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Extended Linear Modeling with Free
Knot Splines

As we saw in Chapter 11, many statistical problems of theoretical and
practical importance can effectively be treated within the framework of
concave extended linear modeling. In that chapter, rates of convergence of
maximum likelihood estimates were obtained when the estimating space
does not depend on the data. In this chapter, we consider a collection
G, v €T, of linear estimation spaces having a common dimension that
may vary with the sample size. For each fixed ~, the maximum likelihood
estimate is obtained. We will let the data pick which estimation space
G4 to use. In particular, v can be thought as the knot positions when
the estimation space consists of spline functions, and our interest lies in
choosing the knot positions using the data. This chapter contains the theory
developed in Stone and Huang (2001a).

Section 12.1 of this chapter contains the basic setup and the main results
on rates of convergence. In Section 12.2, we discuss the various properties
of spaces of free knot splines and tensor products of such spaces that are
needed to verify the conditions in our general results on rates of conver-
gence. In Section 12.3 we verify the conditions in the main results in Sec-
tion 12.1 in the contexts of density estimation and generalized regression,
including ordinary regression as a special case. There, for simplicity, we
restrict attention to the saturated model, so that n* = 7. We also restrict
attention to spaces G~ that are tensor products of polynomial spline spaces.
Section 12.4 contains the proofs of results in Section 12.2.
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12.1 Main Results

12.1.1 Statement of Main Results

Consider a concave extended linear model specified by the log-likelihood
I(h, W) and model space H. Let Wy,...,W,, be a random sample of
size n from the distribution of W. When it is well defined, the (nor-
malized) log-likelihood corresponding to this random sample is given by
(h) =n"1Y,l(h, W;). Let G, € T, be a collection of finite-dimensional
linear subspaces of H. We assume that the functions in each such space G
are bounded and call G, an estimation space. For each fixed v € I, the
maximum likelihood estimate is given by 7, = maxycg, £(g). We will let
the data pick which estimation space to use. To be specific, we choose ¥ € T’
such that £(75) = maxyer £(7)y). (Such a ¥ exists under mild conditions;
see Lemma 12.1.1 below.) We will study the benefit of allowing the flexi-
bility to pick estimation spaces among a big collection. Specifically we will
study the rate of convergence of 75 — n*, where, as in the previous chapter,
n* is the best approximation in H of the function of interest 7.

In the above setup, we assume that G-, v € I', have the same dimension
and that the index set I' is a compact subset of R” for some positive integer
J. The dimension of G, I' and J are allowed to vary with the sample size
n. For v € I, set

N, = dim(G,),
po— up lole Nl
oGy N9l gecy 9l
llgll#0

and
Py = nf g =" |-

Fix n > 1 and suppose that A, = sup,cr Any < o0. Then the norms
|| -] and || - ||oo are uniformly equivalent on G, v € T, in the sense that
19l < llglloc < Anllgll for v € T and g € G.

It follows from Proposition 11.1.1 that, under regularity conditions,
. N,
I = 1712 = Op (02 + =2)

for each fixed v € I'. Let v* be such that ppo+ = infyecr ppy. (Such a v*
exists under mild conditions; see Lemma 12.1.1 below.) Then

N, N,
~ *))2 _ 2 ny\ _ : 2 n
173+ —n*[|” = Op (pm* + 7) =Op (éléfrpm + 7)

Thus,

N,
-f/\_*2< /\*_*220 (f2 _n)
;relrllnw 0= < gy — 0"l Pk py + =
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It is natural to expect that, with « estimated by 7, the squared Lo, norm
of the difference between the estimator and the target, i.e., |75 —n*[|?, will
be not much larger than the ideal quantity infyer ||y — 7%, Hence we
hope that |75 — #*||* will be not much larger than infycr p7.., + Ny/n in
probability. This is confirmed by the following result.

Let V,, = Op(b,) mean that lim,, P(|V,| > cb,) = 0 for some ¢ > 0,
where b, > 0 for n > 1. Let V;,5 = Op(bn~) uniformly over v € T' mean
that lim. oo limsup,, P(|Vsy| > cbpy for some v € T') = 0, where by, > 0
forn>1and v €l

As in the previous chapter, it is enlightening to decompose the error into
a stochastic part and a systematic part for each fixed v € I':

My = 0" = (Tly —7y) + (ly —1°),

where 7), — 7y is referred to as the estimation error and 7, — n as the
approximation error.

Proposition 12.1.1. Suppose Conditions 12.1.1-12.1.2 and 12.1.4-12.1.6
hold and that limy, sup.cp Apvypny = 0 and lim, SUP~er A,QWNn/n = 0.
Then, for n sufficiently large, 1 exists uniquely for v € I' and

7y —n*]1* = O(p2)

uniformly over v € T'. Moreover, except on an event whose probability tends
to zero as n — 00, 1)y exists uniquely for v € I' and

~ _ N,
sup [ — 7|2 = Op (=2).
~er n
Consequently,
-~ * |2 2 Nn
17y —n"[I” = Op (pm + 7)

uniformly over v € I'. In addition,

It~ °l” = Op (in g2, + ogm) ).

In the previous theoretical results for fixed knot splines, the squared
norms of the approximation error and the estimation error were shown
to be bounded above by multiples of p?w and N, /n, respectively. Here
these results are shown to hold uniformly over the free knot sequences
~ € I'. Finally, combining the results for the approximation error and the
estimation error and incorporating a corresponding result for the maximum
likelihood estimation of the knot positions, we get an overall result. In
particular, by allowing the knot positions to be selected by the data, we can
achieve the best approximation rate among the collection of knot positions
with a little inflation (an extra logn term) of the variability.
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The proof of Proposition 12.1.1 is broken up into three theorems (The-
orems 12.1.1-12.1.3) that will be given in the following subsections where
technical conditions are stated explicitly. The technical conditions will be
verified in the contexts of density estimation and generalized regression in
Section 12.3 when G~ are spaces of tensor product splines. The logn term
in the final result of this proposition plays an essential role in the proof of
that result, but we do not know whether it is essential to the result itself.

12.1.2  Uniformity in Rates of Convergence

If « is predetermined (independent of data) but allowed to increase with
sample size, the rate of convergence of 4 in the context of concave extended
linear models is thoroughly treated in Chapter 11. We now show that the
rates of convergence results in Theorems 11.2.1 and 11.2.2 hold uniformly
in v € T if the sufficient conditions in these theorems hold in a uniform
sense. Theorems 12.1.1 and 12.1.2 below are in parallel to Theorems 11.2.1
and 11.2.2 and can be proven by similar arguments.

Condition 12.1.1. The best approzimation n* in H to n exists and there
is a positive constant Ko such that ||n*]|ec < Ko.

Condition 12.1.2. For each pair hi, he of bounded functions in H, A(hy +
alhy — h1)) is twice continuously differentiable with respect to a. (i) For
any positive constant K, there is a fized positive number M such that if
hi,he € H, ||h]leo < K, and hsy is bounded, then

d
A+ aha)| | < Milha)

(i1) For any positive constant K, there are fized positive numbers My and
Mo < My such that

d2
—M;|lhy — ha]? < WA(}M + a(hy — hy)) < —Ms||hgy — hyl?

for hi,hy € H with ||h1]|co < K and ||h2lloc < K and 0 < a < 1.

Condition 12.1.1 is the same as Condition 11.2.1, which is restated here
for convenience. Condition 12.1.2 strengthens Condition 11.2.2 by putting
an adxditional requirement on the first derivative of A(-). The following
result extends Theorem 11.2.1.

Theorem 12.1.1 (Approximation error). Suppose Conditions 12.1.1
and 12.1.2 hold and that lim,, SUP~ep Apvypny = 0. Let Ky be a positive
constant such that K1 > Ky with Kq as in Condition 12.1.1. Then, for n
sufficiently large, 7 exists uniquely and ||7jy||cc < K1 for v € T'. Moreover,
17y — n*[I* = O(p2~) uniformly over v € T.
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The following two conditions are strengthened versions of Conditions 11.2.3
and 11.2.4.

