the deletion phase continues
until either this minimum is reached or we have exhausted the set of viable
candidate vertices.

By evaluating candidate vertices on the basis of Rao statistics during
the addition phase and Wald statistics during the deletion phase, we avoid
having to compute maximum likelihood estimates corresponding to each
candidate space, improving the speed of our algorithm. Both statistics are
based on quadratic approximations to the log-likelihood function (Stone,
Hansen, Kooperberg, and Truong 1997). Regression is the only estimation
context for which this does not represent a computational advantage, since
the log-likelihood function is already quadratic.

During the combination of stepwise addition and stepwise deletion, we
get a sequence of models indexed by v, with the vth model having p,
parameters. When f is a log-density function or a generalized regression
function, the (generalized) Akaike information criterion (AIC) can be used
to select the best model from this sequence. Let Z, denote the fitted log-
likelihood for the vth model, and for a fixed penalty parameter a, set

AIC,, = —2L, + ap, (9.3.8)

We take as our final model the member of the sequence that minimizes
AIC, .. In light of practical experience, we generally recommend choosing
a = logn as in the Bayesian information criterion (BIC) due to Schwarz
(1978), and set this as our default in the Triogram software. (Choosing
a = 2 as in classical AIC tends to yield models that are unnecessarily
complex, have spurious features, and do not predict well on test data.)
When f is a regression function we discriminate between models on the
basis of their GCV score (Friedman 1991)

GOV, = 2120

n(l_%)27

n

(9.3.9)

where RSS, is the residual sum of squares for the vth model and a is a
fixed penalty parameter. We select as our final model the member of the
sequence that minimizes the GCV criterion. Note that we do not correct
(9.3.9) for the number of parameters that are used in the initial model,
since not all our initial models are of the same size. We have found that
taking a = 4 approximately minimizes the mean squared error in a number
of simulated examples, which agrees with the results in (Friedman 1991),
so this is our default choice in the Triogram software.

In the remainder of this section we discuss in detail our implementation
of the addition and deletion phases of an adaptive Triogram procedure,
using many of the properties of the barycentric coordinate functions.



382 9. Multivariate Splines

>4

Original Triangulation Splitting Boundary Edge
Splitting an Interior Edge Subdividing a Triangle

FIGURE 9.10. Three ways to add a new vertex to an existing triangulation.
Each addition represents the introduction of a single basis function, the support
of which is colored gray.

9.3.4 Stepwise addition

Inserting a new vertex into an existing triangulation A requires a rule for
connecting this point to the vertices in A so that the new mesh is also
a conforming triangulation. In Figure 9.10, we illustrate three options for
vertex addition: we can place a new vertex on either a boundary or an
interior edge, splitting the edge, or we an add a point to the interior of one
of the triangles in AA. Note that the space obtained by adding a vertex v
to an interior edge of a triangle § € A cannot be achieved as the limit of
spaces constructed by adding v to the interior of 6. In this case, if v is very
close to an edge of § the new triangulation is essentially nonconforming
and the associated space of linear functions G contains elements that are
discontinuous along that edge. Similar discontinuities arise when the new
point v is positioned extremely close to an existing vertex. Degeneracies
such as these are encountered in the context of univariate spline spaces
when knots are allowed to coalesce (de Boor 1978).

Given a triangulation A, we construct a set of candidate vertices by
considering the points with barycentric coordinates

k1 ko K+1—-k —k
K+1 ' K+1’ K+1

) ., deN, (9.3.10)
)
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o

Candidates for K=5

Candidates for K=2

FIGURE 9.11. Candidate vertices for K = 2 and K = 5.

