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12
Extended Linear Modeling with Free
Knot Splines

As we saw in Chapter 11, many statistical problems of theoretical and
practical importance can effectively be treated within the framework of
concave extended linear modeling. In that chapter, rates of convergence of
maximum likelihood estimates were obtained when the estimating space
does not depend on the data. In this chapter, we consider a collection
Gγ , γ ∈ Γ, of linear estimation spaces having a common dimension that
may vary with the sample size. For each fixed γ, the maximum likelihood
estimate is obtained. We will let the data pick which estimation space
Gγ to use. In particular, γ can be thought as the knot positions when
the estimation space consists of spline functions, and our interest lies in
choosing the knot positions using the data. This chapter contains the theory
developed in Stone and Huang (2001a).

Section 12.1 of this chapter contains the basic setup and the main results
on rates of convergence. In Section 12.2, we discuss the various properties
of spaces of free knot splines and tensor products of such spaces that are
needed to verify the conditions in our general results on rates of conver-
gence. In Section 12.3 we verify the conditions in the main results in Sec-
tion 12.1 in the contexts of density estimation and generalized regression,
including ordinary regression as a special case. There, for simplicity, we
restrict attention to the saturated model, so that η∗ = η. We also restrict
attention to spaces Gγ that are tensor products of polynomial spline spaces.
Section 12.4 contains the proofs of results in Section 12.2.
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12.1 Main Results

12.1.1 Statement of Main Results

Consider a concave extended linear model specified by the log-likelihood
l(h,W ) and model space H. Let W 1, . . . ,W n be a random sample of
size n from the distribution of W . When it is well defined, the (nor-
malized) log-likelihood corresponding to this random sample is given by
`(h) = n−1

∑
i l(h,W i). Let Gγ , γ ∈ Γ, be a collection of finite-dimensional

linear subspaces of H. We assume that the functions in each such space Gγ

are bounded and call Gγ an estimation space. For each fixed γ ∈ Γ, the
maximum likelihood estimate is given by η̂γ = maxg∈Gγ

`(g). We will let
the data pick which estimation space to use. To be specific, we choose γ̂ ∈ Γ
such that `(η̂bγ) = maxγ∈Γ `(η̂γ). (Such a γ̂ exists under mild conditions;
see Lemma 12.1.1 below.) We will study the benefit of allowing the flexi-
bility to pick estimation spaces among a big collection. Specifically we will
study the rate of convergence of η̂bγ −η∗, where, as in the previous chapter,
η∗ is the best approximation in H of the function of interest η.

In the above setup, we assume that Gγ , γ ∈ Γ, have the same dimension
and that the index set Γ is a compact subset of RJ for some positive integer
J . The dimension of Gγ , Γ and J are allowed to vary with the sample size
n. For γ ∈ Γ, set

Nn = dim(Gγ),

Anγ = sup
g∈Gγ

‖g‖∞
‖g‖ := sup

g∈Gγ

‖g‖6=0

‖g‖∞
‖g‖ ,

and
ρnγ = inf

g∈Gγ

‖g − η∗‖∞.

Fix n ≥ 1 and suppose that An = supγ∈ΓAnγ < ∞. Then the norms
‖ · ‖ and ‖ · ‖∞ are uniformly equivalent on Gγ , γ ∈ Γ, in the sense that
‖g‖ ≤ ‖g‖∞ ≤ An‖g‖ for γ ∈ Γ and g ∈ Gγ .

It follows from Proposition 11.1.1 that, under regularity conditions,

‖η̂γ − η∗‖2 = OP

(
ρ2
nγ +

Nn
n

)

for each fixed γ ∈ Γ. Let γ∗ be such that ρnγ∗ = infγ∈Γ ρnγ . (Such a γ∗

exists under mild conditions; see Lemma 12.1.1 below.) Then

‖η̂γ∗ − η∗‖2 = OP

(
ρ2
nγ∗ +

Nn
n

)
= OP

(
inf
γ∈Γ

ρ2
nγ +

Nn
n

)
.

Thus,

inf
γ∈Γ

‖η̂γ − η∗‖2 ≤ ‖η̂γ∗ − η∗‖2 = OP

(
inf
γ∈Γ

ρ2
nγ +

Nn
n

)
.
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It is natural to expect that, with γ estimated by γ̂, the squared L2 norm
of the difference between the estimator and the target, i.e., ‖η̂bγ −η∗‖2, will
be not much larger than the ideal quantity infγ∈Γ ‖η̂γ − η∗‖2. Hence we
hope that ‖η̂bγ − η∗‖2 will be not much larger than infγ∈Γ ρ

2
nγ +Nn/n in

probability. This is confirmed by the following result.
Let Vn = ŌP (bn) mean that limn P (|Vn| ≥ cbn) = 0 for some c > 0,

where bn > 0 for n ≥ 1. Let Vnγ = OP (bnγ) uniformly over γ ∈ Γ mean
that limc→∞ lim supn P (|Vnγ | ≥ cbnγ for some γ ∈ Γ) = 0, where bnγ > 0
for n ≥ 1 and γ ∈ Γ.

As in the previous chapter, it is enlightening to decompose the error into
a stochastic part and a systematic part for each fixed γ ∈ Γ:

η̂γ − η∗ = (η̂γ − η̄γ) + (η̄γ − η∗),

where η̂γ − η̄γ is referred to as the estimation error and η̄γ − η as the
approximation error.

Proposition 12.1.1. Suppose Conditions 12.1.1–12.1.2 and 12.1.4–12.1.6
hold and that limn supγ∈ΓAnγρnγ = 0 and limn supγ∈ΓA

2
nγNn/n = 0.

Then, for n sufficiently large, η̄γ exists uniquely for γ ∈ Γ and

‖η̄γ − η∗‖2 = O(ρ2
nγ)

uniformly over γ ∈ Γ. Moreover, except on an event whose probability tends
to zero as n→ ∞, η̂γ exists uniquely for γ ∈ Γ and

sup
γ∈Γ

‖η̂γ − η̄γ‖2 = OP

(Nn
n

)
.

Consequently,

‖η̂γ − η∗‖2 = OP

(
ρ2
nγ +

Nn
n

)

uniformly over γ ∈ Γ. In addition,

‖η̂bγ − η∗‖2 = OP

(
inf
γ∈Γ

ρ2
nγ + (logn)

Nn
n

)
.

In the previous theoretical results for fixed knot splines, the squared
norms of the approximation error and the estimation error were shown
to be bounded above by multiples of ρ2

nγ and Nn/n, respectively. Here
these results are shown to hold uniformly over the free knot sequences
γ ∈ Γ. Finally, combining the results for the approximation error and the
estimation error and incorporating a corresponding result for the maximum
likelihood estimation of the knot positions, we get an overall result. In
particular, by allowing the knot positions to be selected by the data, we can
achieve the best approximation rate among the collection of knot positions
with a little inflation (an extra logn term) of the variability.
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The proof of Proposition 12.1.1 is broken up into three theorems (The-
orems 12.1.1–12.1.3) that will be given in the following subsections where
technical conditions are stated explicitly. The technical conditions will be
verified in the contexts of density estimation and generalized regression in
Section 12.3 when Gγ are spaces of tensor product splines. The logn term
in the final result of this proposition plays an essential role in the proof of
that result, but we do not know whether it is essential to the result itself.

12.1.2 Uniformity in Rates of Convergence

If γ is predetermined (independent of data) but allowed to increase with
sample size, the rate of convergence of γ̂ in the context of concave extended
linear models is thoroughly treated in Chapter 11. We now show that the
rates of convergence results in Theorems 11.2.1 and 11.2.2 hold uniformly
in γ ∈ Γ if the sufficient conditions in these theorems hold in a uniform
sense. Theorems 12.1.1 and 12.1.2 below are in parallel to Theorems 11.2.1
and 11.2.2 and can be proven by similar arguments.

Condition 12.1.1. The best approximation η∗ in H to η exists and there
is a positive constant K0 such that ‖η∗‖∞ ≤ K0.

Condition 12.1.2. For each pair h1, h2 of bounded functions in H, Λ(h1+
α(h2 − h1)) is twice continuously differentiable with respect to α. (i) For
any positive constant K, there is a fixed positive number M such that if
h1, h2 ∈ H, ‖h1‖∞ ≤ K, and h2 is bounded, then

∣∣∣ d
dα

Λ(h1 + αh2)
∣∣
α=0

∣∣∣ ≤M‖h2‖.

(ii) For any positive constant K, there are fixed positive numbers M1 and
M2 ≤M1 such that

−M1‖h2 − h1‖2 ≤ d2

dα2
Λ(h1 + α(h2 − h1)) ≤ −M2‖h2 − h1‖2

for h1, h2 ∈ H with ‖h1‖∞ ≤ K and ‖h2‖∞ ≤ K and 0 ≤ α ≤ 1.

Condition 12.1.1 is the same as Condition 11.2.1, which is restated here
for convenience. Condition 12.1.2 strengthens Condition 11.2.2 by putting
an adxditional requirement on the first derivative of Λ(·). The following
result extends Theorem 11.2.1.

Theorem 12.1.1 (Approximation error). Suppose Conditions 12.1.1
and 12.1.2 hold and that limn supγ∈ΓAnγρnγ = 0. Let K1 be a positive
constant such that K1 > K0 with K0 as in Condition 12.1.1. Then, for n
sufficiently large, η̄γ exists uniquely and ‖η̄γ‖∞ ≤ K1 for γ ∈ Γ. Moreover,
‖η̄γ − η∗‖2 = O(ρ2

nγ) uniformly over γ ∈ Γ.
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The following two conditions are strengthened versions of Conditions 11.2.3
and 11.2.4.

Condition 12.1.3. There is a positive constant K0 such that, for n suffi-
ciently large, η̄γ exists uniquely and ‖η̄γ‖∞ ≤ K0 for γ ∈ Γ.

Condition 12.1.4. For γ ∈ Γ and g1, g2 ∈ Gγ, `(g1 +α(g2 − g1)) is twice
continuously differentiable with respect to α ∈ [0, 1]. (i) The following holds:

sup
γ∈Γ

sup
g∈Gγ

∣∣ d
dα`(η̄γ + αg)|α=0

∣∣
‖g‖ = OP

((Nn
n

)1/2
)
.

(ii) For any positive constant K, there is a fixed positive number M such
that

d2

dα2
`(g1 + α(g2 − g1)) ≤ −M‖g2 − g1‖2, 0 ≤ α ≤ 1,

for γ ∈ Γ and g1, g2 ∈ Gγ with ‖g1‖∞ ≤ K and ‖g2‖∞ ≤ K, except on an
event whose probability tends to zero as n→ ∞.

The following result extends Theorem 11.2.2.