Condition 12.1.3. There is a positive constant K such that, for n suffi-
ciently large, iy exzists uniquely and ||7y|oo < Ko for v € T.

Condition 12.1.4. For vy €T and g1, 92 € G+, £(g1 + (g2 — g1)) is twice
continuously differentiable with respect to o € [0, 1]. (i) The following holds:

d _
2y + ag)|a= N,,\ /2
sup sup 4 (1, + 0g)laal =0P<( ) )
~€T geGoy llgll n

(ii) For any positive constant K, there is a fixed positive number M such

that
2

d
Wﬁ(gl + (g2 — g1)) < —M|lg2 — 0|, 0<a<l,

for v €T and g1, g2 € Gy with ||g1]lcc < K and ||gz|cc < K, except on an

event whose probability tends to zero as n — oo.
The following result extends Theorem 11.2.2.

Theorem 12.1.2 (Estimation error). Suppose Conditions 12.1.3 and 12.1.4
hold and that lim, sup.cp Awan/n = 0. Let K be a positive constant such
that K1 > Ko with Ko as in Condition 11.2.3. Then 1)y exists uniquely and
1Tyl < K1 for v €T, except on an event whose probability tends to zero

as n — oo. Moreover, sup.,cr ||y — 7y [|> = Op(Ny/n).

12.1.8 Adaptive Parameter Selection

Condition 12.1.5. For K < oo, the set {(7v,9) : v €T',g € G4, and ||g]|cc <
K} is compact and () is continuous on this set.

When G-, are spaces of tensor product splines in Section 12.2, the first
part of Condition 12.1.5 follows from Lemmas 2.1 and 4.1 of Chapter 5
of DeVore and Lorentz (1993). Under the further restriction to density
estimation and generalized regression in Section 12.3, the second part of
Condition 12.1.5 follows from the corresponding explicit forms of the log-
likelihood function.

Lemma 12.1.1. Suppose Condition 12.1.5 holds. Then there is a v* € T’
such that pp~+« = infycr pp~. Moreover, on the event that 7, exists uniquely
and ||Ny|lee < K1 for v € T, where K, is a positive constant, there is a

A € I such that {(7)5) = sup,er £(7)y)-

Proof. Given v € T, choose gy € G4 such that ||gy — n*|lec = p4. By
Condition 12.1.5, we can choose v, € T' such that v, — v* € T, py, —
infycr py, and ||gy, — g*[lcc — 0 as v — oo, where g* € G-. Then ||g* —
N*||sc = infycr p, so ¥* has its desired property.
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It follows from Condition 12.1.5 that, on the indicated event, we can
choose v,, € I such that v, — 5 € T, £(7}y,) — sup,er £(74), and 7, — g
as v — 00, where g € G5. Since {(-) is continuous, £(g9) = sup,er £(7),
g = 75 and hence ¥ has its desired property.

Let Viy = Op(bn’y> uniformly over v € I'" mean that lim,, P(|V,,| >
cbp~ for some v € T') = 0 for some ¢ > 0, where by, > 0 for n > 1 and
~vel.

Condition 12.1.6.
: N N _ N . N,
(1) [€(7y=) = £(n") = [A(7y=) — A(n")]| = Op (genfP Py + —)

n

and
() 167 ~07°) — [AT) — AGr)]
= 0r (o )y 1 (52) " + togm) ™2 )

uniformly over v € T.

In Section 12.3, we will verify that Condition 12.1.6 holds under rea-
sonable conditions in the contexts of density estimation and generalized
regression. There, we will actually verify a slight strengthening of the sec-
ond property of Condition 12.1.6:

£012) — €0 )~ A1) — Ay
= 0p (108 ) I, 1 (52) "+ 22])

uniformly over v € T'.
We have the decomposition

gy —n" = (5 —75) + (hg — ")
Note that Theorem 12.1.2 implies that |75 — 75]|* = Op(N,/n), which
together with the following theorem yields Proposition 12.1.1.

Theorem 12.1.3 (Parameter selection). Suppose Conditions 12.1.1-
12.1.6 hold and that lim, supcp Any Py = 0 and lim, sup, ¢ A%A/Nn/n =
0. Then ||li5 — n*||> = Op(infyer p2.,) + Op((log n) Ny /n).

Proof. We first show that
~ _ Ny, . .
Uny) — UTy) = Op(—) uniformly in vy € T. (12.1.1)
n
Write
fla) = Ly + iy — 1y)), vel.
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By Condition 12.1.4, f”(a) < 0 (except on an event whose probability
tends to zero as n — o0). Thus,

1
0 < 6(7y) — £(7y) = (1) — £(0) = £/(0) + / (1-a)f"(a) da < £'(0).

On the other hand, by Condition 12.1.4(i) and Theorem 12.1.2,

£100) = iy + ity ~ )|,

= 0n (X)) ity ol = 00 (22)

uniformly in «v € I'. The desired result follows.
By Theorem 12.1.1, 75 is bounded. Thus, it follows from Lemma 11.2.1
that, for some positive constant M,
M |7l = "> < A(y) = Alilg).
Since v* € I satisfies pp = infyer pnys |4+ — 0 ||* = O(infyer pfw) by
Theorem 12.1.1. We have the decomposition
A(n*) = A(iig) = A(n™) = Aiy=) + Al7y-) — A(75)
=5L+ 1 — I3+ 14,
where
Iy = A(n") = Aily-),
I = Ay ) = A") = [€(ny=) — €(n")],
Iz = A(ij5) — A(n™) = [(75) — £(n")],
L = 6(y+) — £(75)-
Note that I = O(inf,er pfw) by Theorem 12.1.1 and Lemma 11.2.1. The
terms I> and I3 can be bounded using Condition 12.1.6. Moreover, by using

(12.1.1) and £(7)y+) < €(7)5) [which follows from the definition of 4], we get
that

A(n*
A(n*

1= i) — () + 0p (22) < 0p (T,
Hence,

_ X = _ o Nn\1/2 Ny,
Iy =12 < O ((dog i — 11 (52) " + tog ) 32

n n
N (12.1.2)
Op( inf p2, +=2).

or(ptels s,
Observe that, for positive numbers B and C, 22 < Bz + C implies that
222 < (B? + 2%) + 2C and hence that 22 < B? + 2C. Therefore (12.1.2)
yields the desired result. [l
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12.2  Free Knot Splines and Their Tensor Products

In this section we will develop some properties of spaces of free knot splines
and tensor products of such spaces, which will be used in Section 12.3 to
verify Conditions 12.1.4 and 12.1.6.

For 1 <1 < L, let U; = [a;,b;] be a compact subinterval of R having
positive length b; —a; and let U denote the Cartesian product of Uy, ..., UL.
For each [, let m; be an integer with m; > 2 and J; be a positive integer,
and let v;;, 1 < j < Jj, be such that a < v < -+ < 7y, < b, and
Vi,j—1 > V,j—m for 2 < 5 < Jp+my, where y;; =a for 1 —m; < j <0 and
i = bfor J1+1 < j < Ji+my. Let G4, be the space of polynomial splines
of order my; (degree m; — 1) on U; with the interior knot sequence v, =
(vi1s -« -,Y0,), whose dimension J; + m; is denoted by N, to indicate its
possible dependence on the sample size n. For v = (v,...,7.), let Gy be
the tensor product of G,, 1 <1 < L, which has dimension NV, = Hl Ny

For 1 <1< L,let M; > 1 be a fixed positive number, and let I'; denote
the collection of free knot sequences v; = (v;y,...,7;s) on U; such that

Vja—1 = VM ja—my < I, 2 < j1,ja < Jy 4+ my, (12.2.1)
Vji—1 = Ngjr—my

where Y 1—m, = -+ = Yo = a and Y, 5,41 = -+ = Y, J+m, = 0. Let
I' denote the Cartesian product of I';, 1 < [ < L, which can be viewed
as a subset of RY with J = 3", .J,. We consider the use of the collection
Gy,v € I, in fitting an extended linear model. Such a collection of free
knot splines has some properties we will list below. (The proofs will be
given in Section 12.4.) In the technical arguments, we need to approximate
I" by a finite subset of a larger set f, which is defined in the same way as
[, but with M; in (12.2.1) replaced by the larger constant 3 M.

