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Rates of Convergence in Extended
Linear Modeling

In previous chapters, we have separately developed spline-based method-
ology in the contexts of regression, generalized regression, polychotomous
regression, density estimation, spectral density estimation, and hazard re-
gression. Throughout the remainder of the book, spline based procedures
will be studied in a general mathematical framework and their fundamental
properties will be investigated. Specifically, we consider unknown functions
and maximum likelihood estimates of such functions in finite-dimensional
estimation spaces that mainly are built up from polynomial splines and
their selected tensor products. We will develop a large sample asymptotic
theory on consistency and rates of convergence for the resulting estimates.
It turns out that the asymptotic results can be obtained simultaneously
for various statistical contexts by introducing the framework of “extended
linear modeling” as a broad synthesis.

In the present chapter, the dimension of the estimation spaces is allowed
to depend on the sample size, but not on the sample data itself. This
corresponds to fixed knot spline estimation in which the knot positions are
prespecified. However, in our asymptotic theory, the number of knots is
allowed to increase with the sample size, reflecting improved flexibility for
increasing sample size. In the next chapter we will extend the results in this
chapter to handle free knot splines, that is, the knot positions are treated
as “free” parameters to be determined by the data.

In Section 11.1.1 we describe the theoretical framework of extended linear
modeling, which involves a model space H, a log-likelihood function on H,
and maximum likelihood estimation corresponding to a finite-dimensional
subspace G of H. In Section 11.1.2 we give an informal discussion of the
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corresponding asymptotic theory on consistency and rates of convergence.
In Section 11.1.3 we specialize these results by considering spaces H and
G constructed using functional analysis of variance (ANOVA) decomposi-
tions. In Sections 11.2 and 11.3 we give formal presentations of the results in
Sections 11.1.2 and 11.1.3, respectively. Section 11.4 contains verifications
of some of the technical conditions for the main asymptotic results either
in general or separately for generalized regression, density estimation, and
hazard regression.

11.1 Theoretical Framework and Basic Results

In this section we give a detailed description of the theoretical framework
of extended linear models and present some general asymptotic results
applicable to a variety of contexts.

11.1.1 Extended Linear Models

Consider a W-valued random variable W, where W is an arbitrary set.
The probability density p(n, w) of W depends on an unknown function 7.
The function 7 is defined on a domain U, which may or may not be the
same as W. We assume that U is a compact subset of some Euclidean space
and that it has positive volume vol(f). The goal is to estimate 7 based on
a random sample from the distribution of W.

Corresponding to a candidate function h for 7, the log-likelihood is given
by I(h,w) = log p(h, w). The expected log-likelihood is defined by A(h) =
E[l(h, W)], where the expectation is taken with respect to the true function
n. There may be some mild restrictions on h for I(h,w), w € W, and A(h)
to be well-defined. It follows from the information inequality (Rao, 1973)
that 7 is the essentially unique function on U/ that maximizes the expected
log-likelihood. (Here two functions on U are regarded as essentially equal
if their difference equals zero except on a subset of U having Lebesgue
measure zero.)

In many applications, we are interested in a function n that is related
to but need not totally specify the probability distribution of W. In such
applications, we can modify the above setup by taking I(h, w) to be the
logarithm of a conditional likelihood, a pseudo-likelihood, or a partial like-
lihood, depending on the problem under consideration.

Consider, for example, the estimation of a regression function n(x) =
E(Y|X = z). In terms of the above notation, W consists of a pair of
random variables X and Y, and U is the range of X. We can take [(h, w)
to be the negative of the residual sum of squares; that is, {(h, W) = —[Y —
h(X))? with W = (X,Y). If the conditional distribution of Y given X
is assumed to be normal with constant variance, then ! is (up to additive
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and multiplicative constants) the conditional log-likelihood. Even if this
conditional distribution is not assumed to be normal, we can still think of
[ as the logarithm of a pseudo-likelihood. In either case, the true regression
function n maximizes A(h) = E[l(h, W)] = —E[n(X) — h(X)]?.

From now on, we will adopt this broad view of [(h, w). For simplicity, we
will still call I(h, w) the log-likelihood and A(h) the expected log-likelihood.
To relate the function of interest to the log-likelihood, we assume that,
subject to mild conditions on I(h, w), the function 7 is the essentially unique
function that maximizes the expected log-likelihood.

We now give three examples of this setup:

Generalized Regression. Consider an exponential family of distribu-
tions on R of the form P(Y € dy) = exp[B(n)y — C(n)]¥(dy), where
B(-) is a known, twice continuously differentiable function on R whose first
derivative is strictly positive on R, ¥ is a nonzero measure on R that is not
concentrated at a single point, and C(n) = log [, exp[(B(n)y]¥(dy) < oo
for n € R. Observe that B(:) is strictly increasing and C(-) is twice con-
tinuously differentiable on R. The mean of the distribution is given by
w = A(n) = C'(n)/B'(n) for n € R. It follows from the information in-
equality that E[B(h)Y — C(h)] = B(h)u — C(h) is uniquely maximized
at h = n. If B(n) = n for n € R, then 7 is referred to as the canonical
parameter of the exponential family; here = A(n) = C’(n).

The Bernoulli distribution with parameter 7 € (0,1) forms an expo-
nential family with canonical parameter n = logit(r) = logn/(1 — 7).
Here P(Y = 1) = w, P(Y = 0) = 1 — 7, ¥ is concentrated on {0,1}
with w({0}) = W({1}) = 1, B(s) = 1, C(n) = log (1 + exp(n)), and
p=m=(expn)/(1+expn).

The Poisson distribution with parameter A € (0,00) forms an expo-
nential family with canonical parameter n = logA. Here P(Y = y) =
MNexp(—=A)/y! for y € ¥ = {0,1,2,...}, ¥ is concentrated on Y with
Y({y}) = 1/y! for y € YV, B(n) =n, C(n) = expn, and p = X = C'(n) =
exp .

Consider now a random pair W = (X,Y), where the random vector X
of covariates is X-valued with X = U and Y is real-valued. Suppose the
conditional distribution of Y given that X = & € X has the form

P(Y € dy|X = 2) = exp[B(n(a))y — Cln(@))¥(dy).  (11.L.1)

Here the function of interest is the response function 7(-), which specifies
the dependence on « of the conditional distribution of the response Y given
that the value of the vector X of covariates equals . The mean of this
conditional distribution is given by

wz) =EY|X =xz) = A(n(x)), xei. (11.1.2)
The (conditional) log-likelihood is given by
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and its expected value is given by
A(h) = E[B(h(X))u(X) — C(h(X))],

which is essentially uniquely maximized at h = 7. This property of the
response function depends only on (11.1.2), not on the stronger assumption
(11.1.1). In the application of the theory developed in this chapter and the
next one to generalized regression, we require (11.1.2), but not (11.1.1).

When the underlying exponential family is the Bernoulli distribution
with parameter 7 and canonical parameter 1 = logit(7), we get logistic re-
gression. Here pu(x) = w(x) = P(Y = 1|X = «) and n(x) = logit(n(x)) =
logit (u(x)).

When the underlying exponential family is the Poisson distribution with
parameter A and canonical parameter n = log A, we get Poisson regression.
Here p(x) = A(x) and n(x) = log A\(x).

When the underlying exponential family is the normal distribution with
canonical parameter 17 = p and known variance, we get ordinary regression
as discussed above.

Density Estimation. Let Y = W have an unknown density func-
tion fy on Y = U, and let ¢ = log fy denote the corresponding log-
density function. Since ¢ is controlled by the intrinsic nonlinear constraint
fy exp@(y)dy = 1, it is convenient to write ¢ = n — ¢(n); here ¢(n) =
log fy exp7(y) dy. By imposing a linear constraint such as fy n(y) dy, we
can make the map o : 1 — ¢ one-to-one. The problem of estimating ¢ is
then transformed to that of estimating 7. The log-likelihood corresponding
to a candidate h for n is given by I(h,Y) = h(Y) — ¢(h).

Hazard Regression. Consider a positive survival time 7', a positive
censoring time C, the observed time min(7,C), and an X-valued random
vector X of covariates. Let 6 = ind(T" < C) be the indicator random
variable that equals one or zero according as 7' < C (T is uncensored)
or T > C (T is censored), and set ¥ = min(7T,C) and W = (X,Y,9).
Suppose T and C are conditionally independent given X. Suppose also
that P(C < 7) =1 for a known positive constant 7. Let

f(t]z)

n(x,t) = log T—Fa)

denote the logarithm of the conditional hazard function, where f(t|x) and

F(t|x) are the conditional density function and conditional distribution
function, respectively, of T given that X = a. Then

1 — F(tlx) = exp ( — /Ot expn(x,u) du)

and hence

f(tlx) = exp (n(:v,t) - /Ot expn(x,u) du).



11.1 Theoretical Framework and Basic Results 453

The log-likelihood for a candidate h for 7 is given by
Y
I(h, W) =06n(X,Y)— / exp h(X,t)dt.
0

Here, U = X x [0, 7].

Conditional density estimation (Huang 2001), counting process regres-
sion (Huang 2001), marked point process regression (Li 2001), propor-
tional hazards regression (Huang, Kooperberg, Stone and Truong 2000),
robust regression (Stone 2001), and spectral density estimation (Kooper-
berg, Stone and Truong 1995d) can be treated in the present framework.
Polychotomous regression (Hansen 1994) and event history analysis (Huang
and Stone 1998) can also be treated in this framework provided that we
consider vector-valued instead of real-valued functions on U.

Let H be a linear space of square-integrable functions on U such that
if two functions on U are essentially equal and one of them is in H, then
so is the other one. We refer to H as the model space and to I(h, W),
h € H, as forming an extended linear model. If H is the space of all square-
integrable functions on U or differs from this space only by the imposition
of some identifiability restrictions as in the context of density estimation,
we refer to H as being saturated. Otherwise, we refer to this space as being
unsaturated.

The use of unsaturated spaces allows us to impose structural assump-
tions on the extended linear model. Suppose U is the Cartesian product
of compact intervals U, ..., UL, each having positive length. We can im-
pose an additive structure by letting H be the space of functions of the
form hy(u1) + -+ + hr(ur), where h; is a square-integrable function on
U, for 1 < | < L. This and more general ANOVA structures will be
considered in Section 11.1.3. Alternatively, we can impose an additive,
semilinear structure by letting H be the space of functions of the form
hi(u1) +boug + -+ -+ bruy, where hy is a square-integrable function on U;
and bs, ..., by are real numbers.

The extended linear model is said to be concave if the following two
properties are satisfied: (i) The log-likelihood function is concave; that is,
given any two functions hi, ho € H whose log-likelihoods are well-defined,
l(ahs + (1 — @)hg,w) > al(h,w) + (1 — a)l(he,w) for 0 < o < 1 and
w € W. (ii) The expected log-likelihood function is strictly concave; that
is, given any two essentially different functions hq, he € H whose expected
log-likelihoods are well-defined, A(ahi +(1—a)hs) > aA(h1)+(1—a)A(hs)
for 0 < a < 1. Here, we implicitly assume that the set of functions such
that I(h,w) and A(h) are well-defined is a convex set.