FIGURE 9.12. Rao statistics for adding a knot. The left surface is truth, and the
right right is the Rao surface for adding single knot to simple linear fit.

where k1, k2 and K are nonnegative integers satisfying k1 + ko < K +1 and
no coordinate equals one. We have introduced a subscript “6” to make it
clear that these points are calculated for each triangle in A. The positions
of the candidate knots calculated with K = 2 and K = 5 in (9.3.10) are
plotted in Figure 9.11. In order to avoid the degeneracies mentioned above,
we suggest modest values of K, with 5 being the default in our Triogram
software. At this stage, we allow the user to impose other restrictions on
the set of candidate vertices. For example, partitions /A with many long,
thin triangles or triangles containing little or no data tend produce highly
unstable estimates. This notion is made precise at the end of the chapter
when we examine the mean squared error properties of a nonadaptive Tri-
ogram procedure. For now, however, it is sufficient to indicate that the user
can further restrict the set of candidate vertices by setting the minimum
number of data points per triangle M and the minimum angle per triangle
A in any allowable triangulation.

Recall that once we have identified a set of viable candidate vertices,
we select the point that minimizes the Rao statistic. By evaluating a large
number of potential vertices, we can generate a Rao surface that is use-
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ful in understanding both the behavior of the Triogram procedure as well
as the placement of significant structures in a particular data set. In Fig-
ure 9.12, we present the Rao surface associated with adding a new vertex
to a partition A consisting of just one triangle. In this case, we are using
ordinary least squares to estimate ¢*, the simple quadratic o + 3 plotted
in the left hand portion of the figure. We generated 100 points uniformly in
the triangle and added independent, normal noise to ¢* so that the signal
to noise ratio was three to one. In the panel on the right, we present the
Rao surface for adding a new node to the triangle. Since we are estimating
a regression function, the height of this surface at a particular point x is
equivalent to the drop in the residual sum of squares when a new vertex is
added to A at x. Not surprisingly, it can be seen that the maximum Rao
statistic is obtained when adding a vertex near the center of the triangle.
In this example, the edges in the initial triangulation A form the boundary
of X and hence we do not observe any of the discontinuous features in the
Rao surface associated with splitting interior edges.

Rather than choosing a new vertex from among a number of candidate
vertices, we have also investigated the use of continuous, low-order poly-
nomial approximations to the Rao surface. In this case, for each triangle
0 € A, we also calculate the Rao statistic at a small number of points
following the recipe in (9.3.10), but fit a polynomial ps(x) using the basis
(9.3.5). The new vertex is then chosen as from among the points

argmax, s ps(x) for o € A.

This approach allows for more flexibility in knot placement, with only minor
computational overhead.

Once a new vertex has been identified, there is a simple procedure for
generating the associated basis function B(-), again using the barycentric
coordinate functions described in Section 9.3.1. Suppose for the moment
that we want to introduce a vertex v in the interior of a triangle § with
vertices v1, v2, and v3. Recall that the barycentric coordinate functions
o(x) = (p1(x), p2(x), p3(x)), * € R?, associated with § form a basis for
the space of linear functions in @ = (z1,x2). Therefore, any line in the
plane can be expressed in the form

a101(x) + aepa(x) + azps(x) =0, x € R2 ,

for suitable constants a1, ag and ag. In particular, the points @ that lie on
a line passing through the vertex v; and any other point v € R? is given
by

p2(v)p3(®) — p3(v)p2(x) =0, = €R”.

If v is contained in 4, then this line intersects the edge connecting v, and vs,
splitting 4 into two subtriangles. The points & € § satisfying 2 (v)ps(x) <
v3(v)pa(x) fall in the subtriangle that contains vy, while the remaining
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vi vi

v2 v2

Original Triangulation Updated Triangulation

v3 v3

FIGURE 9.13. Adding a new vertex at the point v = ¢i1(v)v1 + @2(v)v2
+¢3(v)vs. In this case, we are adding to G the continuous, piecewise linear
function that takes on the value one at the point v and zero at each of vi, va,
and vs.

points in § belong to the subtriangle containing v3. Similar statements can
be made about lines connecting v and the other vertices vo and wvs.
With this relationship in mind, we define the quantities