Let 1) denote the uniform distribution on U and let vol(i{) denote the
volume of U. Let H denote the space of (real-valued) functions on U that
are square-integrable with respect to ¢, and let (-,-), and || - ||, denote the
inner product and norm on H given by

(hl,hg>w:/uhl(u)hg(u)w(du): %(u)/uhl(u)hg(u) du

and [BIJ3 = (b, b

Let U denote a U-valued random variable that is a transform (function)
of W (for example, W = (X,Y) and U = X). Partly for simplicity,
we consider the theoretical inner product (-,-) and norm || - || on H given
by (h1,h2) = E[h1(U)ha(U)] and ||h||*> = (h,h) = E[R?*(U)]. Define the
empirical inner product and empirical norm by (h1, ho), = E,(h1he) =
n= 3 i (Ui)he(U;) and [|R]7 = (h,h)p = n=" 30, h3(U;).
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Condition 12.2.1. The random wvariable U has a density function fu
such that My /vol(U) < fu < Ma/vol(U) onU, where My and My are fized

positive numbers.

It follows from Condition 12.2.1 that M; <1 < M5 and
MR < |h]? < Mal|2,  heEH. (122.2)

Let | - | denote the [ norm on any Euclidean space. Let ¢ denote the
metric on R/ given by ((v,%) = max; 9M;Nui|v, — oo/ (b1 — a;). The
following lemmas will be proved in Section 12.4.

Lemma 12.2.2. Let 0 < € <1/2 and let K be a positive integer. There is
a positive constant M and there are subsets Zx, 0 < k < K, of " such that

#E) < (MeHY, 1<k<K;
every point in T is within € of some point in Z (in ¢ distance); and, for
1<k <K, every point in =y, is within k=1 of some point in Zp_q.

Let 0 < € < 1/2 and let Z, 0 < k < K be as in Lemma 12.2.2. Given
v €T, set B, = {9 € Gy : |g|]| < 1}. Let k be a nonnegative integer. If
k =0, set B, = {0}; otherwise, let B, be a maximal subset of By such
that any two functions in By are at least €* apart in the norm || ||. Then
mingeg., [|g — 9| < €* for g € B.. Moreover,

ek n
#(B.y) < (%)N < (3¢~ RN,

Set By, = Uyez,Byk. Then, by Lemma 12.2.2,
#(By) < (M'e )N 1<Ek<K, (12.2.3)

for some constant M’ > 1. Also, set B = {g € UyerG, : |lg]] < 1} =

UyerBy and B = {g € U__=G. : ||lg|] < 1} = U, er By

~er
Lemma 12.2.3. Suppose, for a given positive integer n, that 7, exists
uniquely and is bounded for v € T, and that |7, — n*|| is a continuous

function of v € f; There is a positive constant M such that, for 0 <e <1,
there is a subset I” of T such that

#(I') < exp (M[log(2/€)]N,)

and every point vy in I' is within € (in ¢ distance) of some point ¥ in I
such that ||7iz — 07| < |7y — "

The condition that [|7, —n*| is a continuous function of v € T, which is
used in the above lemma, follows from the first conclusion of Lemma 12.2.6.



502 12. Extended Linear Modeling with Free Knot Splines

Lemma 12.2.4. Suppose Condition 12.2.1 holds. There is a positive con-
stant M such that

lgllee < MN?llgl, v €T and g € Gy, (12.2.4)
Lemma 12.2.5. There are positive numbers My and Ms such that, for
v,y € T and g € G4, there is a function g € G5 such that ||g|| < ||g]
15— gll < Millv, gl and If = glloo < MaC(y, 7)o Suppose Con’
dition 12.2.1 holds and that lim,, N2 /n = 0. Then there is a positive num-
ber M5 and an event Q, such that lim, P(Q,) = 1 and the functions g
above can be chosen to satisfy the additional property that ||g — g|ln <

MsC(v,A)|lgll on Qn for 4,5 €T and g € G.,.

Lemma 12.2.6. Suppose Condition 12.1.2 holds. Let K be a positive num-
ber. There are positive numbers My and My such that if v,~ € f, C(v,9) <
L iyl < K, and ||75]| < K, then ||7y — 51| < Ma[C(v, 7)Y/ and ||7, —
T5lloe < MQN%/Q[C(%'?)]V?. Suppose in addition Condition 12.2.1 holds
and that lim,, N2/n = 0. Then there is an event Q, such that lim,, P(Q,) =

1 and ”77'7 - 77’7”71 < Ml[C(')’a'N)’)]l/Q for v,y €T on Q,.

12.3 Verification of Technical Conditions

In this section we verify Conditions 12.1.2, 12.1.4 and 12.1.6 using primitive
assumptions in some specific statistical contexts. For simplicity, we focus on
two contexts: density estimation in Section 12.3.2 and generalized regres-
sion, which includes ordinary regression as a special case, in Section 12.3.3.
Again for simplicity, we also restrict attention to the saturated model (that
is, there is no structural assumption and H is the collection of all square
integrable functions on ), so that n* = 7. Thus Condition 12.1.1 amounts
to the assumption that 7 is bounded. The case of unsaturated models can
be treated similarly at the expense of more complicated notation.
Throughout this section, we take G, v € I, to be tensor product free
knot spline spaces as defined in Section 12.2, where [ is the collection
of knot configurations satisfying (12.2.1) with M replaced by the larger
constant M. It follows from (12.2.4) that A,y < MNY? for some constant
M, where N, is the common dimension of G.. Thus the requirements
lim,, Sup. e Ap~pny = 0 and lim,, SUP~er Awan/n = 0, which are used in

Proposition 12.1.1, reduce to lim,, sup. < pn.,Nﬁ/2 =0 and lim, N2/n =0
respectively.

Condition 12.3.1. N, 7Y% < 1og7 21 and Ny sup_ o pny
some ¢ > 1/2.

< 1 for

~
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12.3.1 Preliminary Lemmas
Lemma 12.3.7. Suppose Condition 12.2.1 holds and that lim,, N2 /n = 0.

Then
sup sup sup [(f, 9)n — ([, 9)]

= Op(l).
~,5el fE€Gy g€G5 If gl

Consequently, except on an event whose probability tends to zero as n — oo,
sllall® < llgll; <2lgll>, v €T and g € G,.

This lemma extends Lemma 11.4.7, which applies to fixed knot splines
and other such linear estimation spaces, except that Condition 12.2.1 is not
required in Lemma 11.4.7.

Proof of Lemma 12.3.7. It suffices to verify the lemma with r replaced by
I.Let 0 < 0 < 1/4,let 0 < t < oo, let K = K,, be a positive integer
to be specified later, and let B and let Z; and By, 0 < k < K, be as
in Lemma 12.2.2 and the following paragraph with ¢ = §. We will apply

Lemma 11.4.6 with s = (f,g), Vs = (f,9)n — (f,9) = (En — E)(f9),
S={(f,9): f,9€B}, Sk ={(f,9): f,g €B}for 0 <k < K, and Q¢ = (.
It follows from (12.2.3) that

#(Sp) < (M'g2)2Nn 1 <k<K,

and hence that (11.4.5) holds with C3 = 1 and any Cy > 4log(M'6~1)N,,.
Suppose Condition 12.2.1 holds, let 0 < € = § < 1/4, let k be a positive
integer, let v, 4 € I’ with ((v,5) < 6!, and let g € B,,. Then, by (12.2.4)
and Lemma 12.2.5, there is a function g’ € B such that ||g—g'|| < M;6%!
and [|g — ¢'||co < MM;,N,/?58=1_ Also, there is a function g € By 1 such
that [|g’ — g]| < 6*~! and hence ||g’ — §lloo < MN./26+=1. Observe that
lgllee < 1N, (Gl < eaNa®, flg = 3l < 287", and [lg = Jloo <
C3N71/25k*1, where ¢y = M, cg = M7 + 1, and ¢3 = M (M3 + 1).
Let k be a positive integer, and let f, f, g, g be functions on U such that
= 1/2 = _ = 1/2 ch
1flloe < exNa’, 1f = FI < 20" |1 = Fllow < esNa871, Jigllos <

aNM2 g =Gl < 26", and ||g — §llco < c3Na/26%—L. Then

1f9 = falloo < IIf = Fllsollglloo + 11 Flloollg = Flloc < 2e13N,6%71,
s0 |(En — E)(fg — f§)| < 4c1es N, 651, Moreover,
var(fg — fg) < 2var((f — f)g) + 2var(f(g — 9))