In the contexts of ordinary regression, hazard regression, and density
estimation, the corresponding extended linear model is automatically con-
cave. In the context of generalized regression, a condition on the ¥ and
B(-) is required to guarantee the concavity of the extended linear model
(see Section 11.4.3).
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As mentioned above, the model space H incorporates structural assump-
tions (e.g., additivity) on the true function of interest. Such structural
assumptions are not necessarily true and are considered rather as approx-
imations. Thus, it is natural to think that any estimation procedure will
estimate the best approximation to the true function with the imposed
structure. This “best approximation” can be defined formally using the
expected log-likelihood. Observe that if n € H, then n = argmax; ¢y A(h)
since 1 maximizes the expected log-likelihood by assumption. More gener-
ally, we think of n* = argmax;, <y A(h) as the “best approximation” in H to
1. Typically, when the expected log-likelihood function is strictly concave,
such a best approximation exists and is essentially unique. If n € H, then
n* is essentially equal to 7.

In the regression context n* is the orthogonal projection of 1 onto H
with respect to the Ls norm on H given by ||h]|? = E[h?(X)]; that is,
n* = argmin, g ||k — n||?. Here, to guarantee the existence of n*, we need
to assume that H is a Hilbert space; that is, it is closed in the metric
corresponding to the indicated norm.

We now turn to estimation. Let W, ..., W, be a random sample of size
n from the distribution of W. Let G C H be a finite-dimensional linear
space of bounded functions, whose dimension may depend on the sample
size. We estimate 7 by using maximum likelihood over G, that is, we take
7 = argmax, . £(g), where £(g) = (1/n)>_"", (g, W) is the normalized
log-likelihood. Here the space G should be chosen such that the function of
interest 7 can be approximated well by some function in G. Thus G will be
called the approximation space. Since G is where the maximum likelihood
estimation is carried out, it will also be called the estimation space. In this
setup we do not specify the form of G; any linear function space with good
approximation properties can be used. When H has a specific structure, G
should be chosen to have the same structure. For example, if H consists
of all square-integrable additive functions, then G should not contain any
non-additive functions. A detailed discussion of constructing the model and
estimation spaces using functional ANOVA decompositions to incorporate
structural assumptions will be given in Section 11.1.3. In our application,
G will be chosen as a space built by polynomial splines and their tensor
products. That polynomial splines and their tensor products enjoy good
approximation power has been extensively studied and documented; see
de Boor (1978), Schumaker (1981), and DeVore and Lorentz (1993).

11.1.2 Consistency and Rates of Convergence

In this section we present results on the asymptotic properties of the maxi-
mum likelihood estimate 7 in concave extended linear models. As discussed
in the previous section, the best approximation n* in H to the function 7
of interest can be thought as a general target of estimation whether or not
1 € H. The existence of n* has been established in various contexts; see the
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references listed in Section 11.2 following Condition 11.2.1. We say that 7
is consistent in estimating n* if || — n*|| — 0 in probability for some norm
I - ||- We will state conditions that ensure consistency and also determine
the rates of convergence of 7j to n*. In the asymptotic analysis, it is nat-
ural to allow the dimension N, of the estimation space G grow with the
sample size, reflecting the improved approximation power of this space for
increasing sample size.

We assume that the log-likelihood I(h,w) and expected log-likelihood
A(h) are well-defined and finite for every bounded function h on Y. Since
the estimation space G C H is a finite-dimensional linear space of bounded
functions, ¢(h,w) and A(h) are well-defined on G.

Since 7 maximizes the normalized log-likelihood ¢(g), which should be
close to the expected log-likelihood A(g) for g € G when the sample size is
large, it is natural to think that 7 is directly estimating the best approxi-
mation 7 = argmax g A(g) in G to n. If G is chosen such that 7 is close
to n*, then 7 should provide a reasonable estimate of n*. This motivates
the decomposition

n—n"=(—n")+ @ 1),
where 77 — n* and 7 — 7] are referred to, respectively, as the approzimation
error and the estimation error.

To get mathematically rigorous results, we need some regularity condi-
tions (that is, Conditions 11.2.1,11.2.2 and 11.2.4). These conditions will be
given explicitly and discussed in detail in Section 11.2 and verified as neces-
sary in the contexts of generalized regression, including ordinary regression
as a special case, density estimation, and hazard regression in Section 11.4.
The main technical condition is that the log-likelihood is suitably concave.
We assume these conditions hold throughout this subsection.

Before proceeding further, it is convenient to introduce some additional
notation that will be used in this chapter and the next one. Let #(B) denote
the cardinality (number of members) of a set B. Given a function h on U,
let ||h]loo = Supycyy |R(u)| denote its Lo, norm. Given positive numbers a,
and b, forn > 1, let a,, < b, and b,, 2 a,, mean that a, /b, is bounded and

let a,, < b, mean that a,, < b, and b, < a,. Given random variables V,, for
n > 1, let V,, = Op(b,) mean that lim._, limsup,, P(|V,,| > ¢b,) = 0 and
let V,, = op(b,) mean that lim,, P(|V,,| > ¢b,) = 0 for ¢ > 0. For a random
variable V', let E,, denote expectation relative to its empirical distribution;
that is, E,,(V) =n~1>", Vi, where V;, 1 < i < n is a random sample from
the distribution of V.

Let ||-|| be a norm on H such that ||| < oo and ||h|| < Co||h||eo for h € H,
where C is a fixed positive number. Without loss of generality, we assume
that Cy = 1 (otherwise, we replace || - || by || - ||/Co). We also assume that
if h € H and ||h|| = 0, then A is essentially equal to zero. In our asymptotic
theory we will use || — n*|| to measure the discrepancy between 77 and n*.
A particular choice of norm could be the normalized Lo norm relative to
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Lebesgue measure on U; that is, |h|Ler = {f;, h?(w) du/vol(U)}'/2. Note
that [[2|Leb < [|h]]oo-

However, sometimes it is more natural to use other norms to measure the
discrepancy. In the regression context, for example, one would use ||h|? =
E[h?(X)] where the expectation is with respect to the distribution of the
covariates X . Such a norm is closely related to the mean prediction error.
Precisely, the mean prediction error of a candidate h for the regression
function 7 is defined by PE(h) = E{[Y* — h(X™¥)]?}, where (X*,Y*) is a
pair of observations independent of the observed data and having the same
distribution as (X,Y"). It is easily seen that

PE(h) = E[var(Y|X)] + ||h — n]|%.

It is interesting to note that, under mild conditions (for example, if the
density of X is bounded away from zero and infinity), the norm || - || is
equivalent to the normalized Lo-norm || - ||reb. Later on (in Section 11.1.3
and 11.3), we will choose the norms for measuring discrepancy as those
induced by the inner products used for defining functional ANOVA decom-
positions; see Section 11.4 for specification in each particular context.

We first present an asymptotic result that is applicable to general estima-
tion space G and then specialize to estimation spaces built by polynomial
splines. It involves some constants related to the estimation space G. Set

N,, = dim(G),
s — sup Moo o Nolloe.
geG lgll g€G lgll
llgll#0

and
= inf ||g — "] so.
Pn ;gGllg [P

The dimension N,, measures the size of the estimation space G. Observe
that 1 < A,, < co. The constant A, can be thought of as a measure of the
irregularity of the estimation space. Its magnitude can be determined by
employing results in the approximation theory literature for various com-
monly used estimation spaces including polynomials, trigonometric poly-
nomials, splines, wavelets, and finite elements. The constant p,, is the min-
imum L norm of the error when n* is approximated by a function in G.
Through the use of results from approximation theory, the magnitude of p,
can be determined for commonly used estimation spaces if a smoothness
condition is imposed on n*. See Huang (1998a) for more discussion on these
constants.

Proposition 11.1.1. Suppose Conditions 11.2.1, 11.2.2 and 11.2.4 hold.
Suppose also that lim,, A,p, = 0 and lim, A2N,,/n = 0. Then 7] exists
uniquely for n sufficiently large and

17— n*|I> = O(p}).
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Moreover, ] exists uniquely except on an event whose probability tends to
zero as n — oo and

o N,
17—l = 0p (=2).
n
Consequently,
~ * 12 Nn 2
17112 = Op (=2 + 92).
In particular, 1) is consistent in estimating n*; that is, |7 —n*|| = op(1).

The bounds for the magnitudes of the estimation and approximation
errors can be interpreted intuitively as follows: N, /n is just the inverse of
the number of observations per parameter, and p,, is the best obtainable
approximation rate in the estimation space to the target function.

This result is rather general; it does not specify the form of G. As a simple
example, consider H being a finite-dimensional linear space of bounded
functions. Take G = H, which does not depend on the sample size. Then
both A,, and N, are finite and independent of n and p,, = 0. Consequently,
|7 —n*||> = Op(1/n), which is the parametric rate of convergence.

Proposition 11.1.1 is readily applicable to fixed knot spline estimates
where the knot positions are prespecified but the number of knots are
allowed to increase with the sample size.

Suppose U is the Cartesian product of compact intervals Ui, ...,UL.
Consider the saturated model, in which 7 is a bounded function and no
structural assumptions are imposed on 7 (that is, H is essentially the space
of all square-integrable functions on if). Consequently, n* = 7. To construct
the estimation space, let G; be the a linear space of splines with degree
q>p—1for1 <[l <L andlet G be the tensor product of Gq,...,Gy.
Suppose the knots have bounded mesh ratio (that is, the ratios of the
differences between consecutive knots are bounded away from zero and
infinity uniformly in n). Let a,, denote the smallest distance between two
consecutive knots.

To get the rates of convergence, we introduce a commonly used smooth-
ness condition. Let 0 < § < 1. A function h on U is said to satisfy a
Holder condition with exponent 3 if there is a positive number v such that
|h(w) — h(ug)| < v|u — uo|? for ug,u € U; here |u| = (31, u?)*/? is the
Euclidean norm of w = (u1,...,ur) € U. Given an L-tuple ¢ = (i1,...,i1)
of nonnegative integers, set [i] = i1 +---+ iz, and let D denote the differ-
ential operator defined by

. (7]
pi-— %"
out' ...0ut

Let k be a nonnegative integer and set p = k+ 3. A function on U is said to
be p-smooth if it is k times continuously differentiable on &/ and D? satisfies
a Holder condition with exponent 3 for all ¢ with [{] = k.
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Corollary 11.1.1 (Saturated Model). Suppose Conditions 11.2.1,11.2.2

and 11.2.4 hold. Suppose also that n is p-smooth. Let G to be the tensor

product spline space with degree ¢ > p— 1. Suppose the knots have bounded
2L _

mesh ratio. If p > L/2, lim, a,, = 0, and lim,, na;” = oo, then

— 1
17— nll* = OP(W +aip)'

n

In particular, for a, = n=*/@P+L) we have that
17 nll* = Op(n2/Gr+1),

Proof. Since 1 is p-smooth, p, < af =< Ny P/E [see (13.69) and Theorem

12.8 of Schumaker (1981)]. Note that A, = Np/? < apt? [see (12.4.11)
and (12.4.12) or see Huang (1998a)]. Thus,

lim A2 N,,/n = 0 <= limna?* = oo

and
lim A, p, =0 <= lim aﬁ_L/Q =0.

The result follow from Proposition 11.1.1. O

The choice of a,, = n~1/@PTL) halances the contributions to the er-
ror bound from the estimation error and the approximation error, that is,
1/(nak) < a?r. The resulting rate of convergence n~2P/(?*L) actually is
optimal: no estimate has a faster rate of convergence uniformly over the
class of p-smooth functions (Stone 1982). The rate of convergence depends
on two quantities: the specified smoothness p of the target function and the
dimension L of the domain on which the target function is defined. Note
the dependence of the rate of convergence on the dimension L: given the
smoothness p, the larger the dimension, the slower the rate of convergence;
moreover, the rate of convergence tends to zero as the dimension tends to
infinity. This provides a mathematical description of a phenomenon com-
monly known as the “curse of dimensionality.”