Y1 (w) - ) ’ SDQ(w) - (PQ(’U) ’ and 4,03($) - @3(”) .
From the discussion in the previous paragraph, we see that the points
x € ¢ that fall within the triangular subregion with vertices v, v; and vs
(the shaded area in Figure 9.13) satisfy the relationship ¢}(x) < ¢i(x)
and ¢%(x) < ¢3(x). Applying (9.3.2) in Section 9.3.1, we also find that
within this region, the new basis function B(x) is given by ¢3(x). Similar
expressions can be derived for the remaining two subtriangles, yielding the
following simple rule for constructing B(x):

3 if @3 <] and 3 < @3,
B(x) = o1 if o] <5 and o] < @3,
w3 if @5 <7 and 5 < 3.

Using these expressions, it is easy to construct B(x) from the existing
basis elements associated with the vertices v;, v2, and vs. When v is on
the boundary of §, at least one of the barycentric coordinates of v is zero.
In this case, one of ¢} (-) must be infinite and the conditions listed above
simplify. For example, if v is on the edge connecting v; and ve, then ¢} (x)
is infinite, and we find that within ¢,

B) = | # Heises,
@y i g3 <ol

This set of equations creates B(x) for « € 4. If v is on the boundary of
6, we might also have to produce a similar set of equations to construct
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B(x) for & belonging to a neighboring triangle of §. Since various inner
products and empirical moments are already known for @1, ps and @3
from the previous step in the addition process, these relationships can be
used to derive simple updating formulae for computing the Rao statistic
for adding v to the partition A.

Once a vertex has been chosen, we can again use the current barycentric
coordinate functions to update the set of basis functions. Returning to the
left hand triangle in Figure 9.13, suppose that we want to add a vertex v
on the interior of 6. Now, if we let Bi(x), Ba(x), and Bs(x) represent the
piecewise linear basis functions associated with the points v, v, and vs in
the updated triangulation, then it is straightforward to demonstrate that,
for all points @ in the shaded triangle on the right in Figure 9.13,

¢1(x) = Bi(z) + p1(v)Bs(x), p2(x) = Ba(x) + 2(v)Bs(x) ,

and
p3(x) = p3(v)Bs(z) .

We have seen the last equation in the definition of the new basis function
B(x). Similar expressions can be obtained for the remaining two unshaded
regions in § and can be easily extended when v is on a boundary of 4.
Again, because so much is known about 1 (x), v2(x) and ¢3(x) from the
previous step in the addition process, simple and efficient updating rules
can be created for generating the new set of basis functions.

9.3.5 Stepwise deletion

When discussing strategies for reducing the dimension of a space of con-
tinuous, piecewise linear splines, we have so far only considered removing
a vertex from an existing triangulation. In fact, this process can be viewed
much more generally as enforcing continuity of the first partial derivatives
along an edge in an existing triangulation. We now discuss both procedures
in some detail.

Removing vertices.

In Figure 9.10 we outlined a rule that allows us to place a new vertex at
any point in U to refine an existing triangulation. Unfortunately, when we
remove a vertex from a partition A in an attempt to reduce the dimension
of G, there may not be a way to reconnect the remaining vertices to form A\
so that the updated space G is a subspace of G. For example, the central
vertex in any of the panels of Figure 9.10 cannot be removed if we want to
obtain a subspace of G. Clearly, if any of the vertices highlighted in this
figure are added to the initial triangulation in the upper left hand corner,
they can be immediately removed and still produce the proper nesting
of spaces. Only vertices falling into one of the three categories listed in
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Deleting an Edge v3 v Deleting a Vertex v3

FIGURE 9.14. The effect of enforcing the constraint that functions in G be
continuously differentiable across edges in two triangulations.

Figure 9.10 are legitimate candidates for removal in this restricted deletion
strategy.

Enforcing continuity of the first partial derivatives along an
edge.