Theorem 12.1.2 (Estimation error). Suppose Conditions 12.1.3 and 12.1.4
hold and that limn supγ∈ΓA

2
nγNn/n = 0. Let K1 be a positive constant such

that K1 > K0 with K0 as in Condition 11.2.3. Then η̂γ exists uniquely and
‖η̂γ‖∞ ≤ K1 for γ ∈ Γ, except on an event whose probability tends to zero
as n→ ∞. Moreover, supγ∈Γ ‖η̂γ − η̄γ‖2 = OP (Nn/n).

12.1.3 Adaptive Parameter Selection

Condition 12.1.5. For K <∞, the set {(γ, g) : γ ∈ Γ, g ∈ Gγ , and ‖g‖∞ ≤
K} is compact and `(·) is continuous on this set.

When Gγ are spaces of tensor product splines in Section 12.2, the first
part of Condition 12.1.5 follows from Lemmas 2.1 and 4.1 of Chapter 5
of DeVore and Lorentz (1993). Under the further restriction to density
estimation and generalized regression in Section 12.3, the second part of
Condition 12.1.5 follows from the corresponding explicit forms of the log-
likelihood function.

Lemma 12.1.1. Suppose Condition 12.1.5 holds. Then there is a γ∗ ∈ Γ
such that ρnγ∗ = infγ∈Γ ρnγ . Moreover, on the event that η̂γ exists uniquely
and ‖η̂γ‖∞ ≤ K1 for γ ∈ Γ, where K1 is a positive constant, there is a
γ̂ ∈ Γ such that `(η̂bγ) = supγ∈Γ `(η̂γ).

Proof. Given γ ∈ Γ, choose gγ ∈ Gγ such that ‖gγ − η∗‖∞ = ργ . By
Condition 12.1.5, we can choose γν ∈ Γ such that γν → γ∗ ∈ Γ, ργν

→
infγ∈Γ ργ , and ‖gγν

− g∗‖∞ → 0 as ν → ∞, where g∗ ∈ Gγ∗ . Then ‖g∗ −
η∗‖∞ = infγ∈Γ ργ , so γ∗ has its desired property.
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It follows from Condition 12.1.5 that, on the indicated event, we can
choose γν ∈ Γ such that γν → γ̂ ∈ Γ, `(η̂γν

) → supγ∈Γ `(η̂γ), and η̂γν
→ g

as ν → ∞, where g ∈ Gbγ . Since `(·) is continuous, `(g) = supγ∈Γ `(η̂γ),
g = η̂bγ and hence γ̂ has its desired property.

Let Vnγ = ŌP (bnγ) uniformly over γ ∈ Γ mean that limn P (|Vnγ | ≥
cbnγ for some γ ∈ Γ) = 0 for some c > 0, where bnγ > 0 for n ≥ 1 and
γ ∈ Γ.

Condition 12.1.6.

(i) |`(η̄γ∗) − `(η∗) − [Λ(η̄γ∗) − Λ(η∗)]| = OP

(
inf
γ∈Γ

ρ2
nγ +

Nn
n

)

and

(ii) |`(η̄γ)−`(η∗) − [Λ(η̄γ) − Λ(η∗)]|

= ŌP

(
(log1/2 n)‖η̄γ − η∗‖

(Nn
n

)1/2

+ (logn)
Nn
n

)

uniformly over γ ∈ Γ.

In Section 12.3, we will verify that Condition 12.1.6 holds under rea-
sonable conditions in the contexts of density estimation and generalized
regression. There, we will actually verify a slight strengthening of the sec-
ond property of Condition 12.1.6:

|`(η̄γ) − `(η∗)−[Λ(η̄γ) − Λ(η∗)]|

= ŌP

(
(log1/2 n)

[
‖η̄γ − η∗‖

(Nn
n

)1/2

+
Nn
n

])

uniformly over γ ∈ Γ.
We have the decomposition

η̂bγ − η∗ = (η̂bγ − η̄bγ) + (η̄bγ − η∗).

Note that Theorem 12.1.2 implies that ‖η̂bγ − η̄bγ‖2 = OP (Nn/n), which
together with the following theorem yields Proposition 12.1.1.

Theorem 12.1.3 (Parameter selection). Suppose Conditions 12.1.1–
12.1.6 hold and that limn supγ∈ΓAnγρnγ = 0 and limn supγ∈ΓA

2
nγNn/n =

0. Then ‖η̄bγ − η∗‖2 = OP (infγ∈Γ ρ
2
nγ) + ŌP ((log n)Nn/n).

Proof. We first show that

`(η̂γ) − `(η̄γ) = OP

(Nn
n

)
uniformly in γ ∈ Γ. (12.1.1)

Write
f(α) = `(η̄γ + α(η̂γ − η̄γ)), γ ∈ Γ.
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By Condition 12.1.4, f ′′(α) ≤ 0 (except on an event whose probability
tends to zero as n→ ∞). Thus,

0 ≤ `(η̂γ) − `(η̄γ) = f(1) − f(0) = f ′(0) +

∫ 1

0

(1 − α)f ′′(α) dα ≤ f ′(0).

On the other hand, by Condition 12.1.4(i) and Theorem 12.1.2,

f ′(0) =
d

dα
`(η̄γ + α(η̂γ − η̄γ))

∣∣∣
α=0

= OP

((Nn
n

)1/2)
‖η̂γ − η̄γ‖ = OP

(Nn
n

)

uniformly in γ ∈ Γ. The desired result follows.
By Theorem 12.1.1, η̄bγ is bounded. Thus, it follows from Lemma 11.2.1

that, for some positive constant M ,

M‖η̄bγ − η∗‖2 ≤ Λ(η∗) − Λ(η̄bγ).

Since γ∗ ∈ Γ satisfies ρnγ∗ = infγ∈Γ ρnγ , ‖η̄γ∗ − η∗‖2 = O(infγ∈Γ ρ
2
nγ) by

Theorem 12.1.1. We have the decomposition

Λ(η∗) − Λ(η̄bγ) = Λ(η∗) − Λ(η̄γ∗) + Λ(η̄γ∗) − Λ(η̄bγ)

= I1 + I2 − I3 + I4,

where
I1 = Λ(η∗) − Λ(η̄γ∗),

I2 = Λ(η̄γ∗) − Λ(η∗) − [`(η̄γ∗) − `(η∗)],

I3 = Λ(η̄bγ) − Λ(η∗) − [`(η̄bγ) − `(η∗)],

I4 = `(η̄γ∗) − `(η̄bγ).

Note that I1 = O(infγ∈Γ ρ
2
nγ) by Theorem 12.1.1 and Lemma 11.2.1. The

terms I2 and I3 can be bounded using Condition 12.1.6. Moreover, by using
(12.1.1) and `(η̂γ∗) ≤ `(η̂bγ) [which follows from the definition of γ̂], we get
that

I4 = `(η̂γ∗) − `(η̂bγ) +OP

(Nn
n

)
≤ OP

(Nn
n

)
.

Hence,

‖η̄bγ − η∗‖2 ≤ ŌP

(
(log1/2 n)‖η̄bγ − η∗‖

(Nn
n

)1/2

+ (log n)
Nn
n

)

+OP

(
inf
γ∈Γ

ρ2
nγ +

Nn
n

)
.

(12.1.2)

Observe that, for positive numbers B and C, z2 ≤ Bz + C implies that
2z2 ≤ (B2 + z2) + 2C and hence that z2 ≤ B2 + 2C. Therefore (12.1.2)
yields the desired result.
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12.2 Free Knot Splines and Their Tensor Products

In this section we will develop some properties of spaces of free knot splines
and tensor products of such spaces, which will be used in Section 12.3 to
verify Conditions 12.1.4 and 12.1.6.

For 1 ≤ l ≤ L, let Ul = [al, bl] be a compact subinterval of R having
positive length bl−al and let U denote the Cartesian product of U1, . . . ,UL.
For each l, let ml be an integer with ml ≥ 2 and Jl be a positive integer,
and let γlj , 1 ≤ j ≤ Jl, be such that a < γl1 ≤ · · · ≤ γlJl

< b, and
γl,j−1 > γl,j−m for 2 ≤ j ≤ Jl +ml, where γlj = a for 1 −ml ≤ j ≤ 0 and
γlj = b for Jl+1 ≤ j ≤ Jl+ml. Let Glγl

be the space of polynomial splines
of order ml (degree ml − 1) on Ul with the interior knot sequence γl =
(γl1, . . . , γlJl

), whose dimension Jl +ml is denoted by Nnl to indicate its
possible dependence on the sample size n. For γ = (γ1, . . . ,γL), let Gγ be
the tensor product of Glγl

, 1 ≤ l ≤ L, which has dimension Nn =
∏
lNnl.

For 1 ≤ l ≤ L, let M̄l ≥ 1 be a fixed positive number, and let Γl denote
the collection of free knot sequences γ l = (γl1, . . . ,γlJl

) on Ul such that

γl,j2−1 − γl,j2−ml

γl,j1−1 − γl,j1−ml

≤ M̄l, 2 ≤ j1, j2 ≤ Jl +ml, (12.2.1)

where γl,1−ml
= · · · = γl0 = a and γl,Jl+1 = · · · = γl,Jl+ml

= b. Let
Γ denote the Cartesian product of Γl, 1 ≤ l ≤ L, which can be viewed
as a subset of R

J with J =
∑

l Jl. We consider the use of the collection
Gγ ,γ ∈ Γ, in fitting an extended linear model. Such a collection of free
knot splines has some properties we will list below. (The proofs will be
given in Section 12.4.) In the technical arguments, we need to approximate

Γ by a finite subset of a larger set Γ̃, which is defined in the same way as
Γ, but with M̄l in (12.2.1) replaced by the larger constant 3M̄l.

Let ψ denote the uniform distribution on U and let vol(U) denote the
volume of U . Let H denote the space of (real-valued) functions on U that
are square-integrable with respect to ψ, and let 〈·, ·〉ψ and ‖ · ‖ψ denote the
inner product and norm on H given by

〈h1, h2〉ψ =

∫

U

h1(u)h2(u)ψ(du) =
1

vol(U)

∫

U

h1(u)h2(u) du

and ‖h‖2
ψ = 〈h, h〉ψ.

Let U denote a U-valued random variable that is a transform (function)
of W (for example, W = (X, Y ) and U = X). Partly for simplicity,
we consider the theoretical inner product 〈·, ·〉 and norm ‖ · ‖ on H given
by 〈h1, h2〉 = E[h1(U )h2(U )] and ‖h‖2 = 〈h, h〉 = E[h2(U )]. Define the
empirical inner product and empirical norm by 〈h1, h2〉n = En(h1h2) =
n−1

∑
i h1(U i)h2(U i) and ‖h‖2

n = 〈h, h〉n = n−1
∑
i h

2(U i).
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Condition 12.2.1. The random variable U has a density function fU

such that M1/vol(U) ≤ fU ≤M2/vol(U) on U , where M1 and M2 are fixed
positive numbers.