11.1.3 ANOVA modeling

One way to tame the curse of dimensionality is to impose an additive
structure or, more generally, one involving just main effects and selected
low-order interactions in a functional ANOVA decomposition. We will see
that structural models (or unsaturated models) do yield faster rate of con-
vergence in estimation. This section will give a relatively nontechnical de-
scription of such results. More technical discussion of functional ANOVA
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modeling will be given in Section 11.3, which contains of the proof of the
main result of this section (Proposition 11.1.3).

To illustrate the idea of ANOVA modeling, suppose that U = Uy xUs XUs,
where Ui, Uz, and Us are compact intervals having positive length. Any
square-integrable function on U can be decomposed as

n(w) = np +nguy (u1) + ngoy (u2) + ngsy (us) +nq1,2y (w1, ua)

(11.1.3)
+ 11,3y (w1, us) + ny2,3y (w2, uz) + ng1,2,3) (w1, us, usz).

For identifiability, we require that each nonconstant component be orthog-
onal to all possible values of the corresponding lower-order components rel-
ative to an appropriate inner product. The expression (11.1.3) can then be
viewed as a functional version of analysis of variance (ANOVA) decomposi-
tion. Correspondingly, we call g the constant component; 71} (u1), {2} (u2),
and 773y (u3) the main effect components; 11 93y (u1,u2), 741,33 (u1,u3), and
N{2,3} (U2, u3) the two-factor interaction components; and 1y 2,33 (w1, ug, u3)
the three-factor interaction. The right side of (11.1.3) is referred to as the
ANOVA decomposition of 7.

If no structural assumption is imposed on 7, we need to consider all the
components in the above ANOVA decomposition. The resulting model is
saturated. However, the desire to tame the curse of dimensionality leads us
to employ unsaturated models, which discard some terms in the ANOVA
decomposition. For example, removing all the interaction components in
the above ANOVA decomposition of 7, we get the additive model

n(w) = ng + ngiy (ur) + gy (u2) +nysy (us). (11.1.4)

We can also include some selected interactions in the model and still keep
the model manageable. For example, the following model includes just the
interaction between u; and us:

n(w) = ng +ngay (ur) +ngzy (u2) + ngsy(us) +ng 2y (ur,uz). (11.1.5)

To fit these models using maximum likelihood, it is necessary to choose
the estimation space G to respect the imposed structure on 7. As a result
the estimate will have the same structure. To see precisely how this can be
done, we need the notion of tensor product spaces. Now, for each [ = 1, 2, 3,
let Gy;y denote a suitable finite-dimensional linear space of functions of the
variable u; that contains the constant functions. For the additive model
(11.1.4), we can take

G = G{l} + G{Q} + G{g}
= {90y + 912y + 931 1 911y € Gy, for 1 =1,2,3}

and the resulting maximum likelihood estimate has the form

n(w) = 0y + g1y (w1) + N2y (uz) + Nysy (uz).
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For the model (11.1.5) with a single interaction component, we can take

G = G{l} ® G{g} + G{3}
={g901,21 + 9131 1 9113 € Gyys 9112y € Gy @ Gyay }y

and the resulting maximum likelihood estimate has the form

n(w) = 0y + N1y (ua) + N2y (u2) + Ngsy (us) + 0p12y (w1, u2).

On the other hand, to fit the saturated model, we can use the maximum
likelihood estimate with G being the tensor product space Gy 231 = G} ®
Gygy ® Gyzy. Similar to (11.1.3), the resulting estimate should have the
ANOVA decomposition

n(w) = Mg + N1y (ur) + N2y (u2) + 0gzy (us) + a2y (w1, uz)
+ 11,3y (w1, uz) + Ny2,3y (w2, u3) + 01,233 (w1, ua, u3z).

In general, suppose that U = U; x --- x U for some positive integer
L, where each U is a compact subset of some Euclidean space and it has
positive volume in that space. If n is square-integrable, we can define its
ANOVA decomposition in a similar manner as above. Selecting certain
terms in its ANOVA decomposition in the modeling process corresponds
to imposing a particular structural assumption on 7. Specifically, let S be
a hierarchical collection of subsets of {1,..., L}. By hierarchical we mean
that if s € S, then r € § for r C s. Consider a model of the form

= ns (11.1.6)

seS

where 7, is a square-integrable function depending only on the variables
uy, L € s, and 7y is a constant. Note that the set S describes precisely which
interaction terms are included in the model. For example, the additive
model (11.1.4) and the model (11.1.5) with a single interaction compo-
nent correspond to & = {0, {1},{2},{3}} and S = {0, {1}, {2}, {3}, {1, 2}}
respectively.

Again, the maximum likelihood method can be used to do the estimation
and the fitting space G can be chosen to take the form

GZ{ZQSZQSEGS forsES}, (11.1.7)

sES

where G is the tensor product space of G;,l € s, and foreach 1 <1 < L, G
is an appropriate finite-dimensional space of functions of w; that contains
all constant functions. The resulting estimate should have the form

A= s (11.1.8)

seES
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where 75 is a member of G, for s € § and 7y is a constant.

When the structural assumption is correctly specified, it is reasonable to
expect that, if the dimension of G grows at the right rate while respecting
the structural assumption, 77 should be consistent in estimating 7, that
is, it should converge to 1 when the sample size tends to infinity. But
what happens when the structural assumption is violated, or, what is 7
estimating under model misspecification? This is a sensible question since in
practice the postulated structural assumption is at best an approximation
to reality.

Let H be the closed subspace of La(U) that consists of all functions of
the form (11.1.6), that is,

H_{ZhszhseHs forsES}, (11.1.9)

sES

where Hj is the space of square-integrable functions that depends only on
uy, I € s. As discussed previously, the best approximation n* in H to 7 is a
sensible target no matter the structural assumption (that is, n € H) is true
or not.

Proposition 11.1.1 is readily applicable to this situation. However, it is
desirable to replace conditions with A, and p, by those with quantities
that are more straightforward to determine. Consider the ANOVA decom-
position

nt=Y_n (11.1.10)
seS
of the best approximation n* in H to 7, where n} is a member of Hj; for
s € S and n; is a constant. Set

N; = Ny (Gs) = dim(Gy), se S8,

[191lo0
Ay = A (Gy) = =, €S,
() gsél«i( lgll ) ’

and
ps:psn(nszS): inf ”9_772”007 ses.
9€Gs
The constants A and ps, which are analogs of the constants A,, and p,,, are

defined on the tensor product spaces that constitute the estimation space
G. The proof of the next result will be given at the end of Section 11.3.

Proposition 11.1.2. Suppose Conditions 11.2.1, 11.2.2 and 11.2.4 hold.
Suppose also that lim, Aspy = 0 and lim, A2Ny/n = 0 for each pair

s,s' €8. Then
-1 = 0n (S22 +42) )

seES

In particular, 1] is consistent in estimating n*; that is, |7 —n*|| = op(1).
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Since in practice one expects that examination of the components of 7
should shed light on the shape of n*, it is desirable that the components of
7] are consistent in estimating the corresponding components of n*. Specifi-
cally, suppose the target and the estimate have the ANOVA decomposition

=Y n;  and =) 7. (11.1.11)

seS seS

To impose identifiability constraints on the terms in each expansion to make
it uniquely defined, we force each nonconstant component to be orthogonal
to all possible values of the corresponding lower-order components relative
to an appropriate inner product. (This will be more precisely described in
Section 11.3.) The question is: under what conditions will 7j; are consistent
is estimating 7} for s € §7

In imposing the identifiability constraints for ANOVA decompositions,
we need use some inner products. Usually, one uses a theoretical inner
product to decompose * and an empirical inner product to decompose 7.
For example, in the regression case, it is natural to define the theoretical
and empirical inner products by (h1, he) = E[h1(X)ha(X)] and (hy, ho), =
(1/n) >>,[h1(X)h2(X;)]. The reason for using different inner products is
that the theoretical inner product is often defined in terms of the data-
generating distribution, and hence depends on unknown quantities, while
the empirical inner product needs to be totally determined by the data
since it will be used to decompose the estimate. Although using different
inner products causes some technical difficulty, we still have the desired
result as follows.

Proposition 11.1.3. Suppose that in (11.1.11) the target function n* and
the estimate 1 are decomposed according to a theoretical inner product and
an empirical inner product respectively. Suppose Conditions 11.2.1, 11.2.2,
11.2.4 and 11.3.1-11.3.3 hold. Then

=il =on (S (2 +02)). ses

seS
In particular, s are consistent in estimating nt, s € S.

This proposition follows from Proposition 11.1.2 and Theorem 11.3.3.

Propositions 11.1.2 and 11.1.3 are applicable to general estimation space
G. In particular, the estimation space G can be built by polynomial splines
and their tensor products. We have the following result.

Corollary 11.1.2 (Unsaturated Model). Suppose Conditions 11.2.1,
11.2.2 and 11.2.4 hold. Suppose each n*, s € S, in (11.1.10) is p-smooth.
Let the estimation space be given by (11.1.7) with each G; being a linear
space of degree q splines on U; with ¢ > p — 1. Suppose the knots have
bounded mesh ratio. Set d = maxses #(s). If p > d/2, lim, a,, = 0, and
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2d

lim,, na;* = oo, then

~ 1
Hns_n:HQ:OP(W""a?zp)v sE€S,

n

and .
17 =712 = Op (— +a2).

n

In particular, for a, =< n=@r+td) we have that
17 = n3|* = Op(n=2P/CPFD) s e,

and
7| = O/ r ),

Proof. Similar to Corollary 11.1.1, we have that A, = an” /% N, =
a;#(s), and ps < a? for s € S. Thus,

lim A?NS//TL =0 <= lim naf(s)+#(s’) = 00
and
lim A,py = 0 <= lim a2~ #)/2 = 0.

The results follow from Propositions 11.1.2 and 11.1.3. O

The rate of convergence n~2?/(?»*4) for an unsaturated model should
be compared with the rate n=2?/(2»+L) for the saturated model. Note here
that d is the maximum order of interaction between the components of the
argument variable u. For the additive model, we have d = 1, so the rate
is n=2/(2p+1) which is the same as that for estimating a one-dimensional
target function. For models with interaction of order 2, we have d = 2 with
corresponding rate of convergence n~2P/(2P+2) the same rate for estimating
a two-dimensional target function. Hence, for large L, we can achieve faster
rates of convergence by considering structural models involving only low-
order interactions in the ANOVA decomposition of the target function and
thereby tame the curse of dimensionality.

11.2 The main result on rates of convergence

In this section we prove the main result on convergence rates (Proposi-
tion 11.1.1) and give precise statements of the necessary technical condi-
tions. As noted previously, the error 7 — n* can be decomposed into two
terms: the approximation error and the estimation error. It is insightful to
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treat them separately. The two theorems in this section, one for handling
each term, together yield Proposition 11.1.1. The results are established
under general conditions that synthesize the common features of various
estimation problems that can be treated in the framework of concave ex-
tended linear models. The verification of some of these conditions in specific
contexts will be given in Section 11.4.

11.2.1 Approximation Error.

Condition 11.2.1. The best approzimation n* in H to n exists and there
is a positive constant Ko such that ||n*]|ec < Ko.