< 2llgllZIf = 17 + 201713 ]lg — 3l
< 4¢3 N, 021
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Since 0 < 2§ < 1, it now follows from Bernstein’s inequality (11.4.2) that,
for t > 0,

P(/(En — E)(fg - f3)] > t2~ 1)

<96 3 nt?(26)~ (k=1
= 2exp 8cic1c3 + tes| N,

(12.3.1)

Let K be such that 4cic3N, 0% < t. Given f,g € B, let ]775 € Bg
be such that [|f — flloo < 3N/ 265 and lg = glleo < csN»/26% . Then
Ifg — fille < 2c1e3N,6%, so |(En — E)(fg — f9)| < 4c1c3N,05 < t.
Consequently, (11.4.4) holds with C; = ¢ and Cy = 0.

Let 1 < k < K. For f,g € By, let f,§ € B_; be such that || f — f] <

20" L | f = flloo < esNa’?8*1, Jlg = G| < 26571, and |lg = §lloe <

esNy/?68=1. Since N, = o(n'/?), we now conclude from (12.3.1) that
(11.4.6) holds with C5 =t, Cs = 2, and

nt?

C =
4 1661[01C% + th]Nn

> 4log(M'6~ )N,

for n sufficiently large. It now follows from Lemma 11.4.6 that, for n suffi-
ciently large,

P( sup sup sup |(f.g)n — (f,9)] >3t)
v, Y€l fEBy gEBy

32¢1[c1c3 + tes| N,
< )
- nt?

which tends to zero as n — oo. Since ¢ can be made arbitrarily small, the
first conclusion of the lemma is valid, from which the second conclusion
follows easily. O

Lemma 12.3.8. Suppose Condition 12.2.1 holds and that lim,, N2 /n = 0,
and let h,, be uniformly bounded functions on U. Then

sup sup [(hns g)n — (. 9)] _ OP((&)U?)'

~ET geGay 9]l n

Proof. The proof of this result is a slight simplification of the proof of
Lemma 12.3.7. O

The next, obviously valid, lemma is useful in verifying the second prop-
erty of Condition 12.1.6 in a variety of contexts.

Lemma 12.3.9. Let Cy,...,Cy be fived positive numbers with Cs > 1. Let
Ay, v € I, be positive numbers that depend on n, and let Vo, v € T, be
random variables that depend on n. Suppose that, for n sufficiently large,
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P(|Vy| > C1A,) < Cyexp (—2C3N, logn) for v € L. Let T” be a subset of
T such that

#(I") < exp (C3Nylogn) for n sufficiently large. (12.3.2)

Suppose that, except on an event whose probability tends to zero as n — oo,
for every point v € T', there is a point ¥ € I such that Ay < A, and
|Vy — V5| < C4Ay. Then |Vy| = Op(Ay) uniformly over v € T.

12.3.2  Density Estimation

Recall the density estimation setup in Sections 11.1.1 and 11.4.4. In this
subsection, we are assuming that n* = 1 and that Assumption 11.4.6 holds
or, equivalently, that n is bounded. Thus Condition 12.1.1 holds. We also
take U = W =Y, so that Condition 12.2.1 holds. In addition, we assume
that Condition 12.3.1 holds. We will verify Conditions 12.1.2, 12.1.4 and
12.1.6.

Conditions 12.1.2 and 12.1.4 are strengthened versions of Conditions 11.2.2
and 11.2.4 and their validity follows from arguments similar to those used in
Section 11.4.4 to verify Conditions 11.2.2 and 11.2.4, except that Lemma 12.3.8
is used instead of Lemma 11.4.8.

Verification of Condition 12.1.6.
Observe that

((7y) =€) = [A(y) = A)] = (En — E)(7y — 1) (12.3.3)

The first property of Condition 12.1.6 follows from (12.3.3) with v = ~*,
Theorem 12.1.1, and the consequence of Chebyshev’s inequality that

(Bn — E)(ly- —1) = oP(Mﬂ)
- Op(mf"’%) = OP(igfp;"W + %)

n
We claim that
|(En — )y — 1)l

=0Op ((log1/2 n) {Hﬁv —q (%)1/2 N %D (12.3.4)

uniformly over «v € I". The second property of Condition 12.1.6 follows from
(12.3.3) and (12.3.4).

Let us now verify (12.3.4). Condition 12.3.1 implies that Ni/z SUp., Py S
log~ /% n. Now 7y — nll < supy pny (uniformly over v € f) by Theo-
< N2 SUDy Py S log~ /2 n by (12.2.4). [Choose

~

rem 12.1.1 and ||7y =7 0o
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g5 € G such that [|g5 — nllcc = pny]- Let ¢ be a fixed positive number. Tt
follows from Bernstein’s inequality (11.4.3) that, for ¢’ a sufficiently large
positive number,

P(I(En — B)(ily — )| = ¢ (log"* n){ ||ty = 1| (N /m)"/?

+ Nn/n}) < 2exp (—2cN,, logn) (12.3.5)

for v € T.

Let ¢ be sufficiently large. Then, according to Lemma 12.2.3, there is a
subset T of T' such that (12.3.2) holds with C5 = ¢ and every point v € T
is within n~2 of some point 4 € I’ such that ln5 —nll < |11y — n||- Let v
and 4 be as just described. Then, by Theorem 12.1.1 and Lemma 12.2.6,

NY? N,
< —
n

[(En = E)(1y = 715)| < 2[1y = 5]l S : (12.3.6)
The desired result (12.3.4) follows from (12.3.5), (12.3.6) and Lemma 12.3.9.
This completes the verification of Condition 12.1.6.

12.3.3 Generalized Regression

Recall the generalized regression setup from Sections 11.1 and 11.4.3. Here
we are assuming that n* = 1 and that Assumptions 11.4.1-11.4.5 hold.
Now 7 is bounded by Assumption 11.4.3, so Condition 12.1.1 holds. We
take W = (X,Y) and U = X, so Condition 12.2.1 follows from Assump-
tion 11.4.5. In addition, we assume the following strengthened version of
Assumption 11.4.4 holds.

Assumption 12.3.1. There are positive constants M; and M such that
E[elY =n(X/My X — x] < M, for x € X.

We also assume that Condition 12.3.1 holds. We will verify Conditions 12.1.2,
12.1.4 and 12.1.6.

Let (X1,Y7),...,(X,,Y,,) be a random sample of size n from the joint
distribution of X and Y. Choose M| € (M, o). It follows from Assump-
tion 12.3.1 that P(]Y — pu(X)| > M{logn) < Myn~Mi/Mi and hence that

lim P( max |Y; — u(X;)| > M{logn) = 0. (12.3.7)

1<i<n

Moreover, by the power series expansion of the exponential function, for
m>2and1<i<n,

m)! —
E[lY; — u(X3)|™ X < 7(2M§MZ)M1 2, (12.3.8)
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Thus, by Bernstein’s inequality (11.4.2), if h is a bounded function on X,
then

P(hY = pwal = 1] X5, Xn)

nt? ) (12.3.9)

< 2ex (—
P 20 @M M2 + t]h]w

for t > 0.

Recall that the log-likelihood based on the random sample and its ex-
pected value are given by ¢(h) = E,[B(h)Y —C(h)] and A(h) = E[B(h)Y —
C(h)].

Verification of Condition 12.1.2.

Observe that

LA+ aha)] | = B(ha(X){B/((X)u(X) — ' (ma(X))},
where pu(xz) = E(Y|X = x). By Assumptions 11.4.1-11.4.3, u(+) is bounded.
Since B’(-) and C’(-) are continuous, they are bounded on finite intervals.
Condition 12.1.2(i) then follows from the Cauchy—Schwarz inequality. Con-
dition 12.1.2(ii) is the same as Condition 11.2.2 and has been verified in
Section 11.4.3.