It follows from Condition 12.2.1 that M1 ≤ 1 ≤M2 and

M1‖h‖2
ψ ≤ ‖h‖2 ≤M2‖h‖2

ψ, h ∈ H. (12.2.2)

Let | · |∞ denote the l∞ norm on any Euclidean space. Let ζ denote the
metric on RJ given by ζ(γ, γ̃) = maxl 9M̄lNnl|γl − γ̃l|∞/(bl − al). The
following lemmas will be proved in Section 12.4.

Lemma 12.2.2. Let 0 < ε ≤ 1/2 and let K be a positive integer. There is

a positive constant M and there are subsets Ξk, 0 ≤ k ≤ K, of Γ̃ such that

#(Ξk) ≤
(
Mε−k

)Nn
, 1 ≤ k ≤ K;

every point in Γ is within εK of some point in ΞK (in ζ distance); and, for
1 ≤ k ≤ K, every point in Ξk is within εk−1 of some point in Ξk−1.

Let 0 < ε ≤ 1/2 and let Ξk, 0 ≤ k ≤ K be as in Lemma 12.2.2. Given

γ ∈ Γ̃, set Bγ = {g ∈ Gγ : ‖g‖ ≤ 1}. Let k be a nonnegative integer. If
k = 0, set Bγk = {0}; otherwise, let Bγk be a maximal subset of Bγ such
that any two functions in Bγk are at least εk apart in the norm ‖ ‖. Then
mineg∈Bγk

‖g − g̃‖ ≤ εk for g ∈ Bγ . Moreover,

#(Bγk) ≤
(1 + εk/2

εk/2

)Nn

≤ (3ε−k)Nn .

Set Bk = ∪γ∈Ξk
Bγk. Then, by Lemma 12.2.2,

#(Bk) ≤ (M ′ε−2k)Nn , 1 ≤ k ≤ K, (12.2.3)

for some constant M ′ ≥ 1. Also, set B = {g ∈ ∪γ∈ΓGγ : ‖g‖ ≤ 1} =

∪γ∈ΓBγ and B̃ = {g ∈ ∪
γ∈eΓGγ : ‖g‖ ≤ 1} = ∪

γ∈eΓBγ .

Lemma 12.2.3. Suppose, for a given positive integer n, that η̄γ exists

uniquely and is bounded for γ ∈ Γ̃, and that ‖η̄γ − η∗‖ is a continuous

function of γ ∈ Γ̃. There is a positive constant M such that, for 0 < ε ≤ 1,
there is a subset Γ̃′ of Γ̃ such that

#(Γ̃′) ≤ exp
(
M [log(2/ε)]Nn

)

and every point γ in Γ is within ε (in ζ distance) of some point γ̃ in Γ̃′

such that ‖η̄eγ − η∗‖ ≤ ‖η̄γ − η∗‖.

The condition that ‖η̄γ − η∗‖ is a continuous function of γ ∈ Γ̃, which is
used in the above lemma, follows from the first conclusion of Lemma 12.2.6.
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Lemma 12.2.4. Suppose Condition 12.2.1 holds. There is a positive con-
stant M such that

‖g‖∞ ≤MN1/2
n ‖g‖, γ ∈ Γ̃ and g ∈ Gγ . (12.2.4)

Lemma 12.2.5. There are positive numbers M1 and M2 such that, for
γ, γ̃ ∈ Γ̃ and g ∈ Gγ , there is a function g̃ ∈ Geγ such that ‖g̃‖ ≤ ‖g‖,
‖g̃ − g‖ ≤ M1ζ(γ, γ̃)‖g‖ and ‖g̃ − g‖∞ ≤ M2ζ(γ, γ̃)‖g‖∞. Suppose Con-
dition 12.2.1 holds and that limnN

2
n/n = 0. Then there is a positive num-

ber M3 and an event Ωn such that limn P (Ωn) = 1 and the functions g̃
above can be chosen to satisfy the additional property that ‖g − g̃‖n ≤
M3ζ(γ, γ̃)‖g‖ on Ωn for γ, γ̃ ∈ Γ̃ and g ∈ Gγ .

Lemma 12.2.6. Suppose Condition 12.1.2 holds. Let K be a positive num-
ber. There are positive numbers M1 and M2 such that if γ, γ̃ ∈ Γ̃, ζ(γ, γ̃) ≤
1, ‖η̄γ‖∞ ≤ K, and ‖η̄eγ‖ ≤ K, then ‖η̄γ − η̄eγ‖ ≤M1[ζ(γ, γ̃)]1/2 and ‖η̄γ −
η̄eγ‖∞ ≤ M2N

1/2
n [ζ(γ, γ̃)]1/2. Suppose in addition Condition 12.2.1 holds

and that limnN
2
n/n = 0. Then there is an event Ωn such that limn P (Ωn) =

1 and ‖η̄γ − η̄eγ‖n ≤M1[ζ(γ, γ̃)]1/2 for γ, γ̃ ∈ Γ̃ on Ωn.

12.3 Verification of Technical Conditions

In this section we verify Conditions 12.1.2, 12.1.4 and 12.1.6 using primitive
assumptions in some specific statistical contexts. For simplicity, we focus on
two contexts: density estimation in Section 12.3.2 and generalized regres-
sion, which includes ordinary regression as a special case, in Section 12.3.3.
Again for simplicity, we also restrict attention to the saturated model (that
is, there is no structural assumption and H is the collection of all square
integrable functions on U), so that η∗ = η. Thus Condition 12.1.1 amounts
to the assumption that η is bounded. The case of unsaturated models can
be treated similarly at the expense of more complicated notation.

Throughout this section, we take Gγ , γ ∈ Γ̃, to be tensor product free

knot spline spaces as defined in Section 12.2, where Γ̃ is the collection
of knot configurations satisfying (12.2.1) with M replaced by the larger

constant M̃ . It follows from (12.2.4) that Anγ ≤MN
1/2
n for some constant

M , where Nn is the common dimension of Gγ . Thus the requirements
limn supγ∈ΓAnγρnγ = 0 and limn supγ∈ΓA

2
nγNn/n = 0, which are used in

Proposition 12.1.1, reduce to limn supγ∈Γ ρnγN
1/2
n = 0 and limnN

2
n/n = 0

respectively.

Condition 12.3.1. N
−(c−1/2)
n . log−1/2 n and N c

n sup
γ∈eΓ ρnγ . 1 for

some c > 1/2.
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12.3.1 Preliminary Lemmas

Lemma 12.3.7. Suppose Condition 12.2.1 holds and that limnN
2
n/n = 0.

Then

sup
γ,eγ∈eΓ

sup
f∈Gγ

sup
g∈Geγ

|〈f, g〉n − 〈f, g〉|
‖f‖‖g‖ = oP (1).

Consequently, except on an event whose probability tends to zero as n→ ∞,

1
2‖g‖2 ≤ ‖g‖2

n ≤ 2‖g‖2, γ ∈ Γ̃ and g ∈ Gγ .

This lemma extends Lemma 11.4.7, which applies to fixed knot splines
and other such linear estimation spaces, except that Condition 12.2.1 is not
required in Lemma 11.4.7.

Proof of Lemma 12.3.7. It suffices to verify the lemma with Γ̃ replaced by
Γ. Let 0 < δ ≤ 1/4, let 0 < t < ∞, let K = Kn be a positive integer
to be specified later, and let B and let Ξk and Bk , 0 ≤ k ≤ K, be as
in Lemma 12.2.2 and the following paragraph with ε = δ. We will apply
Lemma 11.4.6 with s = (f, g), Vs = 〈f, g〉n − 〈f, g〉 = (En − E)(fg),
S = {(f, g) : f, g ∈ B}, Sk = {(f, g) : f, g ∈ Bk} for 0 ≤ k ≤ K, and Ωc = ∅.
It follows from (12.2.3) that

#(Sk) ≤ (M ′δ−2k)2Nn , 1 ≤ k ≤ K,

and hence that (11.4.5) holds with C3 = 1 and any C4 ≥ 4 log(M ′δ−1)Nn.
Suppose Condition 12.2.1 holds, let 0 < ε = δ ≤ 1/4, let k be a positive

integer, let γ, γ̃ ∈ Γ̃ with ζ(γ, γ̃) ≤ δk−1, and let g ∈ Bγ . Then, by (12.2.4)
and Lemma 12.2.5, there is a function g′ ∈ Beγ such that ‖g−g′‖ ≤M1δ

k−1

and ‖g− g′‖∞ ≤MM2N
1/2
n δk−1. Also, there is a function g̃ ∈ Beγ,k−1 such

that ‖g′ − g̃‖ ≤ δk−1 and hence ‖g′ − g̃‖∞ ≤ MN
1/2
n δk−1. Observe that

‖g‖∞ ≤ c1N
1/2
n , ‖g̃‖∞ ≤ c1N

1/2
n , ‖g − g̃‖ ≤ c2δ

k−1, and ‖g − g̃‖∞ ≤
c3N

1/2
n δk−1, where c1 = M , c2 = M1 + 1, and c3 = M(M2 + 1).

Let k be a positive integer, and let f, f̃ , g, g̃ be functions on U such that

‖f̃‖∞ ≤ c1N
1/2
n , ‖f − f̃‖ ≤ c2δ

k−1, ‖f − f̃‖∞ ≤ c3N
1/2
n δk−1, ‖g‖∞ ≤

c1N
1/2
n , ‖g − g̃‖ ≤ c2δ

k−1, and ‖g − g̃‖∞ ≤ c3N
1/2
n δk−1. Then

‖fg − f̃ g̃‖∞ ≤ ‖f − f̃‖∞‖g‖∞ + ‖f̃‖∞‖g − g̃‖∞ ≤ 2c1c3Nnδ
k−1,

so |(En −E)(fg − f̃ g̃)| ≤ 4c1c3Nnδ
k−1. Moreover,

var(fg − f̃ g̃) ≤ 2 var((f − f̃)g) + 2 var(f̃(g − g̃))

≤ 2‖g‖2
∞‖f − f̃‖2 + 2‖f̃‖2

∞‖g − g̃‖2

≤ 4c21c
2
2Nnδ

2(k−1)
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Since 0 < 2δ ≤ 1, it now follows from Bernstein’s inequality (11.4.2) that,
for t > 0,

P
(
|(En −E)(fg − f̃ g̃)| ≥ t2−(k−1)

)

≤ 2 exp

(
− nt2(2δ)−(k−1)

8c1[c1c22 + tc3]Nn

)
. (12.3.1)

Let K be such that 4c1c3Nnδ
K ≤ t. Given f, g ∈ B, let f̃ , g̃ ∈ BK

be such that ‖f − f̃‖∞ ≤ c3N
1/2
n δK and ‖g − g̃‖∞ ≤ c3N

1/2
n δK . Then

‖fg − f̃ g̃‖∞ ≤ 2c1c3Nnδ
K , so |(En − E)(fg − f̃ g̃)| ≤ 4c1c3Nnδ

K ≤ t.
Consequently, (11.4.4) holds with C1 = t and C2 = 0.