This approach to stepwise deletion is more natural when we realize that
removing a vertex amounts to enforcing the condition that a function in
the space be continuously differentiable across a given edge in the exist-
ing triangulation. Observe that a continuous, piecewise linear function has
continuous partial derivatives across an edge if and only if the function is
linear on the union of the two triangles that share the edge. In each of the
examples in Figure 9.10, enforcing continuity of the first partial derivatives
across any of the gray edges is equivalent to removing the added vertex,
returning us to the original partition in the upper left hand corner of the
figure. These are the only cases for which this equivalence exists. (The
strategy that we employ in the examples in Section 9.4 involves using the
Wald statistic to choose between continuity constraints across edges that
fall into one of the three special categories.)

The alternative approach is more aggressive and involves choosing from
among all the continuity constraints, regardless of how the edge is posi-
tioned relative to the other edges in the partition. The important distinc-
tion between these two procedures is that only in the first case are we
actually guaranteed that the structure of A is simplified at each step.

Using the barycentric coordinate functions, we can derive a simple pro-
cedure for determining the constraint that a function in G be continuously
differentiable across a given edge in /A. To make this more precise, consider
the triangulation on the left in Figure 9.14 and let 1 (), p2(x), and @3(x)
denote the barycentric coordinates of a point & € R? relative to the trian-
gle with vertices v, va, and v3. Given a function g € G, let 01, 65, and 03
denote the coefficients of the basis functions associated with these vertices.
Then for all points  in this triangle, g(x) is the linear function given by
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O1p1(x) + O2p02(x) + O303(x). Now, if we let 04 denote the coefficient of
the basis function of G associated with the vertex vy, then g(vs) = 6y.
Therefore, the function g is linear on the union of the two triangles in left
hand portion of Figure 9.14 provided that

04 = g(va) = 0101(va) + O202(v4) + O303(v4) .

By swapping the roles of v and vy in this argument, we find that that C*
continuity of a function g € GG can also be assured by the constraint

01 = g(v1) = O2p2(v1) + O303(v1) + Oapa(v1),

where @a(x), P3(x), and @s(x) denote the barycentric coordinates of a
point @ relative to the triangle with vertices vo, v3, and v4. It is not hard to
demonstrate that these two constraints are equivalent up to a multiplicative
constant. Observe, however, that when this condition is enforced, we are
left with a single linear function over the pair of triangles that constitute
A, but we have not produced a simpler triangulation in the process.

Suppose instead that we want to remove the vertex v, in the middle
of the triangle in the right hand portion of Figure 9.14 . Given g € G
and 1 <4 < 4, we again let 6; correspond to the coefficient of the basis
function associated with the vertex v;. It can be shown that each of the C*
continuity constraints across the shaded interior edges shown in the figure
is of the form

01 = ©1(v4)01 + @2(v4)02 + p3(v4)03, (9.3.11)

where @1 (), ¢2(x) and @3(x) are the barycentric coordinates of a point u
relative to the outer triangle in Figure 9.14 . Observe that the expression on
the right is the value at v4 of the unique linear function interpolating 61, 65
and 03 at the points v1, v2 and vs, respectively. Recalling that g(v4) = 04,
we see that the constraint in (9.3.11) has considerable intuitive appeal.

9.4 The example revisited

The complete experiment involves just 47 data points. Since we have so
little data, we do not want to use too many basis functions in our initial
model. Therefore, we took as /g a 15% enlargement of the smallest triangle
that contained all the data. We obtained the 15% expansion by positioning
the barycenter of the original triangle at the origin, multiplying the shifted
coordinates by 1.15 and then moving the triangle back to its original po-
sition. Figure 11a shows this triangle together with the data points. As in
the previous example we required the minimum number of data points in
each triangle to be four. Since the data set is so small, it seemed reasonable
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FIGURE 9.15. Initial triangulation (a), largest triangulation (b), and final trian-
gulation (c) for the crystal data. The dashed line in panel (c) is the edge fitted
by Cleveland and Fuentes (1996).