Verification of Condition 12.1.4.
Lemma 12.3.10. Suppose lim,, N2/n = 0. Then Condition 12.1.4(ii) holds.

Proof. The argument is essentially the same as that of verifying Condi-
tion 11.2.4(ii) in Section 11.4.3, except that Lemma 12.3.7 is used instead
of Lemma 11.4.7. The requirement that lim,, N2/n = 0 ensures the appli-
cability of Lemma 12.3.7. O

Lemma 12.3.11. Suppose lim, N?/n = 0 and sup, pny = O(N,€) for
some ¢ > 1/2. Then Condition 12.1.4(1) holds.

Proof. In this proof, set p,, = SUD s Pny- By Theorem 12.1.1 applied to r
there is a positive constant Ky such that, for n sufficiently large, 7 exists

uniquely and [|7jy||c0 < K1 for v € [.LetyecT and g € G~. Then

d _ _
2oty +ag)| = EulgD()] + EnlgB (M) (Y — p)]
where D) = B () — C' () and ElgD(7)] = 0.

Let 0 < 6 < 1/4. Since Ni/Qﬁn < N{(671/2) for some ¢ > 1/2 by

Condition 12.3.1, there is an € € (0,?) and there is a fixed positive number
c1 such that, for n sufficiently large,

N2 < oy (NM/2)~(081/9)/ (0 5/¢'/?)
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and hence
min(c; 'NY2p,, NY/2ek=1/2) < gh—1 (12.3.10)

for k > 1. (If Ni/ze(k_l)/2 > §%=1 then N,iﬂﬁn <L)

Let Q,,, lim, P(£2,,) = 1, be an event that depends only on X1, ..., X,
and is such that the statements in Lemma 12.2.5 and Lemma 12.2.6 hold.

Let k be a positive integer, and let 4,5 € I' be such that {(v,5) < 1.
Then, by Lemma 12.2.6, |7y — 75| < c2e®*"1/2 |7y — 75 |ln < coelh=1)/2
on Q,, and ||77y — 75 s < 3N/ 2e=1/2 (for some fixed positive constants
c2,c¢3). Let By, be as in Section 12.2 and let g € B,. Then, by Lemmas
12.2.4 and 12.2.5 (see the proof of Lemma 12.3.7), there is a g € B5 1 such
that |g—3]| < cae* ™, lg=3lln < cse" ™" on Qy, and g—Flloo < o Na'*eF
Now

9B' (1) —gB'(75) = (9 — 9)B'(7y) + g[B'(7y) — B'(75)].  (12.3.11)

Observe that, [|(g — §)B'(7y)|ln < c7e"" on Q, and [[(g — §) B’ (7iy)]|oc <
e Na/?e"=1_ Observe also that, lg[B'(71y) — B'(75)]]|n < cg N/ 2e(k=1)/2 o
Qy, and ||g[B'(7) — B'(75)]]|cc < cs Npe*=1/2 Consequently, ||gB’(7y) —
9B’ (17)[|n < coNy/2e=1)/2 6 Q,, and 9B (714) =GB’ (715) || oo < cgNpeh=1/2,
By the same argument, ¢g can be chosen so that, in addition, ||gD(7) —

gD < coN/2e =072 and ||gD(77y) = GD(775)[|oc < coNpeF=1/2,

Alternatively, by Theorem 12.1.1 and Lemma 12.3.7,

sup 77y = nl =0(1) and sup 7y = lln =0(1)[1 +op(1)].
yel  Pny ~er Pny

(Choose g* € G+ such that [|g* — n[lcc = pny.) Consequently, for n suffi-
ciently large, |7y — 1|l < ci0pn and ||y — n|ln < cr0pn on Q, for v € T
(provided that €, is suitably chosen).

Given v, € I', we have that ||, —75| < 2c10pn and ||y —75]/n < 2¢10Pn
on ,. Choose 7, € Gy and 7% € Gz such that |77, — nljoc < pn and
75 = nllc < pn- It follows from the triangle inequality and (12.2.4) that

17, =79 lloe < M(c10+1)Np/* . Thus [|7y — 1]l < [M (c10+1)Na/?+1]5.

Similarly, [|75 — nllec < [M(c10 + 1)Na'® + 1)5,. Hence [y — i3]0 <
2[M(c10 + 1)Na/? + 1]y

Let ((v,7) < "1 and let g € B, and g € B 1 be as above. Then [re-
call (12.2.4), (12.3.10), and (12.3.11)], |gB’(7}y) — B’ (il5)|In < c116*~" on

Q. [lgB' () =GB (1) e < et1No'*6%1, gD (1) = GD(5) | < 116+,
and [|gD(71y) — §D(715)|lo0 < c11Na/ 2651,

Let K = K, be a positive integer satisfying the two inequalities specified
in the next paragraph, and let =, B, for v € I', and B, 0 < k < K,
be as in Lemma 12.2.2 and the following paragraph with the current value
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of e. We will apply Lemma 11.4.6 with s = (v,9), Vs = E,{9[D(7y) +
B (i)Y = p)l}, S ={(v,9) : v € Band g € G}, and 8, = {(7,9) : Y < €
Er and g € Bk} Now #(Sk) < (M'e 28)Nn for 1 <k < K by (12.2.3), s
(11.4.5) holds with C5 = 1 and any Cy > 2log(M’e 1)N,,.

Let Q2,0 denote the event that maxi<;<pn |Yi—p(X;)| < M/ logn with M]
as in (12.3.7). Then lim, P(2,0) = 1. Choose v € I" and g € B,. Let ¥ €
Ek be such that ((v,7) < €X. Then there is a g € B5 such that ||gD(7)—
GD() o0 < enNa'?6% and [|gB' () =GB (7)o < enNa/?6%. Thus
19D (7) —GD(715) || oo < (Ny/n)*/? provided that K satisfies the inequality
end® < 072 and |Bu{[gB' (hy) — §B'(17))(Y — W}l < (Nu/n)'/? on
Qo provided that K satisfies the inequality Mjc;16% < 1/(n'/?logn). Let
K satisfy both inequalities. Then (11.4.4) holds with C; = 2(N,/n)'/?,
CQ = 0, and Q) = QnO-

Let 1 < k < K. Given v € Zj and g € B, choose ¥ € Z;_; and
g € By g1 such that ((v,7) < €7, [|gB'(7y) — 9B’ (75)]ln < 116"~ on
Q. 9B (11y) =GB (7)o < ex1Na/*8 ", D (1) ~GD ()| < end* ",
and ||gD(iy) — GD(75)]lec < c11Na/?65=1. Write s = (v,9) and Vi =
Vis+Vas, where Vi = E,[gD(7y)] and Vas = Ey,[gB’(74) (Y —p)]. Similarly,
write § = (7,9) and Vz = Viz + Vg, where Vig = E,[gD(75)] and Voz =
E,[gB'(75)(Y — u)]. Observe that Vi, —Vizg = (E, — E) [gD(n,,) gD(75)].
Since 0 < 20 < 1, it follows from Bernstein’s inequality (11.4.2) that, for
C >0,

P(|Vis — Viz| > €27 D(N,, /n)'/?)

C?(26)- k=D N, )

<9 (—
< 2exp 2en(c11 + Cn-1/2N,,)

Similarly, Vas — Vog = En{[gB’'(y) — gB'(715)](Y — p)}, so it follows from
(12.3.9) that

P(Vas = Vasl = 026D (N /) 2] 2)

Cc?(26)- k=D N, )

<9 (—
< 2exp 2en(c11 + Cn-12N,,)

provided that c;; is sufficiently large. Hence

P(|V, — V5| > 2027 =D(N,, /)% Q,,)

2 (k—1)
§4exp(_ C?(26)- k=D N, ))7

2¢11(c11 + Cn~ /2N,
0 (11.4.6) holds with

C%N,

Cy =
4 4011(011 +C7’L_1/2Nn)

> 2log(M'e )N,
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for C sufficiently large, C5 = 2C(N,,/n)'/?, Cs = 4, and Q = Q,,. Conse-
quently, by Lemma 11.4.6,

P(sup sup ‘%K(ﬁa, + ag) a:O‘ >2(1+ QC’)(Nn/n)l/Q)

~€l geB,,
< 16en(en + Cn~2N,)

< S P(@n D),

which can be made arbitrarily close to zero by making n and C' sufficiently
large. [l

Verification of Condition 12.1.6.