Since we require A(h) to be a strictly concave function of n, n* is es-

sentially uniquely defined. If n € H, this condition is just the requirement
that 17 be bounded. In the regression context, if H is a Hilbert space, then
1™ is just the orthogonal projection of n onto H relative to a certain inner
product, which obviously exists (Huang 1998a). In general, the existence of
1™ can be established by taking into account the specific properties of the
log-likelihood; see, for example, Theorems 4.1 and 5.1 of Stone (1994), The-
orem 1 of Kooperberg, Stone and Truong (1995a), Theorem 2.1 of Huang
and Stone (1998), and Theorem 1 of Huang, Kooperberg, Stone and Truong

(2000).

Condition 11.2.2. For each pair of bounded functions h1,ho € H, A(h1 +
alhy — hy)) is twice continuously differentiable with respect to a.. For any
positive constant K, there are positive numbers My and My such that

d2
—M1||h2 — h1H2 S WA(hl + Ol(hg — hl)) S _MQHhQ — h1H2 (1121)

for hi,ha € H with |h1]|co < K and ||h2lloc < K and 0 < a < 1.

It follows from Condition 11.2.2 that the restriction of A(+) to the bounded
functions in H is strictly concave.

Lemma 11.2.1. Suppose Conditions 11.2.1 and 11.2.2 hold. Let K1 be a
positive constant such that K1 > Ko with Kq as in Condition 11.2.1. Then
there are positive numbers Ms and My such that

—Msllh —n*||> < A(h) = A(n*") < —My|lh —n*|?
for all h € H with ||h]|e < K;.

Proof. Let h € H with [|h||cc < K;. Since n* maximizes A(-),

d N _
EA((l —a)n* + ah) S 0.
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Integrating by parts, we get that

1 d2
A(h) —A(n*) = / (1- oz)—zA((l —a)n* + ah) dao.
0 da
The desired result now follows from Condition 11.2.2. O

Theorem 11.2.1 (Approximation Error). Suppose Conditions 11.2.1
and 11.2.2 hold and that lim,, A, p, = 0. Let K1 be a positive constant such
that K1 > Ko with Ko as in Condition 11.2.1. Then, 7 exists uniquely and
1lloo < K1 for n sufficiently large. Moreover, |7 —n*||> = O(p2).

Proof. Since G is finite-dimensional, it follows by a compactness argument
that there is a function ¢* € G such that ||[¢g* — n*||lcc = pn. Let a > 1
denote a positive constant (to be determined later). Choose g € G with
llg = 7*|| < apn. Then, by the definition of A,,

9= 9"l < Anllg— g™l < An(llg =" +1In" = g") < Anpnla+1),

SO

9llce <119 = 9" loc + 19" = 1" lloc + 7" |lcc < Anpn(a+1) + pn + 17| o

Since lim,, A, p, = 0, we obtain that, for n sufficiently large, ||g|lcc < K1
for all g € G with ||g — n*|| < apy. It now follows from Lemma 11.2.1 that,
for n sufficiently large,

Ag) — A(n*) < —Mya®p?  for all g € G with ||g — n*|| = ap, (11.2.2)
and
Ag") = A(n*) = —Mzpy,. (11.2.3)

Let a be chosen such that a > /Ms/M,. Then it follows from (11.2.2) and
(11.2.3) that, for n sufficiently large,

Ag) < A(g") for all g € G with ||g — "] = apn.

Observe that ||g* —n*|| < apy. Therefore, we conclude from the definition of
77 and the strict concavity of A(-) that 7 exists uniquely and ||7—n*|| < apn,
for n sufficiently large. Hence [|7]||co < K1 and |7 — n*||? = O(p2). O

11.2.2 Estimation Error.

Condition 11.2.3. There is a positive constant Ko such that, for n suf-
ficiently large, the best approximation 71 in G to n exists uniquely and
[7]l0e < Ko.
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Although Condition 11.2.3 is a consequence of Theorem 11.2.1, it is con-
venient to state it as a separate condition in order to avoid having to specify
conditions on the expected log-likelihood when we study the estimation er-
ror in Theorem 11.2.2 below.

Condition 11.2.4. For any pair of functions g1,92 € G, (g1 +a(g2—g1))
is twice continuously differentiable with respect to oc. Moreover, (i)

d
‘Eé(nwwg) o

N\ V2
s Tal :OP((T> )

sup

(ii) for any positive constant K, there is a positive number M such that

2

d
—zl(g1+alg2 — 91)) < —Mllg> - al?, 0<a<l,

for any g1,92 € G with ||g1]|cc < K and ||g2]|cc < K, except on an event

whose probability tends to zero as n — 0.
It follows from Condition 11.2.4(ii) that £(-) is strictly concave on G.

Remark 11.2.1. We give a sufficient condition for Condition 11.2.4(i)
when the norm || - || is associated with an inner product {-,-) defined on G.
Let {¢; : 1 < j < N,} be an orthonormal basis for G with respect to (-,-).
Then each function g € G can be represented uniquely as g = Zj Bid;,
where B; = (g,¢;) for j = 1,---,N,. Let B denote the N,-dimensional
column vector with entries 8;. To indicate the dependence of g on B, write
g(-) = g(;8) and £(g(-;B)) = €(B). Let S(B) = 0¢(B)/IB denote the score
at B, that is, the Ny -dimensional column vector having entries 9¢(8)/00;.
Write n = 3_; Bip; with B; = (i, ;). Let B be the column vector with
entries Bj- Then

d _ _ a7
L i+ a0)| _=15B)"B
and hence
d
taan| |
sup <8I
9€G gl

Consequently, a sufficient condition for Condition 11.2.4(i) is that |S(B)| =
OP(Nn/TL)l/2.

Theorem 11.2.2 (Estimation Error). Suppose Conditions 11.2.3 and
11.2.4 hold and that lim,, A%Nn/n = 0. Let Ky be a positive constant such
that K1 > Ko with Ko as in Condition 11.2.3. Then 1 exists uniquely and
Mo < K1, except on an event whose probability tends to zero as n — oco.
Moreover, |77 — 77| = Op(Npn/n).
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Proof. Integrating by parts, we get that

g) = ((0) + L0 +olg ~ )|
- (11.2.4)

1 d2 ~ ~
—I—/O (I—Q)Wﬁ(nﬁ—a(g—n))da, g €G.

Let a be a positive number (to be determined later). Choose g € G such
that |lg — 7|| < a(N,/n)'/2. Then, by the definition of A,, [|g — 7l <
Anllg — 7|l < a(A2N,,/n)'/? = o(1). Thus, for n sufficiently large, ||g|/oo <
K, for all g € G with |lg — 7| < a(N,,/n)/2. Consequently, it follows from
Condition 11.2.4(ii) that, except on an event whose probability tends to
ZETO as n — 00,
1 2
/0 (1- a)%é(ﬁ +alg— 7)) da < _%cﬁ(%) (11.2.5)

for all g € G with ||g—7|| = a(N,,/n)"/2. Fix an arbitrary positive constant
e. By Condition 11.2.4(i), we can choose a sufficiently large such that,
except on an event whose probability is less than e,

< %a2(&) (11.2.6)

d
a=0 2 n

i+ alg — 1)

for all g € G with ||g—1| = a(N,,/n)*/2. Suppose (11.2.5) and (11.2.6) hold.
Then, by (11.2.4), £(g) < £(7) for all g € G with ||g — 7|| = a(N,/n)'/2.
Hence, by the strict concavity of £(-), 1 exists uniquely and || — 7| <
a(N,/n)'/?. Since € is arbitrary, the conclusions of the theorem follow. [

11.3 Functional ANOVA

In this section we elaborate on functional ANOVA decompositions and
provide proofs of results in Section 11.1.3. As in Section 11.1.3, we assume
that U is the Cartesian product of Uy, ..., U, where each U; is a compact
subset of some Euclidean space and it has positive volume in that space.

11.8.1 Functional ANOVA Decompositions

To introduce the notion of an ANOVA decomposition of functions, we need
an inner product on the space of square-integrable functions on U. Let ;
be a probability measure on U for 1 <! < L and let ¢ be the corresponding
product measure on U. For example, if ¢; is the uniform distribution on U
for 1 <[ < L, then 9 is the uniform distribution on &. The inner product
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induced by % is defined as
, = d
(f1, f2)w /uflfz Y
:/ fl(ul,...,uL)fg(ul,...,uL)dwl(ul)...d¢L(uL)
U,

Ur,

with associated norm H\f|||12/j = (f, f)y for functions f, fi and fo on U that
are square-integrable with respect to .

Let Fy denote the space of constant functions on U. Given 1 < [ < L,
let F; O Fy denote a closed linear subspace of the space of functions on i
that are square-integrable with respect to ¥;. Given a nonempty subset s =
{li,.. ., Ik} of {1,...,L}, let Fs denote the tensor product of Fy,, ... ,Fy,,
which is the closure (relative to [|-||,) of the space of functions on ¢ spanned
by functions of the form

k
f(u):Hfli(uli), fi, €Fy, and w = (uq,...,ur) €U.

i=1

Let S denote a hierarchical collection of subsets of {1,...,L}. Here, as in
the previous section, hierarchical means that if s is a member of S and r
is a subset of s, then r is a member of S. Set

F:{Zfs:fseIstorseS}.

seS

It follows from Lemma 11.3.2 below that F is a closed subspace of the space
of functions on U that are square-integrable with respect to 1) and hence
that I is a Hilbert space equipped with the inner product (-, ).

Set Fjj = Fy and, for each nonempty set s € S, let FO denote the space of
functions in Fy that are orthogonal (relative to (-,-)y) to each function in
F, for every proper subset r of s. Then the spaces IF‘S, s € S, are orthogonal
to each other and FO, r C s, are orthogonal spaces whose direct sum is F,

7

[see Takemura (1983)]. Consequently, we have the following result.

Lemma 11.3.2. Each function f € F has a unique decomposition f =
= 2 2
>ses s where fo € FY for s € S. Moreover, 1A, = > ses 1N

We refer to Y s fs, fs € Iﬁ‘g, as the ANOVA decomposition of f relative
to the inner product (-, )y, and to fs, s € S, as the components of f in this
decomposition. The component f is referred to as the constant component
if #(s) = 0, as a main effect component if #(s) = 1, and as an interaction
component if #(s) > 2; here #(s) is the number of members of s.

Now let us consider functional ANOVA decompositions relative to an
inner product that is not induced by a product measure. Let (-,-) be an
arbitrary inner product on F and denote the associated norm by | - ||.
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Suppose the norms || - || and || - ||, are equivalent, that is, there are positive
numbers M7 and Ms > M such that

Millflly, < WA < Ml flly,  fEF. (11.3.1)

Under (11.3.1), F is a Hilbert space equipped with the inner product (-, -)
and each Fy, s € S, is closed relative to || - ||. For s € S, let FY denote
the space of functions in Fy that are orthogonal (relative to (-,-)) to each
function in F,. for every proper subset r of s.

Lemma 11.3.3. Suppose (11.3.1) holds. Set e =1 — /1 — (M1/M3)? €
(0,1]. Then

17 = #ON AP f= f, where fo €FY for s €S.

seS

It follows from this lemma that each function f € F has an essentially
unique decomposition f = > _g fs, where f, € FY for s € S. Such a
decomposition is called the ANOVA decomposition relative to the inner
product (-, ).