FIGURE 9.16. Rao statistics for the first added vertex (right) for the crystal
data.

to consider a somewhat smaller number of possible new vertices than in the
simulated example above, and so we set K = 4.

The largest model that was fitted had only 9 vertices, since none of the
triangles could be further subdivided without violating the requirement
on the minimum number of data points. The GCV criterion with penalty
parameter 4 selected a Triogram model with six vertices. The largest tri-
angulation encountered during the addition phase and the triangulation
associated with the best model are shown in Figures 9.15b and 9.15¢, re-
spectively. A perspective plot of the fit is given in Figure 9.4.

The Rao surface introduced in Section 9.3.4 is a useful diagnostic for
uncovering structure in this data. In Figure 9.16b we have evaluated the
Rao statistic associated with adding a vertex at the points (9.3.10) for
K = 20 and have connected the points with a continuous, piecewise linear
surface. (Recall that in the regression context, the Rao statistic is simply
the amount by which the residual sum of squares drops after the addition
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of a new basis function.) Notice that the the Rao surface is fairly constant
near its maximum in a strip along the edge corresponding to 7' = 40 and it
drops considerably when the potential new vertex is moved to the interior
of the triangle. It seems to make little difference whether we locate the first
new vertex on this edge or close to this edge because the data is sparse
and the edge in question is a boundary of the initial triangulation. As
mentioned earlier, Cleveland and Fuentes (1996) fit two “hinged” planes
and thus one interior edge to this data. They find that the piecewise planar
model having a break along the line " = —334.5 + 4.5P is optimal in
the sense that it has the smallest residual sum of squares among all such
single-hinged fits. This break corresponds to the dashed line appearing in
the rightmost panel in Figure 9.15. The Triogram algorithm places an edge
in almost the same location, and in fact if we follow the more aggressive
deletion scheme outlined above, we can obtain a model very similar to that
derived by Cleveland and Fuentes.

9.5 Simulation results

We now present a number of examples to further illustrate the Triogram
methodology. We begin by studying how our procedure performs on data
simulated from a model that has been widely studied in the literature on
surface estimation. Our first example involves data simulated from a bi-
variate regression model proposed by Gu, Bates, Chen, and Wahba (1990).
The design consists of 300 “semi-random” points x; = (x1;, x2;) in the unit
square. At each point x; our response is y; = f(x;) + €;, where the true
regression function f is given by

40 exp{8[(x1 — 0.5)% + (2 — 0.5)%]}
exp{8[(z1 — 0.2)2 + (z2 — 0.7)2]} + exp{8[(z1 — 0.7)2 + (22 — 0.2)2]}’

and ¢;, 7 =1,...,300, are independent, standard normal random variables.
This problem has been considered by a number of authors for evaluating the
performance of various schemes based on tensor-product splines (Breiman
1991; Friedman 1991).

In the computations reported here we used the same design points as Gu,
Bates, Chen, and Wahba (1990). For our initial triangulation A, we divide
the unit square into four triangles by drawing in both diagonals, yielding an
initial model with five degrees of freedom. In Figure, we present both the
design points and Ag. (In the three panels in Figure 9.17, the point (1,1)
corresponds to the bottom left corner of each plot.) Since this data set is
fairly small, it is computationally feasible to fit models with many triangles,
and to consider many possible candidate vertices. With this in mind, we
set K =5 in (9.3.10) and entertain new vertices at the points given in the
right hand panel of Figure 9.11. The maximum number of vertices was set
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(a) (b) ()

FIGURE 9.17. Initial triangulation (a), largest triangulation (b) and final trian-
gulation (c) for the simulated example.

equal to 35, although this number was rarely reached in our simulations
since we required a minimum number of four data points in each triangle.
The penalty parameter a in the GCV criterion (9.3.9) was set equal to 4.
While this choice seemed to result in the smallest mean integrated squared
error across our simulations, taking a in a neighborhood of 4 yielded very
similar results.