Let 1 ≤ k ≤ K. For f, g ∈ Bk , let f̃ , g̃ ∈ Bk−1 be such that ‖f − f̃‖ ≤
c2δ

k−1, ‖f − f̃‖∞ ≤ c3N
1/2
n δk−1, ‖g − g̃‖ ≤ c2δ

k−1, and ‖g − g̃‖∞ ≤
c3N

1/2
n δk−1. Since Nn = o(n1/2), we now conclude from (12.3.1) that

(11.4.6) holds with C5 = t, C6 = 2, and

C4 =
nt2

16c1[c1c22 + tc3]Nn
≥ 4 log(M ′δ−1)Nn

for n sufficiently large. It now follows from Lemma 11.4.6 that, for n suffi-
ciently large,

P
(

sup
γ,eγ∈Γ

sup
f∈Bγ

sup
g∈Beγ

|〈f, g〉n − 〈f, g〉| ≥3t
)

≤ 32c1[c1c
2
2 + tc3]Nn
nt2

,

which tends to zero as n → ∞. Since t can be made arbitrarily small, the
first conclusion of the lemma is valid, from which the second conclusion
follows easily.

Lemma 12.3.8. Suppose Condition 12.2.1 holds and that limnN
2
n/n = 0,

and let hn be uniformly bounded functions on U . Then

sup
γ∈Γ

sup
g∈Gγ

|〈hn, g〉n − 〈hn, g〉|
‖g‖ = OP

((Nn
n

)1/2
)
.

Proof. The proof of this result is a slight simplification of the proof of
Lemma 12.3.7.

The next, obviously valid, lemma is useful in verifying the second prop-
erty of Condition 12.1.6 in a variety of contexts.

Lemma 12.3.9. Let C1, . . . , C4 be fixed positive numbers with C3 > 1. Let
Aγ , γ ∈ Γ̃, be positive numbers that depend on n, and let Vγ , γ ∈ Γ̃, be
random variables that depend on n. Suppose that, for n sufficiently large,
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P (|Vγ | ≥ C1Aγ) ≤ C2 exp
(
−2C3Nn logn

)
for γ ∈ Γ̃. Let Γ̃′′ be a subset of

Γ̃ such that

#(Γ̃′′) ≤ exp
(
C3Nn logn

)
for n sufficiently large. (12.3.2)

Suppose that, except on an event whose probability tends to zero as n→ ∞,
for every point γ ∈ Γ, there is a point γ̃ ∈ Γ̃′′ such that Aeγ ≤ Aγ and
|Vγ − Veγ | ≤ C4Aγ . Then |Vγ | = ŌP (Aγ) uniformly over γ ∈ Γ.

12.3.2 Density Estimation

Recall the density estimation setup in Sections 11.1.1 and 11.4.4. In this
subsection, we are assuming that η∗ = η and that Assumption 11.4.6 holds
or, equivalently, that η is bounded. Thus Condition 12.1.1 holds. We also
take U = W = Y , so that Condition 12.2.1 holds. In addition, we assume
that Condition 12.3.1 holds. We will verify Conditions 12.1.2, 12.1.4 and
12.1.6.

Conditions 12.1.2 and 12.1.4 are strengthened versions of Conditions 11.2.2
and 11.2.4 and their validity follows from arguments similar to those used in
Section 11.4.4 to verify Conditions 11.2.2 and 11.2.4, except that Lemma 12.3.8
is used instead of Lemma 11.4.8.

Verification of Condition 12.1.6.

Observe that

`(η̄γ) − `(η) − [Λ(η̄γ) − Λ(η)] = (En −E)(η̄γ − η). (12.3.3)

The first property of Condition 12.1.6 follows from (12.3.3) with γ = γ∗,
Theorem 12.1.1, and the consequence of Chebyshev’s inequality that

(En −E)(η̄γ∗ − η) = OP

(‖η̄γ∗ − η‖√
n

)

= OP

( infγ ρnγ√
n

)
= OP

(
inf
γ
ρ2
nγ +

1

n

)
.

We claim that

|(En −E)(η̄γ − η)|

= ŌP

(
(log1/2 n)

[
‖η̄γ − η‖

(Nn
n

)1/2

+
Nn
n

]) (12.3.4)

uniformly over γ ∈ Γ. The second property of Condition 12.1.6 follows from
(12.3.3) and (12.3.4).

Let us now verify (12.3.4). Condition 12.3.1 implies thatN
1/2
n supγ ρnγ .

log−1/2 n. Now ‖η̄γ − η‖ . supγ ρnγ (uniformly over γ ∈ Γ̃) by Theo-

rem 12.1.1 and ‖η̄γ−η‖∞ . N
1/2
n supγ ρnγ . log−1/2 n by (12.2.4). [Choose
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g∗γ ∈ Gγ such that ‖g∗γ − η‖∞ = ρnγ ]. Let c be a fixed positive number. It
follows from Bernstein’s inequality (11.4.3) that, for c′ a sufficiently large
positive number,

P
(
|(En −E)(η̄γ − η)| ≥ c′(log1/2 n)

{
‖η̄γ − η‖(Nn/n)1/2

+Nn/n
})

≤ 2 exp
(
−2cNn logn

)
(12.3.5)

for γ ∈ Γ̃.
Let c be sufficiently large. Then, according to Lemma 12.2.3, there is a

subset Γ̃′′
n of Γ̃ such that (12.3.2) holds with C3 = c and every point γ ∈ Γ

is within n−2 of some point γ̃ ∈ Γ̃′′
n such that ‖η̄eγ − η‖ ≤ ‖η̄γ − η‖. Let γ

and γ̃ be as just described. Then, by Theorem 12.1.1 and Lemma 12.2.6,

|(En −E)(η̄γ − η̄eγ)| ≤ 2‖η̄γ − η̄eγ‖∞ .
N

1/2
n

n
≤ Nn

n
. (12.3.6)

The desired result (12.3.4) follows from (12.3.5), (12.3.6) and Lemma 12.3.9.
This completes the verification of Condition 12.1.6.

12.3.3 Generalized Regression

Recall the generalized regression setup from Sections 11.1 and 11.4.3. Here
we are assuming that η∗ = η and that Assumptions 11.4.1–11.4.5 hold.
Now η is bounded by Assumption 11.4.3, so Condition 12.1.1 holds. We
take W = (X, Y ) and U = X, so Condition 12.2.1 follows from Assump-
tion 11.4.5. In addition, we assume the following strengthened version of
Assumption 11.4.4 holds.

Assumption 12.3.1. There are positive constants M1 and M2 such that
E[e|Y−µ(X)|/M1 |X = x] ≤M2 for x ∈ X .

We also assume that Condition 12.3.1 holds. We will verify Conditions 12.1.2,
12.1.4 and 12.1.6.

Let (X1, Y1), . . . , (Xn, Yn) be a random sample of size n from the joint
distribution of X and Y . Choose M ′

1 ∈ (M1,∞). It follows from Assump-
tion 12.3.1 that P

(
|Y − µ(X)| ≥M ′

1 logn
)
≤M2n

−M ′

1/M1 and hence that

lim
n
P

(
max

1≤i≤n
|Yi − µ(Xi)| ≥M ′

1 logn
)

= 0. (12.3.7)

Moreover, by the power series expansion of the exponential function, for
m ≥ 2 and 1 ≤ i ≤ n,

E[|Yi − µ(Xi)|m|X i] ≤
m!

2
(2M2

1M2)M
m−2
1 . (12.3.8)
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Thus, by Bernstein’s inequality (11.4.2), if h is a bounded function on X ,
then

P (|〈h, Y − µ〉n| ≥ t|X1, . . . ,Xn)

≤ 2 exp
(
− nt2

2M1(2M1M2‖h‖2
n + t‖h‖∞

) (12.3.9)

for t > 0.
Recall that the log-likelihood based on the random sample and its ex-

pected value are given by `(h) = En[B(h)Y −C(h)] and Λ(h) = E[B(h)Y −
C(h)].

Verification of Condition 12.1.2.

Observe that
∣∣∣ d
dα

Λ(h1 + αh2)
∣∣
α=0

∣∣∣ = E
(
h2(X){B′(h1(X))µ(X) − C ′(h1(X))},

where µ(x) = E(Y |X = x). By Assumptions 11.4.1–11.4.3, µ(·) is bounded.
Since B′(·) and C ′(·) are continuous, they are bounded on finite intervals.
Condition 12.1.2(i) then follows from the Cauchy–Schwarz inequality. Con-
dition 12.1.2(ii) is the same as Condition 11.2.2 and has been verified in
Section 11.4.3.

Verification of Condition 12.1.4.

Lemma 12.3.10. Suppose limnN
2
n/n = 0. Then Condition 12.1.4(ii) holds.

Proof. The argument is essentially the same as that of verifying Condi-
tion 11.2.4(ii) in Section 11.4.3, except that Lemma 12.3.7 is used instead
of Lemma 11.4.7. The requirement that limnN

2
n/n = 0 ensures the appli-

cability of Lemma 12.3.7.

Lemma 12.3.11. Suppose limnN
2
n/n = 0 and supγ ρnγ = O(N−c

n ) for
some c > 1/2. Then Condition 12.1.4(i) holds.

Proof. In this proof, set ρ̄n = sup
γ∈eΓ ρnγ . By Theorem 12.1.1 applied to Γ̃

there is a positive constant K1 such that, for n sufficiently large, η̄γ exists

uniquely and ‖η̄γ‖∞ ≤ K1 for γ ∈ Γ̃. Let γ ∈ Γ̃ and g ∈ Gγ . Then

d

dα
`(η̄γ + αg)

∣∣∣
α=0

= En[gD(η̄γ)] +En[gB
′(η̄γ)(Y − µ)]

where D(η̄γ) = B′(η̄γ)µ− C ′(η̄γ) and E[gD(η̄γ)] = 0.