Since the inner product (-, -) is not necessarily induced by a product mea-
sure, the spaces F? need not be orthogonal to each other. Thus we do not
have the Pythagorean identity for the squared norms as in Lemma 11.3.2.
Instead, it follows from the triangle inequality that || f|| < > cs [l fs[l. The
above lemma gives an inequality in the opposite direction.

The requirement (11.3.1) is not needed to define the ANOVA decompo-
sition. It is used only to establish the relationship between the norm of a
function and the norms of its ANOVA components. We require only that
each Fy, s € S, be closed relative to | - || for the above ANOVA decompo-
sition to be well-defined.

Proof of Lemma 11.3.3. This proof is taken from the proof of Lemma 3.1
of Stone (1994). We proceed by induction on #(S). Observe that the lemma
is trivially true when #(S) = 1. Suppose #(S) > 2 and that the desired
result holds whenever S is replaced by &’ with #(S’) < #(S). Choose a
“maximal” r € § (that is, such that r is not a proper subset of any set s
in §). We first verify that

[5-

If #(r) = L, then (11.3.2) follows immediately from the definition of F?.
Suppose, instead, that 1 < #(r) < L — 1. For every u = (u1,...,ur) € U,
write ¥ = (W, W), where u, consists of u;, I € r, and u,. consists of
ug, I ¢ r. Then w, is U,-valued and w,c is Uc-valued. Let ¢, denote the
product of ¥;,1 € r, and let ¥, denote the product of ¢;,l € r¢. Observe

> (My/Ma)? | f2 ). (11.3.2)




470 11. Rates of Convergence in Extended Linear Modeling

that

H’ zsjfs 2 2 My /M [/ (fr (wr) + > folur, u, )>2wr(dur)]¢rc(duTc)

S#ET

fr+2fs<-,urc)
s#T

c(dupe).

> (Ml/M2)2/

Une

Now || fr + 3" fsCowe) | = 1 fe]? for wpe € Use by the maximality of
r and the definition of FY, so (11.3.2) again holds. It follows from (11.3.2)
that | fr = 83,4, fill* = (M1 /Ma)?|| || for 5 € R. Setting

(frs 2gpr J5)

p= ;
I3z £l

we get that

‘(fr72fs>

SFET

[1— (M1 /M) £

Zfs

SF#T

Thus, by the induction hypothesis,

|| >

> {1 [1— (My/M) ]1/2}<|||fr||| 4

)

S#ET
2 — 2
> (151 + #2 T ILIE)
SF#T
> FEOTIN Y £
This completes the proof. O

11.3.2  Construction of Model Space and Estimation Spaces
using Functional ANOVA

In this subsection we discuss construction of model and estimation spaces
in extended linear modeling to incorporate structural assumptions using
functional ANOVA decompositions.

Model Space

Let Hy denote the space of constant functions on Y. Given 1 <1 < L, let
H; D Hy denote a finite- or infinite-dimensional, closed linear subspace of
the space of Lebesgue square-integrable functions on U;. Given a nonempty
subset s = {l1,...,lx} of {1,...,L}, let Hy denote the tensor product
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of Hy,,...,H;,. Given a hierarchical collection S of subsets of {1,..., L},
define the corresponding model space H by

H:{Zhs:hseHsforseS}.

seS

Let (-,-) be a theoretical inner product defined on the space of Lebesgue
square-integrable functions on U, which may depend on the data-generating
distribution, and let || - || denote the associated norm.

Condition 11.3.1. For the uniform distribution ¥ on U, there are positive
numbers My and Mz > My such that Mi|[h|l, < [[h]| < Ma|All, for h € H.

Remark 11.3.1. In the context of generalized regression and density es-
timation, || - || is the Lo norm relative to a density function fu on U that
is bounded away from zero and infinity on this set (see Sections 11.4.3 and
11.4.4). Thus Condition 11.3.1 automatically holds with M7 and My being
chosen so that ME/vol(U) < fu < MZ/vol(U) onU. A definition of theo-
retical inner product and norm and verification of Condition 11.3.1 will be
given in Section 11.4.5.

Set Hj = Hy and, for each nonempty set s € S, let HY denote the space
of functions in H, that are orthogonal (relative to the theoretical inner
product) to each function in H,. for every proper subset r of s. It follows
from Lemma 11.3.3 that, under Condition 11.3.1, each function h € H can
be written essentially uniquely in the form ) s hs, where h, € HY for
s € S. We refer to ) s hs as the theoretical ANOVA decomposition of h
and to hg, s € S, as the components of h in this decomposition. According
to Lemma 11.3.3, under Condition 11.3.1,

SOlhsl SR <Y lhsll, b= hs, where hy € HY for s € S.
seS seES seS

Estimation Spaces

Let Gy denote the space of constant functions on U, which has dimension
Ny =1.Given 1 <[ < L, let G; (Gyp C G; C H) denote a linear space
of bounded, real-valued functions on U;, which may vary with the sample
size and has finite, positive dimension N; = Np,. It is also supposed that
if g € G; and ||gi|ly, = 0, then g; = 0 on U;. Given a nonempty subset
s={li,...,lx} of {1,..., L}, let G, be the tensor product of Gy,,...,Gy,.
The estimation space G is defined by

G—{ng:gse(@s forsES}.
sES

Note that the dimension of G is given by Ny = Hle N;, and that the
dimension N,, of G satisfies NV,, < ZSGS N,. If Hj; is finite-dimensional, we
can choose G; = Hj.
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The theoretical inner product often involves some unknown quantities,
for example, the probability distribution of the observations. However, to
define ANOVA decomposition of an estimate, it is necessary to use an inner
product that does not depend on unknown quantities. We assume that an
inner product totally determined by the data is defined on the estimation
space and refer to it as the empirical inner product. Let (-,-),, and | - ||,
denote the empirical inner product and the associated norm.

Condition 11.3.2.

sup gl _ 1’ =op(1).
gec! gl

A sufficient condition for Condition 11.3.2 will be given in Lemma 11.4.7.

Set Gg = Gy and, for each nonempty set s € S, let G? denote the
space of functions in G4 that are orthogonal (relative to the empirical in-
ner product) to each function in G, for every proper subset r of s. Suppose
Conditions 11.3.1 and 11.3.2 hold. Then, except on an event whose prob-
ability tends to zero as n — oo, G is a Hilbert space equipped with the
empirical inner product; hence, by Lemma 11.3.3, each function g € G can
be written uniquely in the form ) . gs, where g; € G for s € S. Cor-
respondingly, we refer to ) __g gs as the empirical ANOVA decomposition
of g, and we refer to gs, s € S, as the components of g.

Let Qs denote the empirical orthogonal projection (that is, the orthogo-
nal projection relative to the empirical inner product) onto G for s € S.

Lemma 11.3.4. Suppose Conditions 11.3.1 and 11.3.2 hold. Let 0 < € <
1—+/1— (M;1/M3)? with My, My given in Condition 11.3.1. Then, except

on an event whose probability tends to zero as n — oo,

lgll* > #S71> " gy||? (11.3.3)
seES
and
lgll2 > 413 g2 (11.3.4)
sES

for g =73 c59s, where g; € GY for s € S, and

lgll2 < €=#5 3 " 1Qugll? (11.3.5)
s€ES

for g € G.

Proof. By Conditions 11.3.1 and 11.3.2, there are positive constants M
and M} > Mj that are arbitrarily close to My and Ma, respectively, and
such that, except on an event whose probability tends to zero as n — oo,
Millgll, < llglln < M3llgll, for g € G. Applying Lemma 11.3.3 to F = G

and || - || = || - [|n, we obtain (11.3.4). Then (11.3.3) follows from (11.3.4)
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and Condition 11.3.2. Write g = > __g gs, where g, € GY for s € S. Then,
by the Cauchy—Schwarz inequality,

||g||121 = Z<gsag>n = Z<957Q59>" < Z ||gs||nHng||n

seS seS seS
1/2 1/2
< (Dhgl2) (X leugl)
seES seS

and (11.3.5) now follows from (11.3.4). O

11.3.3 Rates of Convergence of ANOVA Components

In this section we provide proof of Proposition 11.1.2. In particular we will
prove that, under suitable conditions, the components of the maximum
likelihood estimate in an appropriate ANOVA decomposition will converge
to the corresponding components of the target function.

Condition 11.3.3. Fiz any subspace G of G with dimension Ni.. Then,
for any fized sequence h,, n > 1, of uniformly bounded functions on U,

ap et L 00 (52)"),

A sufficient condition for Condition 11.3.3 will be given in Lemma 11.4.8.
The next theorem says that if h € H and g € G are close, then their
components in appropriate ANOVA decompositions are also close.

Theorem 11.3.3. Suppose that Conditions 11.3.1-11.3.3 hold. Let Sy be
a (not necessarily hierarchical) subset of S. Suppose that h = ESESO hs,
where hs € HY for s € Sy. Set vs = Von = infyec, [|g — hslloo- Then

oo =l = 0p (g =i+ 3 (2 42))

s€So

and

lo. = hullt = 0r (llg =l + 3 (52 +2)

SESy
uniformly for g = ZSESO gs, where gs € G2 for s € S.

Suppose 1 € G is an estimate of the target function n* and consider the
ANOVA decompositions n* = Y _sni and 7 = >, .57, where 1} € HY
and 7, € GY for s € S. Applying the above theorem to h = n* and g = 7, we
see that, that if the distance between 7 and n* is small, then the differences
7s — 0% of the components of 77 and n* should also be small.

To prove Theorem 11.3.3, we need the following result.
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Lemma 11.3.5. Under the same setup as Theorem 11.3.3, for s € S, there
is a function gs € GY such that

_ N,
1G5 — hsl® = O;:(; + 73) (11.3.6)

and

_ N,
Gs — hsll7 = OP(7 + 73). (11.3.7)

Proof. Without loss of generality, assume that vs < co. Then hy is bounded
and, by a compactness argument, there is a function g} € G, such that
195 = hslloo = infgec, [lg — hslloo = 7s. Moreover, [|gf[[oc < 7s + [[hslloc <
2| hslloo- Write g5 = gs+ (g5 —gs), where g € Gg and g5 —gs € >
is the empirical orthogonal projection of ¢g¥ onto G’ := 3
will verify that g has the desired property.

It follows from Lemma 11.3.4 applied to G’ that, except on an event
whose probability tends to zero as n — 00, |95 —gslln < X2, copzs 1Qrgs 7
It follows from the triangle inequality and the fact that @, is an orthogonal
projection that, for each proper subset r of s,

rCs,r#s GT

G,. We

rCs,r#s

”QTQ:Hn < HQT(Q: - hS)”n + ”thsnn < ||9: - hSHn + ||than-

Since Blllg: —hs|2] = g2 —hsll? < 42, we obtain that [|g2 —hll = O (7).
On the other hand,

T‘h57 n
”than = sup M
geG,  [19ln

h
_ oup [s)nl
9eG, gl
— sup |<h57g>n - <h57g>|
9€G, llgln

)

the last step being valid since h, € HO. Therefore, ||Q,hsl, = Op((N,/n)'/?)
by Condition 11.3.3. Consequently,

* ~ N’I" Ns
Igs—gslli—0p< > 7+7§>—Op(7+7§)-

rCs,r#s

Thus, by Condition 11.3.2,
* ~ NS
gz = 3:l1* = Op (= +42).