While the true surface for the artificial regression function from Gu,
Bates, Chen, and Wahba (1990) is better approximated by cubic splines
and their tensor products than by Triograms, the significant features in
a regression surface like the one considered here should be more easily
captured by the piecewise linear character of a Triogram fit. To examine this
further we conducted a small simulation study. In Figure 9.18 we present
five triangulations corresponding to a set of continuous, piecewise linear
functions. In each example, the functions take on the value zero at all but
one vertex. The values at these remaining vertices are given explicitly in
Figure fig:simple. We evaluated each surface at 50, 200 and 1000 randomly
sampled points inside the triangle and added standard normal errors to
the regression surface. Both the height of the examples in Figure fig:simple
and the variance of the errors were such that the signal-to-noise ratio was
approximately the same as in the data from Cleveland and Fuentes (1996).
We repeated this process 25 times, giving us a total of 75 data sets on which
we can compare the performance of Triograms to other popular surface
fitting routines.

While each function in Figure is a Triogram model, the first and third tri-
angulations also correspond to (piecewise linear) MARS models (Friedman
1991). To make more realistic comparisons, we have placed the vertices in
each of these examples so that the Triogram algorithm with K = 4 would
not consider the correct vertex locations in its initial addition phase. For
n = 50 we fitted models with at most 10 vertices and at least 4 data points
in each triangle, mimicking the situation for the voltage data; for n = 200
we fitted models with at most 15 vertices and at least 7 data points in each
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FIGURE 9.18. Five true regression models for a simulation study.

triangle; and for n = 1000 we fitted models with at most 20 vertices and
at least 10 data points in each triangle.

We computed the mean integrated squared error (MISE) over the 25
simulations for fits from Triogram, MARS (Friedman 1991) and Pimple
(Breiman 1991), and the results are summarized in Table 9.1. The typical
standard errors of the estimates in Table 9.1 are 10-20% of the estimates
themselves, for all models, sample sizes and methods. From Table 1 we see
that Triogram outperforms MARS and Pimple considerably on models 2, 4
and 5 for all sample sizes. For model 3 MARS has an edge, while for model
1 MARS wins for n = 50 and Triogram wins for n = 1000. We should keep
in mind that for models 1 and 3 MARS can pick the “correct” model in
one step, while several steps would be required for Triogram, since the cor-
rect vertices are not in the initial search set. When we reran model 1 with
K = 5, so that the correct vertex was in the initial search set, the MISE
for Triogram was reduced by 50%, so that MARS was outperformed for all
sample sizes. It is surprising how much difficulty MARS and Pimple have
with model 5, even when n = 1000. In this context, Triogram models are
clearly more natural than MARS, Pimple and smoothing spline estimates
and have superior MISE performance. Ultimately, the piecewise linear char-
acter of our Triogram models is either a blessing or a curse depending upon
the smoothness of the underlying functions.

Clearly each methodology has it strengths and its weaknesses. We feel
that these five examples and the simulated regression problem of Gu, Bates,
Chen, and Wahba (1990) demonstrate that the Triogram models reliably
capture the major features even in smooth models, and that their true
advantage is in capturing ridges in the data.
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n  model 1 model2 model 3 model 4 model
Triogram 50 0.1649  0.1706 0.6938 0.2707  0.6662
Pimple1 50 0.2347  0.4101 0.2348 0.8172  3.0816
MARS? 50 0.1098  0.4192 0.2439 1.0294  2.7530

Triogram 200 0.0447  0.0639 0.1673 0.0232  0.0709
Pimple 200 0.0654  0.1457 0.0805 0.1877  0.6124
MARS 200 0.0436  0.1363 0.0665 0.2658  0.7242

Triogram 500 0.0081  0.0112 0.0299 0.0090  0.0227
Pimple 500 0.0269  0.0359 0.0336 0.0588  0.2587
MARS 500 0.0103  0.0383 0.0066 0.0806  0.3207

TABLE 9.1. Mean integrated squared error (25 simulations). (Excluded one sim-
ulation for model 4 with MISE of 11.0 and one for model 5 with MISE of 36.6.
Also, excluded one simulation for model 5 with MISE of 43.6.)