Let 0 < δ ≤ 1/4. Since N
1/2
n ρ̄n . N

−(c−1/2)
n for some c > 1/2 by

Condition 12.3.1, there is an ε ∈ (0, δ2) and there is a fixed positive number
c1 such that, for n sufficiently large,

N1/2
n ρ̄n ≤ c1(N

1/2
n )−(log 1/δ)/(log δ/ε1/2)
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and hence

min(c−1
1 N1/2

n ρ̄n, N
1/2
n ε(k−1)/2) ≤ δk−1 (12.3.10)

for k ≥ 1. (If N
1/2
n ε(k−1)/2 ≥ δk−1, then N

1/2
n ρ̄n ≤ c1δ

k−1.)
Let Ωn, limn P (Ωn) = 1, be an event that depends only on X1, . . . ,Xn,

and is such that the statements in Lemma 12.2.5 and Lemma 12.2.6 hold.
Let k be a positive integer, and let γ, γ̃ ∈ Γ̃ be such that ζ(γ, γ̃) ≤ εk−1.

Then, by Lemma 12.2.6, ‖η̄γ − η̄eγ‖ ≤ c2ε
(k−1)/2, ‖η̄γ − η̄eγ‖n ≤ c2ε

(k−1)/2

on Ωn, and ‖η̄γ − η̄eγ‖∞ ≤ c3N
1/2
n ε(k−1)/2 (for some fixed positive constants

c2, c3). Let Beγ,k be as in Section 12.2 and let g ∈ Bγ . Then, by Lemmas
12.2.4 and 12.2.5 (see the proof of Lemma 12.3.7), there is a g̃ ∈ Beγ,k−1 such

that ‖g−g̃‖ ≤ c4ε
k−1, ‖g−g̃‖n ≤ c5ε

k−1 on Ωn, and ‖g−g̃‖∞ ≤ c6N
1/2
n εk−1.

Now

gB′(η̄γ) − g̃B′(η̄eγ) = (g − g̃)B′(η̄γ) + g̃[B′(η̄γ) −B′(η̄eγ)]. (12.3.11)

Observe that, ‖(g − g̃)B′(η̄γ)‖n ≤ c7ε
k−1 on Ωn and ‖(g − g̃)B′(η̄γ)‖∞ ≤

c7N
1/2
n εk−1. Observe also that, ‖g̃[B′(η̄γ)−B′(η̄eγ)]‖n ≤ c8N

1/2
n ε(k−1)/2 on

Ωn and ‖g̃[B′(η̄γ) −B′(η̄eγ)]‖∞ ≤ c8Nnε
(k−1)/2. Consequently, ‖gB′(η̄γ) −

g̃B′(η̄eγ)‖n ≤ c9N
1/2
n ε(k−1)/2 on Ωn and ‖gB′(η̄γ)−g̃B′(η̄eγ)‖∞ ≤ c9Nnε

(k−1)/2.
By the same argument, c9 can be chosen so that, in addition, ‖gD(η̄γ) −
g̃D(η̄eγ)‖ ≤ c9N

1/2
n ε(k−1)/2 and ‖gD(η̄γ) − g̃D(η̄eγ)‖∞ ≤ c9Nnε

(k−1)/2.
Alternatively, by Theorem 12.1.1 and Lemma 12.3.7,

sup
γ∈eΓ

‖η̄γ − η‖
ρnγ

= O(1) and sup
γ∈eΓ

‖η̄γ − η‖n
ρnγ

= O(1)[1 + oP (1)].

(Choose g∗ ∈ Gγ such that ‖g∗ − η‖∞ = ρnγ .) Consequently, for n suffi-

ciently large, ‖η̄γ − η‖ ≤ c10ρ̄n and ‖η̄γ − η‖n ≤ c10ρ̄n on Ωn for γ ∈ Γ̃
(provided that Ωn is suitably chosen).

Given γ, γ̃ ∈ Γ̃, we have that ‖η̄γ−η̄eγ‖ ≤ 2c10ρ̄n and ‖η̄γ−η̄eγ‖n ≤ 2c10ρ̄n
on Ωn. Choose η′γ ∈ Gγ and η′

eγ ∈ Geγ such that ‖η′γ − η‖∞ ≤ ρ̄n and

‖η′
eγ − η‖∞ ≤ ρ̄n. It follows from the triangle inequality and (12.2.4) that

‖η′γ−η̄γ‖∞ ≤M(c10+1)N
1/2
n ρ̄n. Thus ‖η̄γ−η‖∞ ≤ [M(c10+1)N

1/2
n +1]ρ̄n.

Similarly, ‖η̄eγ − η‖∞ ≤ [M(c10 + 1)N
1/2
n + 1]ρ̄n. Hence ‖η̄γ − η̄eγ‖∞ ≤

2[M(c10 + 1)N
1/2
n + 1]ρ̄n.

Let ζ(γ, γ̃) ≤ εk−1 and let g ∈ Bγ and g̃ ∈ Beγ,k−1 be as above. Then [re-
call (12.2.4), (12.3.10), and (12.3.11)], ‖gB ′(η̄γ)− g̃B′(η̄eγ)‖n ≤ c11δ

k−1 on

Ωn, ‖gB′(η̄γ)− g̃B′(η̄eγ)‖∞ ≤ c11N
1/2
n δk−1, ‖gD(η̄γ)− g̃D(η̄eγ)‖ ≤ c11δ

k−1,

and ‖gD(η̄γ) − g̃D(η̄eγ)‖∞ ≤ c11N
1/2
n δk−1.

Let K = Kn be a positive integer satisfying the two inequalities specified
in the next paragraph, and let Ξk, Bγk for γ ∈ Γ̃, and Bk, 0 ≤ k ≤ K,
be as in Lemma 12.2.2 and the following paragraph with the current value
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of ε. We will apply Lemma 11.4.6 with s = (γ, g), Vs = En{g[D(η̄γ) +
B′(η̄γ)(Y − µ)]}, S = {(γ, g) : γ ∈ B and g ∈ Gγ}, and Sk = {(γ, g) : γ ∈
Ξk and g ∈ Bγk}. Now #(Sk) ≤ (M ′ε−2k)Nn for 1 ≤ k ≤ K by (12.2.3), so
(11.4.5) holds with C3 = 1 and any C4 ≥ 2 log(M ′ε−1)Nn.

Let Ωn0 denote the event that max1≤i≤n |Yi−µ(X i)| ≤M ′
1 logn with M ′

1

as in (12.3.7). Then limn P (Ωn0) = 1. Choose γ ∈ Γ and g ∈ Bγ . Let γ̃ ∈
ΞK be such that ζ(γ, γ̃) ≤ εK . Then there is a g̃ ∈ BeγK such that ‖gD(η̄γ)−
g̃D(η̄eγ)‖∞ ≤ c11N

1/2
n δK and ‖gB′(η̄γ) − g̃B′(η̄eγ)‖∞ ≤ c11N

1/2
n δK . Thus

‖gD(η̄γ)− g̃D(η̄eγ)‖∞ ≤ (Nn/n)1/2 provided that K satisfies the inequality
c11δ

K ≤ n−1/2 and |En{[gB′(η̄γ) − g̃B′(η̄eγ)](Y − µ)}| ≤ (Nn/n)1/2 on
Ωn0 provided that K satisfies the inequality M ′

1c11δ
K ≤ 1/(n1/2 logn). Let

K satisfy both inequalities. Then (11.4.4) holds with C1 = 2(Nn/n)1/2,
C2 = 0, and Ω = Ωn0.

Let 1 ≤ k ≤ K. Given γ ∈ Ξk and g ∈ Bγk, choose γ̃ ∈ Ξk−1 and
g̃ ∈ Beγ,k−1 such that ζ(γ, γ̃) ≤ εk−1, ‖gB′(η̄γ) − g̃B′(η̄eγ)‖n ≤ c11δ

k−1 on

Ωn, ‖gB′(η̄γ)− g̃B′(η̄eγ)‖∞ ≤ c11N
1/2
n δk−1, ‖gD(η̄γ)− g̃D(η̄eγ)‖ ≤ c11δ

k−1,

and ‖gD(η̄γ) − g̃D(η̄eγ)‖∞ ≤ c11N
1/2
n δk−1. Write s = (γ, g) and Vs =

V1s+V2s, where V1s = En[gD(η̄γ)] and V2s = En[gB
′(η̄γ)(Y −µ)]. Similarly,

write s̃ = (γ̃, g̃) and Ves = V1es + V2es, where V1es = En[g̃D(η̄eγ)] and V2es =
En[g̃B

′(η̄eγ)(Y −µ)]. Observe that V1s−V1es = (En−E)[gD(η̄γ)− g̃D(η̄eγ)].
Since 0 < 2δ ≤ 1, it follows from Bernstein’s inequality (11.4.2) that, for
C > 0,

P
(
|V1s − V1es| ≥ C2−(k−1)(Nn/n)1/2

)

≤ 2 exp
(
− C2(2δ)−(k−1)Nn

2c11(c11 + Cn−1/2Nn)

)
.

Similarly, V2s − V2es = En{[gB′(η̄γ) − g̃B′(η̄eγ)](Y − µ)}, so it follows from
(12.3.9) that

P
(
|V2s − V2es| ≥ C2−(k−1)(Nn/n)1/2

∣∣Ωn
)

≤ 2 exp
(
− C2(2δ)−(k−1)Nn

2c11(c11 + Cn−1/2Nn)

)
.

provided that c11 is sufficiently large. Hence

P
(
|Vs − Ves| ≥ 2C2−(k−1)(Nn/n)1/2; Ωn

)

≤ 4 exp
(
− C2(2δ)−(k−1)Nn

2c11(c11 + Cn−1/2Nn)

)
,

so (11.4.6) holds with

C4 =
C2Nn

4c11(c11 + Cn−1/2Nn)
≥ 2 log(M ′ε−1)Nn
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for C sufficiently large, C5 = 2C(Nn/n)1/2, C6 = 4, and Ω = Ωn. Conse-
quently, by Lemma 11.4.6,

P
(

sup
γ∈Γ

sup
g∈Bγ

∣∣∣ d
dα
`(η̄γ + αg)

∣∣∣
α=0

∣∣∣ ≥ 2(1 + 2C)(Nn/n)1/2
)

≤ 16c11(c11 + Cn−1/2Nn)

C2Nn
+ P

(
(Ωn ∩ Ωn0)

c
)
,

which can be made arbitrarily close to zero by making n and C sufficiently
large.

Verification of Condition 12.1.6.

It follows from (12.3.8) and Bernstein’s inequality (11.4.3) (withH = M1A)
that if h is a bounded function on X and A ≥ ‖h‖∞, then

P
(
|En{h(Y − µ)}| ≥ tM−1

1 A−1
[
(2M2

1M2)
1/2‖h‖n(Nn/n)1/2

+Nn/n
]∣∣∣X1, . . . ,Xn

)
≤ 2 exp

(
− tM

−2
1 A−2Nn

2

) (12.3.12)

for t ≥ 1.
Observe that

`(η̄γ)−`(η) − [Λ(η̄γ) − Λ(η)]

= (En −E){[B(η̄γ) −B(η)]µ − [C(η̄γ) − C(η)]}
+En{[B(η̄γ) −B(η)](Y − µ)}.