The desired results now follow from the triangle inequality. [l



11.3 Functional ANOVA 475

Proof of Theorem 11.3.3. We prove only the first result, the proof of the
second result being similar. By Lemma 11.3.5, for each s € Sy, there is a
function g, € GY such that (11.3.6) holds. Set § = > s, Js- Then

lo- 1 =0n(( 3 (B2 442)).

seSo

It follows from the triangle inequality that

lo = 91P < 2la — 11+ 0p (3 (52 +2) ).

se€So

The first result now follows from Lemma 11.3.4, (11.3.6), and the triangle
inequality. O

Remark 11.3.2. A much simpler version of Theorem 11.4.1 and its proof
is available when the spaces H? and G2, s € S, are defined according to
the same inner product that is induced by a product measure. In this case,
GY C HY for s € S and the spaces H?, s € S, are orthogonal to each
other. Let Sy be a (not necessarily hierarchical) subset of S. Suppose that
h =3 s, hs and g =3 s, gs, where hs € H? and gs € GY for s € Sp.
Then hs — gs € Hg and hence

Ih=gl* = "> lhs — gl (11.3.8)
s€So

It follows from (11.3.8) that if g and h are close, then their components are
also close. As an application, suppose 1] is an estimate of the target n* and
consider the ANOVA decompositions n* = Y . s and 1 = > s s,
where 0t € H and 7, € GY for s € Sy. Applying (11.3.8) to h = n* and
g =1, we obtain that ||7s — ni|| < |7 —n*| for s € So. In particular, the
convergence of 1 to n* guarantees the convergence of the components of i
to those of n*.

Proof of Proposition 11.1.2. For each g € G, write g = ) g5 where g5 €
Gs and gs L G, for all proper subsets r of s. It follows from Lemma 11.3.3
that > g llgsl* < e #S)| g|2, where ¢ = 1 — /1 — (M;/M>)? with
My, My as in Condition 11.3.1. By the definition of Ag and the Cauchy—
Schwarz inequality, we get that

1/2 1/2
9o < 3 gallo < 3 Aullgal < (Z A§> (Z ||gs|2) |

SES SES SES seES

Thus »
l9llee < <ZA§) [61—#(8)Hg”2]1/2'

sES
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Consequently, A, < [e!=#(5) S o A2]Y/2. Observe that N, < 3. s N,
and p, < Zse s Ps- Hence, it follows from the assumption lim,, A;ps = 0 for
s,s" € S that lim, A, p, = 0. Furthermore, it follows from the assumption
lim,, A2Ns /n = 0 for s,s' € S that lim, A2N,,/n = 0. The desired result
then follows from Proposition 11.1.1. O

11.4 Verification of Technical Conditions

In this section we will verify the technical conditions (namely, Condi-
tions 11.2.2; 11.2.4, 11.3.1-11.3.3) required in Propositions 11.1.1, 11.1.2
and 11.1.3. General sufficient conditions for Conditions 11.3.2 and 11.3.3
will be given in Section 11.4.2. Sections 11.4.3—-11.4.5 will consider respec-
tively the contexts of generalized regression, density estimation and hazard
regression.

11.4.1 Preliminaries

Let &1,. .., &n be independent random variables each having mean zero, and
set £ = (&1 + -+ + &,)/n. Suppose that, for 1 < i <n, F§ =0 and

|
|EE"| < %b?Hm*Q, m > 2, (11.4.1)

where H > 0. Set B2 = (b7 + -+ + b2)/n. Then, by Bernstein’s inequality
[see Yurinskii (1976)],

= nt?

P(I¢] 2 ) < 2exp ( 2(Bg+tH)) (11.4.2)
for t > 0. Suppose, in particular, that E¢; = 0, var(§;) < o2, and P(|§| <
b) = 1 for 1 < i < n, where b > 0. Then (11.4.1) and hence (11.4.2)
hold with b; = ¢ for 1 <14 <n, B, = o, and H replaced by b. In this case,
however, (11.4.2) also holds with H replaced by b/3 [see (2.13) in Hoeffding
(1963)]. If we drop the assumption that E¢; = 0, we need to multiply b by
2. (Note that |E¢&;| < b and hence |§; — E¢;| < 2b.) It follows easily from
(11.4.2) that

tH—2N,,

P(|&] > tH[Bn(N,/n)"/2 + N, /n]) < 2exp (_ -

) (11.4.3)
for t > 1.

In the proofs of Lemmas 11.4.7, 12.3.7, and 12.3.11, we will use a “chain-
ing argument” that is well known in the empirical process theory literature;
see, for example, Pollard (1984). For convenience, we summarize a portion
of this argument in the form of the following result.
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Lemma 11.4.6 (Chaining argument). Let S be a nonempty subset of
g; let Vs, s € g, be random variables; let K be a positive integer; let Sy be
a finite, nonempty subset of S for 0 < k < K such that Vs =0 for s € Sy;
let C4,...,Cg be positive numbers; let 0 < § < 1/4; and let Q be an event.
Suppose that

P(suppnn IV, — Vs| > Cl;Q) < Oy (11.4.4)
seS SE€SK
#(Sk) S C3 exp(C4k), 1 S k S K; (1145)
and
max min P(|V, — V5| > 27 *1 5. Q)
SESK SESK_1 (1146)
< Csexp (—2C4(20)" %), 1<k <K.
Then
C3Cs
P Vs| >C1 +2C5) <Co+ —————— + P(Q°
(sipIVel > €4 208) < o Gy + P
C3C
< Oy 4+ =20 4+ P(Q°).
4

Proof. Observe that

sup |Vs| < sup min |V, — Vz| + sup |Vl
s€S s€S €8k sESK

So, in light of (11.4.4), it suffices to verify that
exp(—Cy)

1 —exp(—Cy)’
To this end, for 1 < k < K, let 01_1 be a map from Sy to Sx_; such that
P([Vs = Vo, (9] = 27%7DC5;0)

§C'Gexp( 204(25) (k— 1)) 1<k <K and s € Sg;
the existence of oy—1 follows from (11.4.6). Then, by (11.4.5),
P(|Vs = Vo 9] > 2~ =15 for some k € {1,...,K} and s € Sk; Q)

K

<) Cyexp(Cyk)Cgexp (- 2C4(26) 1),

k=1

Since k < (26)~*=1 for k > 1, the right side of the above inequality is
bounded above by

p(ggﬁ Va| > 205;9) < 05Cs (11.4.7)

K
0306 Zexp 04(25) (k— 1)) < CSCG Zexp C4k)
k=1 k=1
exp(—Cy)
< C5C .
= T —exp(—Cy)
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Suppose that [V, =V, (9] < 2=-k=1C for 1 < k < K and s € Si.
Choose s € Sk and set sx = 8, Sk—1 = 0x—1(8K), --., S0 = go(s1). (We
refer to sk, ..., So as forming a “chain” from the point s € Sk to a point
50 € So.) Then Vy, = 0 and Vi, — Vs, _,| <27 *=DC5 for 1 <k < K, so

K
(Vsk - ‘/Sk—l)
k=1

|Vs| = < 2Cs.

Consequently,
P(max |Vs| > 205;(2)
SESK
< P(|V5 — Voo 19| > 2= k=D for some k € {1,...,K} and s € Sk;Q).

Thus (11.4.7) holds as desired. O

11.4.2  Theoretical and Empirical Inner Products

Consider a W-valued random variable W, where W is an arbitrary set.
Let Wy,...,W,, be a random sample of size n from the distribution
of W. For any function f on W, set E(f) = E[f(W)] and E,(f) =
% Sor, f(W5). Let U be another arbitrary set. We consider a real-valued
functional ¥(f, g;w) defined on w € W and functions f,¢g on U. For
fixed functions f and g on U, ¥(f,g;w) is a function on W. For nota-
tional simplicity, write ¥(f,g) = ¥(f, g;w). We assume that ¥ is sym-
metric and bilinear in its first two arguments: given functions f, ]7, gonlU,
U(f,g) =¥ (g, f) and T(af +bf,g) = a¥(f,g) +b¥(f,g) for a,b € R. We
also assume that ¥(f, f) is nonnegative.

Throughout this subsection, let the empirical inner product and norm
be defined by

(f.9)0n = En[¥(f,9)] and [fl7 = (£, f)n,

and let the theoretical versions of these quantities be defined by

(f.9) = E[¥(f,9)] and [fI*=(f )

In particular, this more general definition of the theoretical norm is now
used in the definition of the constant A,,. We assume that

w(f, f) < M|IflI% (11.4.8)

for some positive constant M and

w2 (f,9) <U(f, f¥(g,9). (11.4.9)
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It follows from (11.4.8) and (11.4.9) that

1@ (f, 9)l < M| flloollglloo (11.4.10)

and
var(¥(f, g)) < M| f|?[lgll- (11.4.11)

In the context of generalized regression and density estimation in Sections
11.4.3 and 11.4.4, we choose ¥(f,g) = f(U)g(U). See Section 11.4.5 for
the choice of ¥ in the context of hazard regression.

The next result says that the empirical inner product is uniformly close to
the theoretical inner product on the estimation space G = G,, with proba-
bility tending to one. It provides a sufficient condition for Condition 11.3.2.

Lemma 11.4.7. Suppose that lim,, A2N,,/n =0 and let t > 0. Then, for
n sufficient large,

P< u (f,9)n — (£, 9)] 2

sup RL90m LI t) < . :
roes ifizolglzo Il exp(rerrirr 4 ) — 1

where M is as in (11.4.8). Consequently, except on an event whose proba-
bility tends to zero as n — oo,

Iy 90 = (L)l <t I gl f9€G.
Proof. Set B:={g € G:|g| <1}. Then
u |<fag>n_<f7g>| — su _
PO O 11N P I A

Let 0 < § <1/4, and let {0} =By C By C --- be a sequence of subsets of
B with the following property: for k > 1, By is a maximal superset of By
such that each pair of functions in By, is at least % apart in the norm || - ||.
Then mingeg, |lg — g|| < 6% for k > 0 and g € B. Moreover,

#(By) < (1;7(72/2)% <(B5FNe k> (11.4.12)

(Observe that there are #(Bj) disjoint balls each with radius §*/2 that
together can be covered by a ball with radius 1+ §*/2.)

Let K = K,, be a positive integer such that 2M A26% < t. We will apply
S={(f,9): f,g€B}, Sk ={(f,9): f,g €B}for 0 <k < K, and Q¢ = (.
It follows from (11.4.12) that #(Sg) < (367%)2N» for 1 < k < K and hence
that (11.4.5) holds with C5 = 1 and any Cy > 2N, log(3/4).
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Let k be a positive integer, and let f, f,g,§ € B, where IIf - f|| < k1
and ||g — g|| < 6%~1. Then, by (11.4.10) and the triangle inequality,

W (f,9) W (f.9) < O(f — f.9)l + ¥(f.9 - 9)|
< M| = Fllsollglloo + M| flloollg = Glloo
< MA2||f — fllllgll + MAZ| fllllg — gl
< 2M A% 5k,

and, by (11.4.11)

var [ (f, g) — ¥(f.3)]
< 2var[¥(f — f,gﬂ —|—2var[u7(f,g -9)]
< oM|gllZIIf = I + 2M | fl%llg — 51>
<2MAZ(lgl*lf - FI* + 1F12g — 3117
< AM A2 520D,

Applying (11.4.2) and noting that 0 < 2§ < 1, we get that
P(|(En — E)@(f.9) — #(].9))| > 27*7D)

(n/A2)t?(26)~ (k=1 (11.4.13)
8M(1+t) )

SQexp(—

For any f,g € B, there exist f,§ € Bx such that If - fH < 6K and
lg — gl < 6%. Then [¥(f,9) — ¥(f,3)| < 2MA26K < t. Consequently,
(11.4.4) holds with C; =t and Cy = 0.