9.6 Extensions

Consider density estimation. The likelihood equations are given in Chap-
ter 6. Here, we extend the framework to allow for each model to have a
common base triangulation from which we delete vertices. Talk about the
protein data and estimating log-odds ratios.

Density estimation

Let f represent the joint density of X € X. In this context, the vector
W equals X, since we do not have a response. Now, given coefficients
0 = (61,...,05) € R7, we can define a density f(zx;0) over X having the
form

F(x:0) = exp (91B1(m) 4+ 0,By(x) — C(0) )
where

C() = /X exp (9131(m) o4 0,By(x) )dm

is the normalizing constant. Therefore, based on a sample X, ..., X, from
the distribution of X, we estimate f by the function f = f(-;0), where 6
is chosen to maximize the log-likelihood

1n(8) = log f(X::6).
=1

As in univariate logspline density estimation (Kooperberg and Stone 1992)
the likelihood equations take on the simple form

E3Bj(X) = E,Bj(X), 1<j<J, (9.6.1)
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where
1
EgBj(X) = /){Bj(w)f(w;a)dw and  E,B;(X) = EZBj(Xi).

Since the functions B; are piecewise linear over &X', it is possible to evalu-
ate the required integrals exactly, a definite advantage of Triogram models
in the context of density estimation. In our Triogram software, Newton—
Raphson iterations are used to solve the likelihood equations (9.6.1). To
obtain the Hessian associated with this problem, we have to compute quan-
tities of the form E3[Bj, (X)Bj,(X)] for 1 < j1,j2 < J, which again have
closed form expressions because our basis functions are piecewise linear.

In the top panel of Figure9.6, we present three data sets that are natu-
ral candidates for Triogram density estimation. The points in these plots
represent a collection of amino acids obtained form 100 protein structures
taken from the Brookhaven Protein Data Bank (Hobohm, Scharf, Schnei-
der, and Sander 1992). In order to characterize the local environment of
each amino acid within a given protein structure, three pieces of informa-
tion were recorded: the local context of the protein at the given amino acid
(whether the protein is twisting around a helix, for example), the fraction
of the amino acid side-chain area that is buried in the protein structure,
and the fraction of the side-chain area that is covered by polar atoms. Since
the unburied portion of the amino acid is exposed to a polar solvent, the
final two quantities are restricted to the upper triangle of the unit square.
The plots in the top row of Figure 9.6 correspond to data collected from
the amino acid Lysine found in a helix, a coil and a sheet.

Bivariate density estimates computed for each amino acid and each lo-
cal protein structure are the basis for an approach to solving the so-called
inverse folding problem (Bowie, Luthy, and Eisenberg 1991; Zhang and
Eisenberg 1994). Evaluating the structure of a given protein is extremely
difficult. Fortunately, determining the sequence of amino acids that com-
prise the protein is relatively simple. It would seem reasonable, therefore,
to attempt to infer the protein’s structure from its amino acid sequence.
Unfortunately, many rather different sequences produce very similar struc-
tures, so the objective of the inverse folding problem is to determine which
amino acid sequences might result in a given known structure. This can be
accomplished by studying the propensity for certain amino acids to occur in
certain local environments in a large collection of known protein structures.
The procedure described by Zhang and Eisenberg involves a log-odds calcu-
lations, the main ingredient of which is a set of bivariate density estimates
for the type of data given in the top row of Figure 9.6.