(12.3.13)

Lemma 12.3.12. Suppose Condition 12.3.1 holds. Then

(En −E){[B(η̄γ) −B(η)]µ − [C(η̄γ) − C(η)]}

= ŌP

(
(log1/2 n)

[
‖η̄γ − η‖

(Nn
n

)1/2

+
Nn
n

])

uniformly over γ ∈ Γ.

Proof. The proof of this result is similar to that of Condition 12.1.6(ii) in
the density estimation context.

Lemma 12.3.13. Suppose Condition 12.3.1 holds. Then

|En{[B(η̄γ) −B(η)](Y − µ)}|

= ŌP

(
(log1/2 n)

[
‖η̄γ − η‖

(Nn
n

)1/2

+
Nn
n

])

uniformly over γ ∈ Γ.
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Proof. Note that ‖η̄γ − η‖ . sup
γ∈eΓ ρnγ and ‖η̄γ − η‖∞ . log−1/2 n

uniformly over γ ∈ Γ̃. (See the arguments in Section 12.3.2.) Set hγ =

B(η̄γ)−B(η) for γ ∈ Γ̃. Then ‖hγ‖ . ‖η̄γ−η‖, ‖h2
γ‖ . (log−1/2 n)‖η̄γ −η‖

and ‖h2
γ‖∞ . log−1 n uniformly over γ ∈ Γ̃. Let c1 be a fixed posi-

tive number. It now follows from Bernstein’s inequality (11.4.2) [note that
‖hγ‖2

n = En(h2
γ)] that, for c2 a sufficiently large positive number,

P

(
‖hγ‖2

n − ‖hγ‖2 ≥ c22

[
‖η̄γ − η‖

(Nn
n

)1/2

+
Nn
n

])

≤ 2 exp
(
−2c1Nn logn

)

for γ ∈ Γ̃ and hence that, for c2 a sufficiently large positive number,

P (Ωcnγ) ≤ 2 exp
(
−2c1Nn logn

)
, γ ∈ Γ̃.

where Ωnγ denotes the event that ‖hγ‖n ≤ c2[‖η̄γ − η‖ + (Nn/n)1/2]. It
follows from (12.3.12) that, for a sufficiently large positive number c3,

P
(
|En{hγ(Y − µ)}| ≥ c3(log1/2 n)

[
‖η̄γ − η‖(Nn/n)1/2

+Nn/n
]∣∣∣X1, . . . ,Xn

)
≤ 2 exp

(
−2c1Nn logn

)

on Ωnγ for γ ∈ Γ̃ and hence that

P
(
|En{hγ(Y − µ)}| ≥ c3(log1/2 n)

[
‖η̄γ − η‖(Nn/n)1/2

+Nn/n
])

≤ 4 exp
(
−2c1Nn logn

)

(12.3.14)

for γ ∈ Γ̃.
Let c1 be sufficiently large. Then, according to Lemma 12.2.3, there is a

subset Γ̃′′
n of Γ̃ such that (12.3.2) holds with C3 = c1 and every point γ ∈ Γ

is within n−3 of some point γ̃ ∈ Γ̃′′
n such that ‖η̄eγ − η‖ ≤ ‖η̄γ − η‖. Let γ

and γ̃ be as just described. By Lemma 12.2.6,

|En{[B(η̄γ) −B(η̄eγ)](Y − µ)}| . ‖η̄γ − η̄eγ‖∞ max
1≤i≤n

|Yi − µ(X i)|

. N1/2
n n−3/2 logn

. Nn/n

(12.3.15)

provided that |Yi − µ(Xi)| ≤M ′
1 logn for 1 ≤ i ≤ n.

The desired result follows from (12.3.2), (12.3.7), (12.3.14), (12.3.15),
and Lemma 12.3.9.
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Lemma 12.3.14. Suppose Condition 12.3.1 holds. Then Condition 12.1.6
holds.

Proof. Now E
(
En{[B(η̄γ∗) −B(η)](Y − µ)}

∣∣X1, . . . ,Xn

)
= 0 and

var
(
En{[B(η̄γ∗) −B(η)](Y − µ)}

∣∣X1, . . . ,Xn

)
= O

(‖η̄γ∗ − η‖2
n

n

)
,

so

E
[(
En{[B(η̄γ∗) −B(η)](Y − µ)}

)2]
= OP

(‖η̄γ∗ − η‖2

n

)
.

Since ‖η̄γ∗ − η‖ = inf
γ∈eΓ ρnγ , it follows from Chebyshev’s inequality that

En{[B(η̄γ∗) −B(η)](Y − µ)} = OP

( inf
γ∈eΓ ρnγ√
n

)
.

Similarly,

(En −E){[B(η̄γ∗) −B(η)]µ− [C(η̄γ∗) − C(η)]} = OP

( inf
γ∈eΓ ρnγ√
n

)
.

The first property of Condition 12.1.6 now follows from (12.3.13) with
γ = γ∗. The second property follows from (12.3.13) and Lemmas 12.3.12
and 12.3.13.

Ordinary regression.

The framework of generalized regression, as considered above, includes or-
dinary regression as a special case. Specifically, let B(η) = 2η for η ∈ R and

Ψ(dy) = π−1/2e−y
2

dy for y ∈ R. Then S = R. Also, C(η) = η2 and A(η) =
η for η ∈ R, so the regression function µ equals the response function η.
Suppose that Y has finite second moment. The pseudo-log-likelihood and
its expectation are given, respectively, by l(h; X, Y ) = 2h(X)Y −h2(X) =
−[Y − h(X)]2 + Y 2 and Λ(h) = −E{[Y − h(X)]2} + E(Y 2). Assump-
tion 11.4.3 is that the regression function is bounded. Let h1 and h2 be
bounded functions on X . Then

d

dα
Λ(h1 + αh2)

∣∣∣
α=0

= 2E{h2(X)[µ(X) − h1(X)]}

and
d2

dα2
Λ(h1 + α(h2 − h1)) = −2‖h2 − h1‖2,

so Condition 12.1.2 follows from the boundedness of the regression function
and of the density function of X. Also,

d

dα
`(µ̄γ + αg)

∣∣∣
α=0

= 2En{g[Y − µ̄γ(X)]}
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and
d2

dα2
`(g1 + α(g2 − g1)) = −2‖g2 − g1‖2

n.

Thus Condition 12.1.4(ii) follows from Lemma 12.3.7, while Condition 12.1.4(i)
requires Lemma 12.3.11 for its verification.

12.4 Proofs of Lemmas in Section 12.2

In this section we verify Lemmas 12.2.2–12.2.6.
Consider a free knot sequence γ = (γ1, . . . , γJ) such that a < γ1 ≤ · · · ≤

γJ < b and

γj2−1 − γj2−m
γj1−1 − γj1−m

≤ M̄, 2 ≤ j1, j2 ≤ J +m, (12.4.1)

where γ1−m = · · · = γ0 = a and γJ+1 = · · · = γJ+m = b.
Observe that

J+m∑

j=1

(γj−1 − γj−m) =

J+m−1∑

j=0

γj −
J∑

j=1−m

γj

=

J+m−1∑

j=J+1

γj −
−1∑

j=1−m

γj

= (m− 1)(b− a).

Thus it follows from (12.4.1) that

γj−1 − γj−m ≥ (m− 1)(b− a)

M̄(J +m)
, 2 ≤ j ≤ J +m. (12.4.2)

The requirement (12.4.1) is stronger than the bound on the global mesh
ratio of γ that was considered by de Boor (1976). To see this, note let γ ∈ Γ
and note that γ1 − γ1−m = γ1 − γ2−m, γJ+m − γJ = γJ+m−1 − γJ , and

γj2 − γj2−m
γj1 − γj1−m

≤ γj2−1 − γj2−m + γj2 − γj2+1−m
γj1−1−γj1−m

2 +
γj1−γj1+1−m

2

for 1 ≤ j1, j2 ≤ J +m (the numerator is increased and the denominator is
decreased), so it follows from (12.4.1) that

γj2 − γj2−m
γj1 − γj1−m

≤ 2M̄, 1 ≤ j1, j2 ≤ J +m. (12.4.3)

Example 12.4.1. Suppose that J = m − 1 and hence that J + m =
2m − 1, and suppose also that γj = (a + b)/2 for 1 ≤ j ≤ m − 1. Then
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γj−1 −γj−m = (b−a)/2 for 2 ≤ j ≤ 2m−1, so 1 is the smallest value of m
that satisfies (12.4.1). Also, γj − γj−m = (b − a)/2 for 1 ≤ j ≤ m− 1 and
for m + 1 ≤ j ≤ 2m − 1, while γm − γ0 = b − a, so 1 is also the smallest
value of M̄ that satisfies (12.4.3).

Observe that
∑J+m

j=1 (γj−γj−m) = m(b−a). Thus it follows from (12.4.3)
that

γj − γj−m ≥ m(b− a)

2M̄(J +m)
, 1 ≤ j ≤ J +m, (12.4.4)

and

γj − γj−m ≤ 2M̄m(b− a)

J +m
, 1 ≤ j ≤ J +m, (12.4.5)

Proof of Lemma 12.2.2. We first verify this result when L = 1, J = J1 ≥ 1,
γj = γ1j , γ = γ1, U = U1 = [a, b] = [a1, b1], m = m1 ≥ 2, and Nn = Nn1 =
J + m. Here the metric ζ is given by ζ(γ, γ̃) = 9M̄Nn|γ − γ̃|∞/(b − a).
Let 0 ≤ ε1 ≤ 2, let γ ∈ Γ, and let γ̃ be a free knot sequence such that
ζ(γ, γ̃) ≤ ε1 and hence

2|γ − γ̃|∞ ≤ ε1(b− a)

4M̄Nn
.

Thus, by (12.4.2), γ̃ satisfies (12.4.1) with M̄ replaced by

M̄
m− 1 + ε1/4

m− 1 − ε1/4
≤ 3M̄,

so γ̃ ∈ Γ̃. Let Γ̃ε1 denote the collection of all such free knot sequences γ̃ as

γ ranges over Γ. Then Γ̃ε1 ⊂ Γ̃ and Γ̃0 = Γ.
Given a positive integer Λ, let φ(u; Λ) denote the function on [a, b] defined

by

φ(u; Λ) = a+
b− a

Λ

[
Λ
u− a

b− a
+

1

2

]
, a ≤ u ≤ b,

where [·] denotes the greatest integer function. Observe that φ(u; Λ) is
nondecreasing in u, φ(a; Λ) = a, φ(b; Λ) = b, φ(u; Λ) ∈ {a+ i(b−a)/Λ : i =
0, . . . ,Λ}, and

u− b− a

2Λ
< φ(u; Λ) ≤ u+

b− a

2Λ
, a ≤ u ≤ b.