Let 1 < k < K. For any f,g € By, there are ]7,5 € Bi_; such that
If = fl < 61 and |lg — g|| < 6%~1. Since lim, A2N,/n = 0, we now
conclude from (11.4.13) that (11.4.6) holds with C5 = ¢, Cs = 2, and

(n/A7)t?

Ca= 16M(1+¢)

3
> 2N, log -
4]
for n sufficiently large. It now follows from Lemma 11.4.6 that, for n suffi-
ciently large,
2

£2 ’
eXp(l6M(1+t) A%L) -1

P( sup [(f, g)n — (f,9)| > Bt) <

f.g€B

which tends to zero as n — oo. Thus the desired conclusion is valid. O

The next result provides a sufficient condition for Condition 11.3.3.



11.4 Verification of Technical Conditions 481

Lemma 11.4.8. Let G = G, be a linear space of functions with finite
dimension N, for n > 1. Let M be a positive constant. Let {h,} be a

sequence of functions on X such that ||hy|lso < M for n > 1. Then

n

sup
S g1

|<hnvg>n - <hmg>| _ OP((N'”)UQ)'

Proof. Let {¢;} be an orthonormal basis of G relative to the theoretical

inner product. For each function g € @7 we have the expansion g = > y bjd;
and ||g||?> = > b3. Thus

‘<hnag>n - <hnag>’ =

ZbJ«hn, ¢J>n - <hna ¢J>)‘

1/2

S NTIAR BRI RI

J

SO
1/2

sup (hns @) — <hn,g>‘ < {Z(<hn,¢j>n - <hn,¢j>)2}

i P :

Since E((hpn, dj)n) = (hn, ¢;), we conclude that

B[((ns )~ (s 63))?] = var (s 65)0) = - var((hn, 6,).
By (11.4.11),

var(¥(hy, ¢;)) < M|[ha |2 )l 6512 < M2M,

S0 R
2 ~ N,
E (Z«hn, 6i)n = (hn 05)) ) < MPM—".
J
The desired conclusion now follows from the Markov inequality. O

11.4.3 Generalized Regression

Recall the generalized regression setup from Section 11.1. Here, we will
verify the technical conditions required in Propositions 11.1.1, 11.1.2 and
11.1.3 under five auxiliary assumptions.

Assumption 11.4.1. B(:) is twice continuously differentiable and its first
derivative B’(-) is strictly positive on R. There is a subinterval S of R such
that W is concentrated on S and

B"(&)y —C"(¢) <0, —00 < & < 00, (11.4.14)
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o [¢]
for all y € S, where S denotes the interior of S. If S is bounded, (11.4.14)
holds for at least one of its endpoints.

Note that A(n) € S for —oo < 1 < 0co. Thus by Assumption 11.4.1,
B"(€)A(n) —C"(€) <0,  —00<&n < 0. (11.4.15)

If 7 is the canonical parameter of the exponential family, then B(n) = n and
hence B”(¢) = 0 and C”(§) > 0 for —oo < £ < o0, so Assumption 11.4.1
automatically holds with S = R. This assumption is satisfied by many
familiar exponential families, including normal, binomial-probit, binomial-
logit, Poisson, gamma, geometric and negative binomial distributions; see
Stone (1986).

Assumption 11.4.2. P(Y € §) =1 and EY|X = z) = A(n(x)) for
reX.
Observe that Assumption 11.4.2 is implied by the stronger assumption

that the conditional distribution of Y given that X = x has the exponential
family form given by (11.1.1).

Assumption 11.4.3. The response function 7(-) is bounded.

Assumption 11.4.4. There is a positive constant D such that var(Y|X =
x) <D forxelX.

Assumption 11.4.5. The distribution of X is absolutely continuous and
its density function fx is bounded away from zero and infinity on X.

Define the empirical inner product as (h1, ha)n = Epnlh1(X)ha(X)] with
corresponding norm ||h||2 = (h,h),. The theoretical inner product and
norms are defined as (hq,ha) = E[h1(X)h2(X)] and ||h||*> = (h, k). Then
Condition 11.3.1 is an immediate consequence of Assumption 11.4.5. Con-
ditions 11.3.2 and 11.3.3 follow from Lemmas 11.4.7 and 11.4.8.

Verification of Condition 11.2.2.

Let hq1, ho € H be a pair of bounded functions on Y. Set hy = hi+a(ha—hq)
for 0 < a <1. Then

d

2o (hai X, Y) = (ha(X) = i (X))[B'(ha(X))Y = €' (ha(X))]
and
%l(ha; X,Y) = (ha(X) = hi(X))?[B" (ha(X))Y — C"(ha(X))].

Thus, by (11.1.2),

L Aha) = B{(a(X) — ha(X))[B" (ha(X)) Aln(X) — € (e X))]}

Condition 11.2.2 now follows from (11.4.15), the boundedness of n(-), and
the continuity of A(-), B”(-), and C"().
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Verification of Condition 11.2.4(i).

We assume that for large n, 77 exists uniquely and [|7]||cc < Ko for some
constant Ky. (This follows from Theorem 11.2.1 when relevant conditions
are satisfied.) We need only verify the sufficient condition given in Re-
mark 11.2.1. In the present context the score S(3) has entries

‘9 qug (X B)Yi—C'(g(X )],  1<j< N

S}ilnce B maximizes A(g(-;8)) = E[B(9(X;8))Y — C(g(X;8))], we see
that

This implies that

E[¢;(X)(B'(7(X))Y —C'(7(X)))] =0, 1<j <N,

Thus
£(|s@)*) = ZE[%E(B)T
= s (OB G0 -]

Note that
var [0 (X) (B (n(X)))Y = C'(3(X))]
= Evar[o, (X)(B’(ﬁ(X)))Y - c’mx») \X]}
+ var| B [¢; (X) (B'1(X))Y - C'(n(X)))|X] |
= B[#(X)(B'(7 X))) Y|X>}
+var[6;(X) (B (7( X)) A(n( X)) = €' (1(X)]

Hence, it follows from the boundedness of 7, Assumptions 11.4.4, (11.4.15),
and the continuity of B’(-), C'(-), and A(-) that, for some positive constant
M,

var[p;(X) (B'(7(X))Y - C'(7(X)))] < ME[43(X)].

Consequently,
- M M
E([s@)F) < = Y Ble3(X0] = = > |62 =
J J

Condition 11.2.4(i) now follows from Remark 11.2.1.
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Verification of Condition 11.2.4(ii).
We need the following result (to be proved later):

CramM 1. Under Assumptions 11.4.1-11.4.4, there exist a positive con-
stant 6; and a compact subinterval Sy of S such that P(Y € So|X = x) >
01 for x € X and B (§)y — C"(£) < 0 for —oo < < 00 and y € Sp.

By Claim 1 and the continuity of B” and C”, there is a positive constant
0o such that

B"(€)y—C"(¢) < —8, ~K<E<KandycS. (11.4.16)
Set 7, = {i: 1 <i<nandY; € Sp}. By (11.4.14) and (11.4.16), except

on an event whose probability tends to zero as n — oo,

2
Wf(m + (g2 — 91))

= 3 {lnx) - a(x0)’
% |B" (Igr + alg2 = g1)](X2)Yi = € ([g1 + alg2 — 90)] (X)) | |

< —%2 3 [92(X5) — g1(X3)]?

1€y,
(11.4.17)

for 0 < @ <1 and all g1,92 € G with [|¢g1]|cc < K and |g2lcc < K. Set
I, = #(Z,). Then lim,, P(I,, > 61n/2) = 1. Observe that, given Z,, =
{i1,...,11,}, the random vectors X;,i € Z,,, are independent and have the
common density

fx(@)P(Y € S)| X =) '

/(a]Y € 50) = P(Y € So)

Note that & fx (x) < f(x]Y € So) < (1/61)fx (x). Therefore, it follows
from Lemma 11.4.7 that

5_2 0102

[2(X0) 01 (X0)]" > =2 g2 — o (11.4.18)

i€Ly

for all g1,92 € G with ||g1]lcc < K and ||gz2]lcc < K, except on an event

whose probability tends to zero as n — oco. Condition 11.2.4(ii) now follows
from (11.4.17) and (11.4.18).

Proof of Claim 1. Since A(-) is continuous and strictly increasing and 7(-)
is bounded, E(Y|X = x) = A(n(z)) ranges over a compact subinterval

o
Sy = [e1, 2] of S. We consider three cases.
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CAsE I. § = R. By Chebyshev’s inequality and Assumption 11.4.4,

P([y - E(Y|X = 2)| < V2D|X =)
var(YV|X = x)
2D
Therefore, Claim 1 holds with Sy = [e1 — V2D, c2 + vV2D] and 6; = 1/2.

Case 1L S = (—00,a) or (a,c0) for some a € R. Without loss of gener-

1

ality, suppose that S = (0, 00). Otherwise, we can replace Y by =Y +a or
Y —a. Thus 0 < ¢1 < co. By Assumption 11.4.4,

E(Y%X =) =var(Y|X =2) + [E(Y|X =a)]° < D+ ¢&.
By an obvious modification of Markov’s inequality, for any M > 0,
. E(Y?| X =x) D+c3
E[Yind(Y > M)|X =] < < .
[Yind(Y > M)| z] < i S 7
here ind(A) denotes the indicator function of the set A. Hence, for any
6, M e R with M >§ >0,

a <EY|X =)
=E(Yind(Y <§)|X ==x)
+E(Yind(§ <Y < M)|X =x) + E(Yind(Y > M)|X =)
D+ c3

<§+MP(S<Y<MX=z)+ VA

This implies that

S a — 85— (D+c3)/M
i M .
Letting § = ¢1/3 and M = 3(D + c2)/c1, we get that

PO<Y <M|X ==x)

2
c
PE<Y<M|X =2)> ——2
perenx=n> i
Therefore, Claim 1 holds with So = [¢1/3,3(D+¢3)/c1] and 61 = ¢3/(9(D+
2.
Cask III. S = (a1, a9) for aj,az € R and (11.4.14) holds at y = ay or
o
y = ag. Without loss of generality, suppose that S = (0,1) and (11.4.14)

holds at y = 1. Otherwise, we can replace Y by (Y — a1)/(az — a1) or
(=Y 4+ az)/(az —a1). Thus Y <1 and ¢; > 0. Note that, for § > 0,

>0

A <EY|X=2)<5+PY >6X=1), xzcAi

Let 6 = ¢1/2. Then P(Y > ¢1/2|X = x) > ¢1/2 for & € X. Therefore,
Claim 1 holds with So = [¢1/2,1] and 61 = ¢1/2. O
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11.4.4 Density Estimation

We now verify the technical conditions in the context of the density esti-
mation setup from Section 11.1.1.

Let H; be a linear space of functions on )’ that contains all constant
functions. We model the log-density function ¢ as a member of H;. Note
that ¢ satisfies the nonlinear constraint ¢(¢) = log fy expp(y)dy = 0. It
is convenient to write ¢ = n — ¢(n) such that 7 satisfies a linear constraint.
To this end, set H = {h € Hj : fy h(y)dy = 0}. If ¢ € Hy, then there
is a unique function n € H such that ¢ = n — ¢(n). Thus the original
problem is transformed to the estimation of n € H. The log-likelihood is
given by I(h;Y') = h(Y') — c¢(h), and the expected log-likelihood is given by
A(h) = E[l(h; Y)] = E[M(Y)] — c(h).