Along the top row of Figure 9.6 we have three data clouds, one corre-
sponding to each local context. There are 591 points in the first plot, 341 in
the second and 593 in the third. We first applied the Triogram procedure
separately to each dataset corresponding to the three different local envi-
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buried buried buried

FIGURE 9.19. Triogram density estimates. Separate density estimates are fit for
the three local protein contexts. (There were 591 amino acids found in a helix,
341 in sheets and 593 in coils.)

ronments. At each step in the addition process, the set of candidate vertices
consisted of the points with barycentric coordinates given in (9.3.10) with
K = 5 relative to each of the triangles in the current triangulation . We
did not enforce shape restrictions on the updated triangulation when choos-
ing between the candidates, but did insist that each triangle must contain
at least 25 points. After the deletion phase we selected a final model using
BIC (9.3.8). In each case, the best fits were encountered during the stepwise
deletion. The underlying triangulations for these final models are plotted
in the second row of Figure 9.6, with contour plots of the corresponding
densities given in the last row of the same figure. While the piecewise linear
character of our Triogram models makes these plots somewhat jagged, they
are clearly capturing the essential features of the data.
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helix/sheet

helix/coil

buried

sheet/coil

FIGURE 9.20. Log-odds ratios for lysine in the three contexts helix, sheet and

coil. In each case, the dark solid lines follow contours with value log(0.5) and the
light solid lines follow contours with value log(2).



9.6 Extensions 397

As mentioned above, one approach to the inverse folding problem in-
volves a log-odds calculation based on these estimated densities. With
this in mind, it is advantageous to have each of the underlying triangu-
lations nested in some larger triangulation, and in fact it might be possi-
ble to stabilize the adaptation process somewhat by considering all three
data sets simultaneously. For a given triangulation A, let G denote the
associated space of continuous, piecewise linear functions. Next, let X ;,
1 = 1,...,n¢, denote the observations associated with local environment
¢ € {helix, sheet, coil}, and let £.(0.) denote the log-likelihood of these ob-
servations as a function of the coefficients 6. corresponding to the Triogram
basis constructed on /. During the stepwise addition phase of our model
building, we now compute Rao statistics using the likelihood

f( 0he1ix7 esheetu Bcoil ) = ehelix( ehelix ) + esheet( esheet ) + ecoil( ecoil ) 9 (9'6’2)

and add the vertex that maximizes this combined Rao statistic. Restric-
tions on the shape of the resulting triangulations as well as minimum data
requirements can be enforced in the obvious way. Our deletion phase again
makes use of the log-likelihood in (9.6.2), at each stage deleting the ver-
tex that creates in the smallest increase in the combined Wald statistic. In
general, we believe that when similar functional forms are expected, this
type of fitting can effectively pool the datasets to determine a common
triangulation A from which to start the deletion phase.

In Figure 9.20, we present the final triangulation as well as the log-odds
ratios associated with the three different contexts for Lysine. The plots are
shaded so that as the color changes from black to white, the log-odds ratios
vary from —2 ~ log0.13 to 3 ~ log20. The dark and light lines intersect
the surfaces at log 0.5 and log 2, respectively. For example, the difference of
the log of the estimated density for helix and sheet when percent-buried is
close to 0 and the percent-polar is almost 100 is seen to be approximately
log 0.2, since the left top corner of this panel is very dark gray.

Now, consider the difference between Lysine found in a helix and Lysine
occurring in a sheet. While the scatterplots in Figure 9.6 indicates that the
center of the distribution for the sheet context is shifted more toward the
barycenter of the triangle relative to the distribution of the data collected in
a helix, Figure 9.20 suggests that if we want to decide whether unidentified
Lysine is in a helix or a sheet, the percent-polar (along the vertical axis)
provides more evidence than the percent-buried, since the vertical color
changes are more pronounced than the horizontal color changes. The same
is essentially true if one wants to distinguish between helix and coil, but
for distinguishing between sheet and coil the percent-buried seems to be
more informative.
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