Given the free knot sequence γ, consider the transformed sequence φ(γ; Λ) =
(φ(γj ; Λ)). Let 0 < ε ≤ 1. Observe that

|φ(γ; Λ) − γ|∞ ≤ b− a

2Λ

and hence that if
Λ ≥ 4ε−1M̄Nn, (12.4.6)
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then ζ(γ, φ(γ,Λ)) ≤ ε. Let Λ be the smallest integer satisfying (12.4.6).
Then Λ−1 ≤ 4ε−1M̄Nn. [Observe also that if (12.4.6) holds, u1, u2 ∈ [a, b],
and

u2 − u1 ≥ (b− a)ε

4M̄Nn
,

then
Λ(u2 − u1)

b− a
≥ 1

and hence φ(u2; Λ) > φ(u1; Λ).]

Suppose that (12.4.6) holds and let 0 ≤ ε0 ≤ 1. Set Γ̃′
ε0,ε = {φ(γ; Λ) :

γ ∈ Γ̃ε0} ⊂ Γ̃ε0+ε. Then every point in Γ̃ε0 is within ε of some point in

Γ̃′
ε0,ε. Observe that

#(Γ̃′
ε0,ε) ≤

(
(m− 1)(Λ − 1)

J

)
.

(Note that the multiplicity of each free knot is at most m− 1.)
Let I be an integer with I ≥ J . Then

1 =

I∑

y=0

(
I

y

)(J
I

)y(
1 − J

I

)I−y
≥

(
I

J

)(J
I

)J(
1 − J

I

)I−J
,

so
(
I

J

)
≤

( I
J

)J(
1 − J

I

)J−I

=
( I
J

)J((
1 − J

I

)−
(

I
J −1

))J

≤
( I
J

)J
eJ .

(Observe that (d/dx)[x + (1 − x) log(1 − x)] > 0 for 0 < x < 1, so x +
(1 − x) log(1 − x) > 0 for 0 < x < 1 and hence (1 − x)−(1/x−1) < e for
0 < x < 1.) Consequently,

#(Γ̃′
ε0,ε) ≤

[
4eε−1M̄(m− 1)

(
1 +

m

J

)]J
≤ (4eε−1m2M̄)Nn .

Consider now the general case L ≥ 1. Here ζ(γ, γ̃) = maxl ζl(γl, γ̃l) and

Λl ≥ 4ε−1M̄lNnl, 1 ≤ l ≤ L. (12.4.7)

Let Γ̃ be the Cartesian product of Γ̃l, 1 ≤ l ≤ L, and let Γ̃ε1 denote the

Cartesian product of Γ̃lε1 , 1 ≤ l ≤ L. Then Γ̃ε1 ⊂ Γ and Γ̃0 = Γ. Let

Γ̃′
ε0,ε ⊂ Γ̃ε0+ε denote the Cartesian product of Γ̃′

lε0,ε
, 1 ≤ l ≤ L. Then every
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point in Γ̃ε0 is within ε of some point in Γ̃′
ε0,ε. Now Nn =

∏
lNnl ≥

∑
lNnl,

so
#(Γ̃ε0,ε) ≤ (4eε−1 max

l
M̄lm

2
l )
Nn .

Let 0 < ε ≤ 1/2, let K be a positive integer, and set ΞK = Γ̃0,εK ⊂ Γ̃

and Ξk = Γ̃εK+···+εk+1,εk ⊂ Γ̃ for 0 ≤ k ≤ K − 1. Then

#(Ξk) ≤ (4eε−k max
l
M̄lm

2
l )
Nn , 1 ≤ k ≤ K.

Moreover, every point in Γ = Γ̃0 is within εK of some point in Γ̃0,εK = ΞK ;

and, for 1 ≤ k ≤ K, every point in Ξk ⊂ Γ̃εK+···+εk is within εk−1 of some

point in Γ̃εK+···+εk,εk−1 = Ξk−1.

Proof of Lemma 12.2.3. For each point γ ′ ∈ Γ̃′
0,ε/2 (which is defined as in

the proof of Lemma 12.2.2), there is a point γ̃ in the compact set {γ ∈ Γ̃ :

ζ(γ ′,γ) ≤ ε/2} that minimizes the function ‖η̄γ−η∗‖ over this set. Let Γ̃0,ε

denote the collection of all such points γ̃. Then Γ̃0,ε ⊆ Γ̃ε and #(Γ̃0,ε) ≤
#(Γ̃′

0,ε/2) ≤ (8eε−1 maxl M̄lm
2
l )
Nn . Given γ ∈ Γ, choose γ ′ ∈ Γ̃′

0,ε/2 such

that ζ(γ,γ′) ≤ ε/2 and let γ̃ ∈ Γ̃0,ε be as defined above. Then ζ(γ, γ̃) ≤ ε
and ‖η̄eγ − η∗‖ ≤ ‖η̄γ − η∗‖.

Suppose that L = 1. Let Bγj be the normalized B-spline corresponding
to the knot sequence γj−m, . . . , γj . According to Theorem 4.2 of DeVore
and Lorentz (1993, Chapter 5), there is a positive constant Dm ≤ 1 such
that

D2
m

m(b− a)

∑

j

b2j (γj − γj−m) ≤
∥∥∥∥

∑

j

bjBγj

∥∥∥∥
2

ψ

≤ 1

m(b− a)

∑

j

b2j (γj − γj−m)

(12.4.8)
and

Dmmax
j

|bj | ≤
∥∥∥∥

∑

j

bjBγj

∥∥∥∥
∞

≤ max
j

|bj |. (12.4.9)

It follows from (12.4.4), (12.4.5) and (12.4.8) that

D2
m

2M̄(J +m)

∑

j

b2j ≤
∥∥∥∥

∑

j

bjBγj

∥∥∥∥
2

ψ

≤ 2M̄

J +m

∑

j

b2j , γ ∈ Γ.

(12.4.10)
For general L, set m =

∏
lml, D =

∏
lDml

, and M̄ =
∏
l M̄l,and note

that Nn =
∏
l(Jl+ml). Also, let J denote the Cartesian product of the sets

{1, . . . , Jl+ml
}, 1 ≤ l ≤ L and, for j = (j1, . . . , jL) ∈ J , consider the tensor

product B-spline Bγj(u) = Bγ1j1(u1) . . . BγLjL(uL). The support supp(h)
of a function h on a set U is defined by supp(h) = {u ∈ U : h(u) 6= 0}.
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Lemma 12.4.15. Let γ, γ̃ ∈ Γ̃ and j ∈ J . Then

D2

6LM̄Nn

∑

j

b2j ≤
∥∥∥∥

∑

j

bjBγj

∥∥∥∥
2

ψ

≤ 6LM̄

Nn

∑

j

b2j ; (12.4.11)

Dmax
j

|bj | ≤
∥∥∥∥

∑

j

bjBγj

∥∥∥∥
∞

≤ max
j

|bj |; (12.4.12)

ψ
(
supp(Bγj)

)
≤ 6LM̄m

Nn
; (12.4.13)

#{j ∈ J : Bγj(u) 6= 0} ≤ m for u ∈ U ; (12.4.14)

#{k ∈ J : BγjBeγk is not identically zero on U} ≤ 38LM̄2m; (12.4.15)

‖Bγj −Beγj‖∞ ≤ Lζ(γ, γ̃); (12.4.16)

‖Bγj −Beγj‖2
ψ ≤ L26L2M̄m

Nn
ζ2(γ, γ̃); (12.4.17)

∥∥∥∥
∑

j

bjBγj −
∑

j

bjBeγj

∥∥∥∥
2

ψ

≤ 8L262L38LM̄4m2

D2
ζ2(γ, γ̃)

∥∥∥∥
∑

j

bjBγj

∥∥∥∥
2

ψ

; (12.4.18)

and

∥∥∥∥
∑

j

bjBγj −
∑

j

bjBeγj

∥∥∥∥
∞

≤ 2mL

D
ζ(γ, γ̃)

∥∥∥∥
∑

j

bjBγj

∥∥∥∥
∞

. (12.4.19)

Proof. Equation (12.4.11) follows from (12.4.8), with M̄ replaced by 3M̄ ,
and induction; (12.4.12) follows from (12.4.9) and induction; since ψ(supp(Bγj)) =∏
l[(γl,j−γl,j−ml

)/(bl−al)], (12.4.13) follows from (12.4.5) with M̄l replaced
by 3M̄l.

To verify (12.4.14), let ul ∈ Ul and suppose first that ul is not a knot.
Then γl,j0 < ul < γl,j0+1 for some j0. If Bγlj(ul) > 0, then γl,j−ml

< ul <
γl,j and hence j0 + 1 ≤ j ≤ j0 + ml. Suppose, instead, that u = γl,j0 . If
Bγlj(ul) > 0, then γl,j−ml

< γl,j0 < γl,j , so j0 + 1 ≤ j ≤ j0 +ml − 1. In
either case,

#{j ∈ J : Bγj 6= 0} =
∏

l

#{j ∈ Jl : Bγlj(ul) 6= 0} ≤
∏

l

ml = m.
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To verify (12.4.15), given j ∈ Jl, let k1 (k2) be the smallest (largest) value
of k in Jl such that BγljBeγlk is not identically zero. Then γ̃l,k1 > γl,j−ml

and γ̃l,k2−ml
< γl,j . It follows from (12.4.5) (with M̄l replaced by 3M̄l) that

γl,k2−ml
< γl,j ≤ γl,j−ml

+
6M̄lml(b− a)

Jl +ml
.

Let I be the smallest integer such that I ≥ 62M̄2
l . It follows from (12.4.4)

that

γ̃l,k1+Iml
≥ γ̃l,k1 +

Iml(b− a)

2M̄l(Jl +ml)
> γl,j−ml

+
Iml(b− a)

6M̄l(Jl +ml)
≥ γl,k2−ml

and hence that k2 < k1 + (I + 1)ml. Consequently,

#{k ∈ Jl : BγljBeγlk is not identically zero on Ul}
≤ (I + 1)ml ≤ (62M̄2

l + 2)ml ≤ 38M̄2
l ml,

which yields the desired result.
To verify (12.4.16), we first observe that, as a consequence of Definition

4.12 and Theorems 2.51, 2.55, and 4.27 of Schumaker (1981), the partial
derivative of Bγlj with respect to the knot γl,k for j − ml ≤ k ≤ j is
bounded in absolute value by

max

{
1

γl,j−1 − γl,j−ml

,
1

γl,j − γl,j+1−ml

}
.

Thus, by (12.4.2),

‖Bγlj −Beγlj
‖∞ ≤ 3M̄l(ml + 1)Nl

(ml − 1)(bl − al)
|γl − γ̃l|∞

≤ ml + 1

3(ml − 1)
ζl(γ, γ̃) ≤ ζl(γ, γ̃).