Assumption 11.4.6. The density fy is bounded away from zero and
infinity on ).

This assumption is equivalent to the assumption that 7 is bounded.

Define the empirical inner product as (hy, ha)n = En[h1(Y)h2(Y)] with
corresponding norm ||h||2 = (h,h),. The theoretical inner product and
norms are defined as (hi, he) = E[h1(Y)h2(Y)] and ||h||? = (h,h). Then
Condition 11.3.1 is an immediate consequence of Assumption 11.4.6. Con-
ditions 11.3.2 and 11.3.3 follow from Lemmas 11.4.7 and 11.4.8, as in the
context of generalized regression.

Let hi,ho € H be a pair of bounded functions on Y. For « € (0,1), set
ha = hl + Oé(hg — hl) Then

d
Zallha;y) = ha(y) = hi(y) — Blh2(Ya) = hi(Ya)]
and
d2
da?
where Y, has the density fy_(y) = exp(ha(y) — c(hq))-

l(ha;y) = _Var[h2(Ya) —hy (Ya)]a

Verification of Condition 11.2.2.

Note that

ddeQA(hl + alhe — hy)) = —var[ha(Y ) — h1(Y )]

Since fy_ (y) is bounded away from zero and infinity,

varlha(Ya) — i (Vo)) = inf / (o) — (W) — . (3) dy

c

Yy
- infﬁ /y (ha(y) — ha(y) — ¢ dy

c

= ﬁ/y[hz(y) — h1(y)]? dy;
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here, we use the fact that fy ho(y) dy = fy ha(y) dy = 0. Now, the density
of Y is bounded away from zero and infinity, so the above right side is
bounded above and below by multiples of

E[(ha(Y) = ha(Y))?] = [[hz — ha*.
Verification of Condition 11.2.4.
Note that, for g € G,

) = Ealg(Y)] - Elg(Y)],

where Y has the density exp(7j(y) — c(7)). Since 7 € G maximizes A(g)
over g € G, we have that

d d . _
%K(n + ozg)‘azo = En(al(vw ag)‘

d _
@A(U +ag)

which implies that E[g(Y)] — E[g(Y)] = 0 for g € G. Consequently,

=0, g €G,
0

o=

d . _
=2 T+e9| (5 - g
9] 9]

Condition 11.2.4(i) now follows from Lemma 11.4.8.
Observe that, for g1,92 € G,
2 d2
Tazllor +algz = g1)) = o5 Mg1 + ag2 — g1)).

Condition 11.2.4(ii) now follows from Condition 11.2.2.

11.4.5 Hazard Regression

Consider, finally, the hazard regression setup from Section 11.1.1. We verify
various technical conditions under the following assumptions.

Assumption 11.4.7. (i) The vector X of covariates has a density function
fx that is bounded away from zero and infinity on X; (ii) P(C' = 7| X = x)
is bounded away from zero as x ranges over X’; (iii) the log-hazard function
n(-,-) is bounded on U = X x [0, 7].

Define the empirical inner product and empirical norm by
Y;
(h1, ha)n Z/ hi(X,t)ho( X, t) dt

and ||h]|2 = (h,h),. The corresponding theoretical inner product and the-
oretical norm are defined by

Y
(hy, ) _E/O hi (X, t)ha (X, t) dt

and ||h||? = (h, h).
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Verification of Condition 11.3.1.

By conditioning,
Y
A2 = E/ R (X, t)dt

0

=E | h(X,t)ind(Y >t)dt
0

= E/ R*(X,t)P(Y > t|X)dt.
0

Since T' and C' are conditionally independent given X,
P(T >t X)P(C >t|X)=P(T >t|X)P(C > t|X).

Hence,

t
A2 = E/ h2Xt)exp( /expn(Xm)du)P(CzﬂX)dt

//tht (x,t) dt de,

O(x,t) = exp ( - /Ot expn(, u) du)P(C > X = z)fx(x)

where

for (x,t) € U. By Assumption 11.4.7, ®(x,t) is bounded away from zero
and infinity and thus Condition 11.3.1 is valid.

Verification of Conditions 11.3.2 and 11.3.3.

Note that the empirical and theoretical inner products defined above have
the form given in Section 11.4.2 with W(h1, ho) = [) hi(X,t)ha(X,t) dt.
Since Y < 7, (11.4.8) holds with M = 7. The Cauchy—Schwarz inequal-
ity yields (11.4.9). Conditions 11.3.2 and 11.3.3 then follow from Lem-
mas 11.4.7 and 11.4.8 respectively.

Let hi,he € H be a pair of bounded functions on ). Set h, = hy +
a(hg — hy) for 0 < o < 1. Then

T i(la) = 8lha(X,¥) — (X, V)]
“ v (11.4.19)
—/O (X, ) — hy (X, 1)] exp ha (X, 1) dt
and
d2

—l(ha) = —/Y[hQ(X7t) —hi (X, )2 expho(X,t)dt.  (11.4.20)
do 0
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Verification of Condition 11.2.2.

Suppose ||hi|lcc < K and ||hy||ec < K for some positive constant K. It
follows from (11.4.20) that

d2 Y )
WA(hl + a(hy — hy)) = —E/O [ha(X,t) — hi(X,1)]? exp ha(X, t) dt.

Since ||hq|lec < K, the above right side is bounded above and below by
multiples of

Y
—E/ [ho(X,t) — hy (X, 1)]* dt = ||ha — h1]*.
0

The desired result follows.

Verification of Condition 11.2.4.

We assume that for large n, 7 exists uniquely and [|7]||cc < Ko for some
constant Ky. (This follows from Theorem 11.2.1 when relevant conditions
are satisfied.) Let g € G. Since

d
A =0
dOé (n+ag) a=0 ?

we conclude from (11.4.19) that

01+ ag)|__ = (B~ B)(69) ~ (expn, g} — (ex07,9)).

It follows from Lemma 11.4.8 that

sup

n n - 77 Nn 1/2
[{exp 7, 9)n — (exp1, 9)| —Op<( ) )
9€G gl

and it follows by arguing as in the proof of Lemma 11.4.8 that

(2 B0l _ g (X)),

sup
gec  [E(g?)]'/?

On the other hand, Assumption 11.4.7(i) and Condition 11.3.1 together
imply that E(g?) =< ||¢||? uniformly in g € G. Thus Condition 11.2.4(i) is
valid.

For g1,g92 € G, set g, = g1 + a(g2 — g2) for 0 < a < 1. It follows from
(11.4.20) that

d2 Y
1z 0(02) = ~En [ [0a(X,8) = 1(X. O exp g (X, 1)
0
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Suppose ||g1]lcc < K and ||g2]|c < K for some positive constant K. Then

lgallco < K and thus the right side of the above display is bounded above
and below by multiples of

Y
B, / 92X 8) — u(X, ) dt = g2 — g 2.
0

Condition 11.2.4(ii) then follows from Lemma 11.4.7.

11.5 Notes

This chapter is mainly based on Huang (2001), which is a synthesis of the
theoretical development of various subsets of authors of this book during
the last two decades. The motivation of this line of research can go back
to Stone (1980, 1982), where it was shown that n~2?/(?P+L) is the optimal
pointwise or Lo rate of convergence in functional estimation, where the
unknown function 7 of a L-dimensional vector w = (u1,...,ur) has a p
bounded derivatives and and an estimate 77 of n is based on a random
sample of size n. Stone (1982) raised the possibility that if 7 is the sum of
functions of individual variables u;, then the optimal L, rate of convergence
would be n~2P/(2P+1)  This possibility was verified in Stone (1985) in the
context of additive regression and in Stone (1986) in the context of logistic
regression, Poisson regression and other generalized additive models. In
these papers, the estimate 7 (of 7 if 7 is additive or, more generally, of the
best additive approximation * of n) that was shown to achieve the optimal
Lo rate of convergence has the form of a nonadaptive sum of polynomial
splines in the individual variables ;.

In Stone (1985) it was suggested that if 7 is the sum of functions of
specified subsets of the variables u; having at most d variables in each such
subset, the the optimal Lo rate of convergence would be n=2P/(2p+d) Thig
result was verified in Stone (1994) in the context of regression, general-
ized regression and density estimation, in Kooperberg, Stone and Truong
(1995b) in the context of hazard regression, and in Kooperberg, Stone
and Truong (1995¢) in the context of spectral density estimation (where
d = L = 1). In these papers the estimate 7] (of the best approximation
7* to n having the specified form) that was shown to achieve the optimal
L rate of convergence has the form of a nonadaptive sum of tensor prod-
ucts of polynomial splines in the specified subsets of variables. The Lo rate
of convergence result for unsaturated models demonstrated the potential
of the corresponding estimation procedure for ameliorating the curse of
dimensionality.

In his Ph. D. thesis, Hansen (1994) extended the previous theoretical
results involving L rates of convergence for estimates based on polynomial
splines and selected tensor products to include bivariate and more general
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multivariate polynomial splines as well as univariate splines. He also showed
that the theories for regression, generalized regression, multiple logistic
regression, density estimation, conditional density estimation, and so forth
could be treated within a common framework, referred to as an extended
linear model. This is where the name extended linear model was coined.

In an attempt to better understand the mathematical structural of func-
tional ANOVA modeling and the role of low order functional ANOVA mod-
els (including additive models) in overcoming the curse of dimensionality,
Huang (1998a) realized that the use of polynomial splines is not essential
and virtually arbitrary linear spaces and their tensor products can be used
to build the estimation spaces. The result of Huang (1998a) was established
in the context of regression, and was extended to the generalized regres-
sion context in Huang (1998b). The new theoretical approach of Huang
(1998a, 1998b) simplified much of the theoretical research on extended lin-
ear modeling and was then used in Huang and Stone (1998) to extend the
theory for hazard regression in Kooperberg, Stone and Truong (1995b) to
event history analysis involving repeated events of multiple kinds and time-
dependent covariates, and in Huang, Kooperberg, Stone and Truong (2000)
to study functional ANOVA modeling in proportional hazards regression.
A fresh synthesis on the theory of extended linear models was achieved
in Huang (2001) to unify the previous efforts. This synthesis provides a
convenient framework to investigate the theoretical properties of extended
linear modeling with free knot splines in Stone and Huang (2001a, 2001b),
which will be summarized in the next chapter.

We use maximum likelihood estimation over a finite-dimensional esti-
mation space in fitting an extended linear model. This approach can be
thought of as a special case of the method of sieves (Grenander 1981).
Rates of convergence for the general method of sieves have been developed
using the theory of empirical processes; see, for example, Shen and Wong
(1994), Wong and Shen (1995), van de Geer (1995), Birgé and Massart
(1998). None of these papers considered functional ANOVA modeling.

An alternative approach that is also very convenient in incorporating
functional ANOVA structure in functional estimation is the penalized like-
lihood method (or smoothing spline ANOVA). See Wahba (1990), Wahba,
Wang, Gu, Klein and Klein (1995) and the references therein for general
discussions. The theoretical papers on the penalized likelihood method
for the saturated models include Silverman (1982), Cox and O’Sullivian
(1990), Zucker and Karr (1990), Chen (1991), O’Sullivan (1993), Gu and
Qiu (1994), and Gu (1995, 1996). The rate of convergence of smoothing
spline ANOVA in the context of regression is studied recently in Lin (2000).
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