It follows from (12.3.8) and Bernstein’s inequality (11.4.3) (with H = M3 A)
that if h is a bounded function on X and A > ||h||eo, then

P(IEn{h(Y — m)} = tMy AT [(2ME M) 2| (N /)

2.9 (12.3.12)
+ Nn/n] ’Xl, . ,Xn) < 2exp (—M)
for t > 1.
Observe that
£(y)—=L(n) — [A(Dy) — An)]
= (En — E){[B(i}y) — B(n)|p — [C(7y) — C(n)]}
+ En{[B(y) = B)](Y — )}
(12.3.13)

Lemma 12.3.12. Suppose Condition 12.3.1 holds. Then
(En — EX[B(71y) = B(n)lk — [C(iy) = C()]}
~ N,\1/2 N,
_ 1/2 Ao n n
= 0p((tog ) Iy -l (52) "+ 2] )

uniformly over v € T.

Proof. The proof of this result is similar to that of Condition 12.1.6(ii) in
the density estimation context. O

Lemma 12.3.13. Suppose Condition 12.3.1 holds. Then
|Enf{[B(ily) = B(n)](Y — p)}|
_ N,\1/2 N,
— 1/2 A — _n _n
—0p<<1og w) [l =l (=) T+ = ])

uniformly over v € T.
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1/2

Proof. Note that [y — 1l < sup cppny and [y — n]ec < log™ " n

uniformly over v € T (See the arguments in Section 12.3.2.) Set h, =
B(i}y) —B(n) for v € T Then ||yl S |17y —=nll, B3] < (log™"/*n)|17, 0]
and [[h2 e < log™' n uniformly over v € T. Let ¢; be a fixed posi-
tive number. It now follows from Bernstein’s inequality (11.4.2) [note that
|h~ll7 = E,(h2)] that, for ¢, a sufficiently large positive number,

_ Nn\1/2 Ny
P12 = il = &l -l (52) "+ 2] )
< 2exp (—QCan logn)
for v € I and hence that, for ¢y a sufficiently large positive number,
P(Q,,) < 2exp (—2¢1 Ny logn), yeTl.

where Q,,- denotes the event that |||, < co[||y — 1l + (Nn/n)V/2]. Tt
follows from (12.3.12) that, for a sufficiently large positive number cs,

P(1Bu{hy (Y = )} = esllog!” n) [liby = nll(Na/m)*

+ Nn/n} ’Xl, ce Xn) < 2exp (—201Nn logn)
on §2,~ for v € I and hence that

P(IEn{hv(Y — )} = es(log"? n) [|ly = nll(Nw/n)"/?

+ Nn/n]) < 4exp (—201Nn log n)
(12.3.14)

for v € I.

Let c; be sufficiently large. Then, according to Lemma 12.2.3, there is a
subset I' of T’ such that (12.3.2) holds with C5 = ¢; and every point v € T
is within n=3 of some point 4 € I’ such that ln5 —nll < |11y — n||- Let v
and 4 be as just described. By Lemma 12.2.6,

Bl [B(iy) — BY = 1} S iy = fiylloe mase ¥ = (X5

< NY2p7321ogn
S Nu/n
(12.3.15)

provided that |Y; — u(X;)| < Mjlogn for 1 < i <mn.
The desired result follows from (12.3.2), (12.3.7), (12.3.14), (12.3.15),
and Lemma 12.3.9. O
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Lemma 12.3.14. Suppose Condition 12.3.1 holds. Then Condition 12.1.6
holds.

Proof. Now E(E,{[B(ijly~) — B()](Y — p)}|X1,..., X,) =0 and

7 _ 2
var (B ([Biy-) — BN(Y — i} |X ... x,) = (L=l

n

SO
A, _ 2
E[(Bu{[B(iy) — Bo)I(Y — m)})?] = OP(M)_

Since |7y« — 7] = inf7 T Py, 1t follows from Chebyshev’s inequality that

inf_ = pny
E{[BU1y-) ~ B = )} = Op ().

Similarly,

inf__=p
_ 7o) — — (O (e ) — — _yer ™y
(Bn = E)B() = Bl = [Cliy) = Co)J} = Op (=277 ).
The first property of Condition 12.1.6 now follows from (12.3.13) with

4 = «*. The second property follows from (12.3.13) and Lemmas 12.3.12
and 12.3.13. |

Ordinary regression.

The framework of generalized regression, as considered above, includes or-
dinary regression as a special case. Specifically, let B(n) = 2n for n € R and
U(dy) = 7= Y2¢=v*dy for y € R. Then S = R. Also, C(n) =n? and A(n) =
n for n € R, so the regression function p equals the response function 7.
Suppose that Y has finite second moment. The pseudo-log-likelihood and
its expectation are given, respectively, by I(h; X,Y) = 2h(X)Y —h?(X) =
—[Y — M(X)]2 +Y? and A(h) = —E{[Y — h(X)]?} + E(Y?). Assump-
tion 11.4.3 is that the regression function is bounded. Let h; and ho be
bounded functions on &X'. Then

LA+ ahs)| = 2B{ha(X)[u(X) — b (X))}

and )
d
EA(M + alhy — h1)) = =2||ha — h1|?,

so Condition 12.1.2 follows from the boundedness of the regression function
and of the density function of X. Also,

%6(&7 + ag) o 2E,{glY — i (X)]}



12.4 Proofs of Lemmas in Section 12.2 513

and
2

d
Eg(gl +alge — 1)) = —2[|g2 — 112

Thus Condition 12.1.4(ii) follows from Lemma 12.3.7, while Condition 12.1.4(i)
requires Lemma 12.3.11 for its verification.

12.4 Proofs of Lemmas in Section 12.2

In this section we verify Lemmas 12.2.2-12.2.6.
Consider a free knot sequence v = (v1,...,7vs) such that a <y <--- <
vy < b and

D=1 — Vjamm iy 2 < j1,jo <J+m, (12.4.1)
Yi1—1 = Yji—m

where y1_y, = = =aand yj41 =+ = Yjrm = .
Observe that

J4m J4m—1 J
D)= D - Y
j=1 7=0 j=1l-m
J+m—1 —1
= > u- >
j=J+1 j=1—m
=(m—1)(b—a).
Thus it follows from (12.4.1) that
(m—1)(b—a) )
> O TG i< T4m. 12.4.2
V=1 = Yimm 2 T j<J+m ( )

The requirement (12.4.1) is stronger than the bound on the global mesh
ratio of y that was considered by de Boor (1976). To see this, note let v € T’
and note that y1 —Y1—m =71 — Y2—m, Vi4m —VJ = VJ+m-1 — Vs, and

Viz = Via=m _ Via=1 = Via=m + Vj» — Vjot1-m
Vv T Vpem o Adnom g Jh b

for 1 < j1,j2 < J +m (the numerator is increased and the denominator is
decreased), so it follows from (12.4.1) that

Yoz ZVia=m < ofp 1< gy, o < J +m. (12.4.3)
Yir — Vii—m

Example 12.4.1. Suppose that J = m — 1 and hence that J +m =
2m — 1, and suppose also that v; = (a +b)/2 for 1 < j < m — 1. Then
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V=1 —Yj—m = (b—a)/2 for 2 < j < 2m —1, so 1 is the smallest value of m
that satisfies (12.4.1). Also, v; — Yj—m = (b—a)/2 for 1 < j <m —1 and
form+1<j5<2m—1, while y,, —v% = b —a, so 1 is also the smallest
value of M that satisfies (12.4.3).