The desired result now follows from the observation that normalized B-
splines lie between 0 and 1.

Equation (12.4.17) follows from (12.4.13) and (12.4.16).
Set

Aγeγj = {k ∈ J : 〈Bγj −Beγj , Bγk −Beγk〉ψ 6= 0}, γ, γ̃ ∈ Γ̃ and j ∈ J .
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Then #(Aγeγj) ≤ 38L4M̄2m by (12.4.15). Consequently, by (12.4.11) and
(12.4.17),

∥∥∥∥
∑

j

bjBγj −
∑

j

bjBeγj

∥∥∥∥
2

ψ

=
∑

j

∑

k∈Aγ eγj

bjbk〈Bγj −Beγj , Bγk −Beγk〉ψ

≤
∑

j

∑

k∈Aγ eγj

(b2j + b2k
2

)(‖Bγj −Beγj‖2
ψ + ‖Bγk −Beγk‖2

ψ

2

)

≤ 8L26L38LM̄3m2

Nn
ζ2(γ, γ̃)

∑

j

b2j

≤ 8L262L38LM̄4m2

D2
ζ2(γ, γ̃)

∥∥∥∥
∑

j

bjBγj

∥∥∥∥
2

ψ

,

so (12.4.18) holds.
It follows from (12.4.14) that, for γ, γ̃ ∈ Γ and u ∈ U , there are at most

2m values of j ∈ J such that Bγj(u)−Beγj(u) 6= 0. Thus, by (12.4.12) and
(12.4.16),

∥∥∥∥
∑

j

bjBγj −
∑

j

bjBeγj

∥∥∥∥
∞

≤ 2mL

D
ζ(γ, γ̃)

∥∥∥∥
∑

j

bjBγj

∥∥∥∥
∞

,

so (12.4.19) holds.

Proof of Lemma 12.2.4. It follows from (12.4.11) and (12.4.12) that

∥∥∥∥
∑

j

bjBγj

∥∥∥∥
2

∞

≤ max
j
b2j ≤

6LM̄Nn
D2

∥∥∥∥
∑

j

bjBγj

∥∥∥∥
2

ψ

.

The desired result now follows from (12.2.2).

Recall that U is defined as a transform of W . Let U 1, . . . ,Un be the
corresponding transforms of W 1, . . . ,W n, respectively. Recall the defini-
tion of empirical inner product and empirical norm in Section 12.2. Observe
that En(h) = 〈1, h〉n.
Lemma 12.4.16. Suppose Condition 12.2.1 holds and that Nn = o(n1−ε)
for some ε > 0. Then there is a constant M and there is an event Ωn such
that limn P (Ωn) = 1 and

∥∥∥∥
∑

j

βjBγj −
∑

j

βjBeγj

∥∥∥∥
2

n

≤Mζ2(γ, γ̃)

∥∥∥∥
∑

j

βjBγj

∥∥∥∥
2

on Ωn

for γ, γ̃ ∈ Γ̃ and βj ∈ R for j ∈ J .
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Proof. It follows from (12.4.16) that

‖Bγj−Beγj‖2
n

≤ ‖Bγj −Beγj‖2
∞

1

n
#

(
{i : U i ∈ supp(Bγj) ∪ supp(Beγj)}

)

≤ L2ζ2(γ, γ̃)
1

n
#

(
{i : U i ∈ supp(Bγj) ∪ supp(Beγj)}

)

for γ, γ̃ ∈ Γ̃ and j ∈ J . It follows from Condition 12.2.1, (12.4.13), and the
assumption on Nn by a straightforward application of Bernstein’s inequal-
ity (11.4.2) [or by Theorem 12.2 of Breiman, Friedman, Olshen and Stone
(1984)] that

sup
γ,eγ∈eΓ

max
j∈J

1

n
#

(
{i : U i ∈ supp(Bγj)∪supp(Beγj)}

)

≤ 6L2M̄M2m

Nn
[1 + oP (1)].

Let Ωn denote the event that

sup
γ,eγ∈eΓ

max
j∈J

1

n
#

(
{i : U i ∈ supp(Bγj) ∪ supp(Beγj)}

)
≤ 6L4M̄M2m

Nn
.

Then limn P (Ωn) = 1 and

‖Bγj −Beγj‖2
n ≤ 4L26LM̄M2m

Nn
ζ2(γ, γ̃) on Ωn (12.4.20)

for γ, γ̃ ∈ Γ̃ and j ∈ J .
Set Aγeγjn = {k ∈ J : 〈Bγj − Beγj , Bγk − Beγk〉n 6= 0} for γ, γ̃ ∈ Γ̃

and j ∈ J . Then #(Aγeγjn) ≤ 38L4M̄2m by (12.4.15). Consequently, by
(12.4.11), (12.4.20), and Condition 12.2.1,

∥∥∥∥
∑

j

βjBγj −
∑

j

βjBeγj

∥∥∥∥
2

n

=
∑

k

∑

k∈Aγ eγjn

βjβk〈Bγj −Beγj , Bγk −Beγk〉n

≤
∑

j

∑

k∈Aγ eγjn

(β2
j + β2

k

2

)(‖Bγj −Beγj‖2
n + ‖Bγk −Beγk‖2

n

2

)

≤ 16L26L38LM̄3M2m
2

Nn
ζ2(γ, γ̃)

∑

j

β2
j

≤ 16L262L38LM̄4M2m
2

D2M1
ζ2(γ, γ̃)

∥∥∥∥
∑

j

βjBγj

∥∥∥∥
2

on Ωn for γ, γ̃ ∈ Γ̃ and βj ∈ R for j ∈ J , as desired.
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Proof of Lemma 12.2.5. Set ε = ζ(γ, γ̃). Write g =
∑

j βjBγj and set g′ =∑
j βjBeγj . It follows from (12.2.2) and (12.4.18) that ‖g− g′‖ ≤ c1ε‖g‖ for

some constant c1, and it follows from (12.4.19) that ‖g − g′‖∞ ≤ c2ε‖g‖∞
for some constant c2.

If ‖g′‖ ≤ ‖g‖, then g̃ = g′ has the properties specified in the first result
of the lemma. Suppose, instead, that ‖g′‖ > ‖g‖ and set λ = ‖g‖/‖g′‖.
Then (1+ c1ε)

−1 ≤ λ < 1, ‖λg′‖ = ‖g‖, and ‖g−λg′‖ ≤ ‖g− g′‖ ≤ c1ε‖g‖.
(Note that 〈g, g′〉 ≤ ‖g‖‖g′‖ by the Cauchy–Schwarz inequality.) Moreover,

‖g′ − λg′‖∞ = (‖g′‖ − ‖g‖)‖g
′‖∞

‖g′‖

≤ ‖g′ − g‖(‖g‖∞ + ‖g′ − g‖∞)

‖g‖
≤ c1ε(1 + c2)‖g‖∞,

so ‖g−λg′‖∞ ≤ (c1 +c2+c1c2)ε‖g‖∞ and hence g̃ = λg′ has the properties
specified in the first result.

Let Ωn1 be the event Ωn in Lemma 12.4.16, let Ωn2 be the event that
‖g‖2

n ≤ 2‖g‖2 for γ ∈ Γ̃, and set Ωn = Ωn1 ∪ Ωn2. It follows from Lemmas
12.4.16 and 12.3.7 that limn P (Ωn) = 1. Let ε, g′, and λ be as in the proof of
the first result of the lemma. Then for some constant c3, ‖g−g′‖n ≤ c3ε‖g‖
on Ωn. If ‖g′‖ ≤ ‖g‖ , then g̃ = g′ satisfies the desired additional property.
Otherwise,

‖g − λg′‖n ≤ ‖g − g′‖n + (1 − λ)‖g′‖n
≤ c3ε‖g‖+ 2

( 1

λ
− 1

)
‖g‖

≤ (c3 + 2c1)ε‖g‖
on Ωn, so g̃ = λg′ satisfies the desired additional property.

Proof of Lemma 12.2.6. Let K1 > K. Choose γ, γ̃ ∈ Γ̃ such that ‖η̄γ‖∞ ≤
K and ‖η̄eγ‖∞ ≤ K, and set ε = ζ(γ, γ̃). By Lemma 12.2.5, there is a fixed
positive number c1 (not depending on γ, γ̃) and there are functions η′γ ∈ Gγ

and η′
eγ ∈ Geγ such that ‖η′γ − η̄eγ‖∞ ≤ c1ε and ‖η′

eγ − η̄γ‖∞ ≤ c1ε. Without
loss of generality, we can assume that ε ≤ 1 and that ε is sufficiently small
that ‖η′γ‖∞ ≤ K1 and ‖η′

eγ‖∞ ≤ K1. Then, by Condition 12.1.2, there is a

fixed positive number c2 such that Λ(η̄γ)−Λ(η′
eγ) ≤ c2ε and Λ(η̄eγ)−Λ(η′γ) ≤

c2ε. Since Λ(η′
eγ) ≤ Λ(η̄eγ), we conclude that Λ(η̄γ) − Λ(η′γ) ≤ 2c2ε. On the

other hand, by Condition 12.1.2, Λ(η̄γ) − Λ(η′γ) ≥ c3‖η̄γ − η′γ‖2 for some

constant c3, so ‖η̄γ − η′γ‖ ≤ (2c2c
−1
3 ε)1/2 and hence

‖η̄γ − η̄eγ‖ ≤ ‖η̄γ − η′γ‖ + ‖η′γ − η̄eγ‖
≤ (2c2c

−1
3 ε)1/2 + c1ε

≤ [(2c2c
−1
3 )1/2 + c1]ε

1/2.
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Moreover, by (12.2.2), (12.4.11), and (12.4.12), ‖η̄γ −η′γ‖∞ ≤ c4N
1/2
n ‖η̄γ −

η′γ‖. So,

‖η̄γ − η̄eγ‖∞ ≤ ‖η̄γ − η′γ‖∞ + ‖η′γ − η̄eγ‖∞

≤
(2c2c

2
4

c3

)1/2

N1/2
n ε1/2 + c1ε.

By Lemma 12.3.7, there is an event Ωn such that limn P (Ωn) = 1 and

‖g‖n ≤ 2‖g‖ on Ωn for γ ∈ Γ̃ and g ∈ Gγ . Thus, by the first paragraph of
this proof, ‖η̄γ−η′γ‖n ≤ 2‖η̄γ−η′γ‖ ≤ 2(2c2c

−1
3 ε)1/2 and hence ‖η̄eγ−η̄γ‖n ≤

[2(2c2c
−1
3 )1/2 + c1)]ε

1/2 on Ωn for γ, γ̃ as in the first paragraph.