Observe that 3777 (v;—=~j_m) = m(b—a). Thus it follows from (12.4.3)

j=1
that (b )
m —a
Vi > ————— 1<j<J , 12.4.4
73T imm = R (T + m) J=Jam (12.4.4)
and Wb — a)
2Mm(b —a
S P P A 12.4.5
Yi— Y > T+m J +m ( )

Proof of Lemma 12.2.2. We first verify this result when L=1,J = J; > 1,
Yi = Y15, = Y1 u :ul = [a,b] = [al,bl], m = ml_Z 27 and Nn = an =
J + m. Here the metric ¢ is given by ((v,5) = IMN,|v — Yoo /(b — a).
Let 0 < €1 <2, let v € T', and let 4 be a free knot sequence such that
¢(v,79) < €1 and hence

~ e1(b—a)
217 — Yoo < ———=.
17 = oo < 1IN,

Thus, by (12.4.2), 4 satisfies (12.4.1) with M replaced by

—m—1+61/4

M < 3M,

m—1—¢€/4~

S0y € T. Let fel denote the collection of all such free knot sequences 7 as
~ ranges over I'. Then fel c T and fo =T.

Given a positive integer A, let ¢(u; A) denote the function on [a, b] defined
by
b—a

A b—a + 2
where [] denotes the greatest integer function. Observe that ¢(u;A) is
nondecreasing in u, ¢(a; A) = a, p(b;A) = b, d(u; A) € {a+i(b—a)/A:i=
0,...,A}, and

p(u; A) = a +

Mu_a 1} a<u<b,

b—a b—a
_—_— : < _— < u <b.
U o < p(u; A) <u+ T a<u<b

Given the free knot sequence ~, consider the transformed sequence ¢(v; A) =
(o(v5;A)). Let 0 < € < 1. Observe that

b—a
A) = Ao £ ——
60 8) e <

and hence that if B
A >4 ' MN,, (12.4.6)
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then ((v,6(v,A)) < e Let A be the smallest integer satisfying (12.4.6).

Then A—1 < 46 LM N,,. [Observe also that if (12.4.6) holds, u1,us € [a, b],
and
(b—a)e
Ug — UL > ——= )
4MN,
then
A(UQ — ’U,l) >1
b—a T

and hence ¢(ug; A) > ¢d(ug; A).]
Suppose that (12.4.6) holds and let 0 < ¢y < 1. Set I"eo . = {o(v;A) :
'y € 1"60} C 1"50+6 Then every point in 1"60 is within e of some point in

Observe that
w0 (MUY,

E() €"
(Note that the multiplicity of each free knot is at most m — 1.)
Let I be an integer with I > J. Then

B S [ N e (AT COM (B

SO

(Observe that (d/dz)[x + (1 — z)log(l —z)] > 0for 0 < z < 1, s0 = +
(1 —x)log(l —x) > 0 for 0 < < 1 and hence (1 — z)~(1/*=1) < ¢ for
0 < z < 1.) Consequently,
_ J _
#(I )< [4eeflM(m— 1)(1+ ?)} < (4= m2)Nn.

€0,€
Consider now the general case L > 1. Here ((v,7) = max; {;(v,;,7;) and
Ay > 4e ' MyN,,, 1<I<L. (12.4.7)

Let T be the Cartesian product of I‘l, 1 <1< L, and let 1"61 denote the
Cartesian product of l"lel, 1 <l < L. Then l"61 Cc I' and 1"0 = TI'. Let
I’ . C T se denote the Cartesian product of I‘lé > 1 <1 < L. Then every

€0,€
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point in fEO is within € of some point in f o Now Ny, =[], Nt > >, Nty
S0 N
#(T.c) < (dee™t mlaXMlle)N".

Let 0 < € < 1/2, let K be a positive integer, and set Zx = FO ek C r
and =, = F€K+ pektt ek C T for 0 <k <K —1. Then

#(Z1) < (dee™* mlalem%)Nn, 1<k<K.

Moreover, every point in I' = T is within €/ of some point in Ly ex = Zk;
and, for 1 < k < K, every point in Z C [« .. o+ is within €¥~1 of some
point in T'cxy..fck k1 =Zp 1. ([l

Proof of Lemma 12.2.3. For each point ' € I‘O )2 (which is defined as in
the proof of Lemma 12.2.2), there is a point 4 in the compact set {v € I:
¢(v',7) < €/2} that minimizes the function [|7y —7*|| over this set. Let To.c
denote the collection of all such points 5. Then I‘O e C I‘ and #(I‘O ) <
#(F6 ej2) < (8ee = max; Mym?)N. Given v € T, choose v/ € 1"075/2 such
that {(v,v') <€/2 and let 4 € fo,e be as defined above. Then ((v,) < ¢
and ||y — " || < |7y —n*- O
Suppose that L = 1. Let B4; be the normalized B-spline corresponding
to the knot sequence y;_m,...,7;. According to Theorem 4.2 of DeVore

and Lorentz (1993, Chapter 5), there is a positive constant D,, < 1 such
that

2
b—a ZbQ ’ij _‘ 7j¢§ b—a Zb '7jm
(12.4.8)
and
D, max |b;| < ’ il < max|bl. (12.4.9)
J J

It follows from (12.4.4), (12.4.5) and (12.4.8) that

2
i 2 €|
(J +m) - ( |
12.4.10

For general L, set m = [[;my, D = [[; Dp,, and M = [], Mj,and note
that N,, = [[,(Ji+my). Also, let J denote the Cartesian product of the sets
{1,.. ., Ji4m, },1 <1< L and, for j = (j1,...,41) € J, consider the tensor
product B-spline B.;(u) = By j, (u1)... B, , (ur). The support supp(h)
of a function h on a set U is defined by supp(h) = {u € U : h(u) # 0}.

, _
20
: = N2, yel
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Lemma 12.4.15. Let v, € r and j € J. Then

D? ) > 6EM —
mzb- < ‘ ijB'yj <N ij; (12.4.11)
n j 3 " n 7
Dmax|b;| < ‘ > biByj| < max [b;; (12.4.12)
j o0
65 Mm
W (supp(By;)) <~ (12.4.13)
#{j €T : Byj(u) #0} <m for u € U (12.4.14)
#{k € J : By;Bs}, is not identically zero on U} < 38" M?m; (12.4.15)
By — Bjllec < LE(Y,7); (12.4.16)
L26L2NMm _
1By = Byl < —F—— (0. ¥); (12.4.17)
2
’ > bjBy; = b;B5;
J J Y
8L262L38LM4’ITL2 _ 2
= D2 G| D biBy| 5 (12.4.18)
j P
and
’ > bjBy; = b;Bz;
J J ©0
2mL -
<75 C('y,v)‘ > b;By; (12.4.19)
j (e 0]

Proof. Equation (12.4.11) follows from (12.4.8), with M replaced by 3M,
and induction; (12.4.12) follows from (12.4.9) and induction; since ¢ (supp(B~;)) =
LIV = —m)/ (bi—ar)], (12.4.13) follows from (12.4.5) with M replaced
by 3Ml

To verify (12.4.14), let u; € U; and suppose first that u; is not a knot.
Then v, ;, < u; < v1,jo+1 for some jo. If B’m’(ul) > 0, then 7 j—m, <w <
v,; and hence jo + 1 < j < jo + my. Suppose, instead, that u = v ;,. If
B"/Lj(ul) > 0, then v j—m;, < V5o <V,j>»50Jjo+1<j<jo+m—1.1In
either case,

#{J €T : By # 0y = [[#15 € T2 Byj(w) # 0} < [[ru = m.
l l
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To verify (12.4.15), given j € 7y, let k1 (k2) be the smallest (largest) value
of k in J; such that B,,;B5, is not identically Z€ro. Then 7 x, > Y, j—my
and Ay g, —m, < 71,;j- It follows from (12.4.5) (with M; replaced by 3M;) that

6]\7[lml(b — a)
Vkz—mi < Vi < Vj—my + T T

Let I be the smallest integer such that I > 62M2. It follows from (12.4.4)
that

~ N Imy(b—a) N Imy(b—a) <
Vki+Imy = Yiky 72]\7[1((][ ) V,5—my 76]9[1(% Y = Vi, ko —my
and hence that ko < k1 + (I 4+ 1)m;. Consequently,

#{k € Ji : By,jB5, is not identically zero on U}
< (I +1)my < (62M? +2)my < 38MPmy,

which yields the desired result.

To verify (12.4.16), we first observe that, as a consequence of Definition
4.12 and Theorems 2.51, 2.55, and 4.27 of Schumaker (1981), the partial
derivative of B,,; with respect to the knot 7,3 for j —m; < k < j is
bounded in absolute value by

max , .
V-1 — Vj—my V5 — Vj+1—my

Thus, by (12.4.2),

3M[(m[ + 1)Nl -
B,,j — B5,jlleo < - 0o
H Y1 ’YLJ” = (ml _ 1)(bl _ al) |’7l ’7l|
m; +1 - ~
_ < .
< S0mr = 1)@(%7) <a(.7)

The desired result now follows from the observation that normalized B-
splines lie between 0 and 1.

Equation (12.4.17) follows from (12.4.13) and (12.4.16).

Set

Ayyj={k €T :(By; — Byj, Byx — Bya)y 20}, v, 7€l andje J.
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Then #(Ay7;) < 38F4M?*m by (12.4.15). Consequently, by (12.4.11) and
(12.4.17),

2
vi ijBaj
_Z Z bbk vi — By;s "/k_B:/ka

J k€Ayz;

B+ B2 1By = Byl + 1By = B}
<X ¥ () 2 )

J k€Ayz;

81261381 M3m )
< N— 2(v,9) Zb

8L262L38L M4m? 2
D2

¥J

<2(%*7)‘

0 (12.4.18) holds.

It follows from (12.4.14) that, for v, € T and u € U, there are at most
2m values of j € J such that By;(u) — B5;(u) # 0. Thus, by (12.4.12) and
(12.4.16),

)

> biByj— ) biBs;
j i

0 (12.4.19) holds. O

2mL -
< Té(% ’Y)H Z bj By
o0 J

Proof of Lemma 12.2.4. Tt follows from (12.4.11) and (12.4.12) that

2 2
2
Zba‘Bw‘ N < maxby < —5— i By
J
The desired result now follows from (12.2.2). O

Recall that U is defined as a transform of W. Let Uq,...,U, be the
corresponding transforms of W, ..., W, respectively. Recall the defini-

tion of empirical inner product and empirical norm in Section 12.2. Observe
that E,(h) = (1, h),.

Lemma 12.4.16. Suppose Condition 12.2.1 holds and that N, = o(n'~¢)
for some € > 0. Then there is a constant M and there is an event §,, such
that lim,, P(Q,) =1 and

Z BJB’YJ Z 63 i
J

for'y,%/ef and B3; € R for j € J.

2

<MC277 on €,

Zﬂa i
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Proof. Tt follows from (12.4.16) that
1B;—Bs;ll7

1
< [|By; — By;ll% g#({i : U; € supp(By;) Usupp(By;)})
1
< L2<2(%7)g#({i : U; € supp(By;) Usupp(Bs;)})

forv,5 € T and j € J. It follows from Condition 12.2.1, (12.4.13), and the
assumption on N,, by a straightforward application of Bernstein’s inequal-
ity (11.4.2) [or by Theorem 12.2 of Breiman, Friedman, Olshen and Stone
(1984)] that

1 .
sup max —# ({i : U; € supp(B~;)Usupp(Bs,)})
yAer IS
6520 M.
< TQmu +op(1)).

Let Q,, denote the event that
6L4MM2’ITL

1 .
sup max E#({z : U; € supp(B.;) Usupp(Bs;)}) < N

~.F€er I€
Then lim,, P(2,) =1 and
41265 M Maym

2
| B~ — Bjlln < N

¢*(7,7) on Qp (12.4.20)
for'y,'?efandjej. B
Set Ayyjn = {k € J : (By; — Byj, By — Byp)n # 0} for v,7 € T

and j € J. Then #(Ay5;,) < 38L4M?m by (12.4.15). Consequently, by
(12.4.11), (12.4.20), and Condition 12.2.1,

2
‘ > BBy =Y BBy,
J i n

- Z Z B Br(B~j — Byj, Byk — Byk)n

k k€Ay5in
B} + B (1B = B33 + 1By — Bkl
<X > () 3 )
J k€Ayzin
16L26L38L M3 Mym?2 ,, )
< N ¢ (%7)%:@
16L262L38L M4 Mym? ., 2
< Do () Zj:ﬁij

on ), for v, € I and B; € R for j € J, as desired. |
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Proof of Lemma 12.2.5. Set € = ((v,7). Write g = > 3;By; and set ¢’ =
> BjBs;. It follows from (12.2.2) and (12.4.18) that H’/g —¢'l| < cie||g|| for
some constant ¢, and it follows from (12.4.19) that ||g — ¢'||cc < c2€]/9] oo
for some constant cs.

If ||lg'll < |lgll, then g = ¢’ has the properties specified in the first result
of the lemma. Suppose, instead, that ||¢'|| > |lg| and set A = ||g]|/]l¢’||-
Then (1+c16)™ <A <1, ||Ag'l| = |lgll, and [lg = Ag'l| < lg — ¢'l| < caellg]l-
(Note that (g, ¢’y < ||gl//l¢’|| by the Cauchy—Schwarz inequality.) Moreover,

"\ _ no_ ”gI”OO
lg" = Ag'llee = (gl = llgl) =,
9’|l
< g = gllCliglloe + 19" = glloo)
- lgll

< cre(l + e2)|glloo;

50 [|g — Ad ||co < (c1+c2+4c102)€]lg]| oo and hence g = Ag’ has the properties
specified in the first result.

Let €21 be the event 2, in Lemma 12.4.16, let §2,2 be the event that
llgll2 < 2||g||? for v € T, and set Q,, = Q1 U Q. It follows from Lemmas
12.4.16 and 12.3.7 that lim,, P(£2,,) = 1. Let ¢, ¢’, and X be as in the proof of
the first result of the lemma. Then for some constant cs, [|g—¢’||» < c3€llg]|

on Q. If ||¢'|| < |lgll , then g = ¢’ satisfies the desired additional property.
Otherwise,

lg = A9/l < llg = ¢'lln + (1 = Vllg'ln
1
< caellgll +2(5 — 1) gl
< (es + 2e1)elg]

on €, so g = \g’ satisfies the desired additional property. O

Proof of Lemma 12.2.6. Let K; > K. Choose ~,~ € I such that 17y lloo <
K and [|75]lc < K, and set € = ((+,7). By Lemma 12.2.5, there is a fixed
positive number ¢; (not depending on «, ) and there are functions 7., € G
and nz € G5 such that |7, — 75/l < c1€ and |95 — 7y |[oo < c1e. Without

loss of generality, we can assume that e < 1 and that e is sufficiently small
that |77 [l < K1 and |5/ < K71. Then, by Condition 12.1.2, there is a
fixed positive number c; such that A(7)y) —A(n5) < cze and A(ij5) —A(n)) <
ce. Since A(n%) < A(7)), we conclude that A(7)y) — A(n7) < 2cze. On the
other hand, by Condition 12.1.2, A(7}y) — A(1,) > ¢3]|7y — 74 || for some
constant cs, so |7y — 7, || < (2c2c5'€)'/? and hence

3y = 511 < 117y = 1511 + IS, — 75
< (2ca¢3 ' )Y 4 cre
< [(2c2c5")Y2 + er]e!/2.
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Moreover, by (12.2.2), (12.4.11), and (12.4.12), |7l — 1, |loc < caNa'?||7y —
5l So,

7y = T5lloo < 17y = 15 lloo + 175, — 5 lloo

< (20—2631)1/2N1/261/2 + cqe€.
=\ n

By Lemma 12.3.7, there is an event 2, such that lim, P(Q,) = 1 and
llglln < 2|lg|| on Q,, for v € T" and g € G4. Thus, by the first paragraph of
this proof, |7y =15 [ln < 2[5 —n5 || < 2(2¢cac; '€)'/? and hence |75 — 7 ||ln <

[2(2cac31)Y? 4 ¢1)]€Y/? on Q,, for 4,7 as in the first paragraph. O



