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Summary. Recent results for case–control sampling suggest when the covariate distribution is constrained by gene-
environment independence, semiparametric estimation exploiting such independence yields a great deal of efficiency gain.
We consider the efficient estimation of the treatment–biomarker interaction in two-phase sampling nested within random-
ized clinical trials, incorporating the independence between a randomized treatment and the baseline markers. We develop
a Newton–Raphson algorithm based on the profile likelihood to compute the semiparametric maximum likelihood estimate
(SPMLE). Our algorithm accommodates both continuous phase-one outcomes and continuous phase-two biomarkers. The pro-
file information matrix is computed explicitly via numerical differentiation. In certain situations where computing the SPMLE
is slow, we propose a maximum estimated likelihood estimator (MELE), which is also capable of incorporating the covariate
independence. This estimated likelihood approach uses a one-step empirical covariate distribution, thus is straightforward to
maximize. It offers a closed-form variance estimate with limited increase in variance relative to the fully efficient SPMLE. Our
results suggest exploiting the covariate independence in two-phase sampling increases the efficiency substantially, particularly
for estimating treatment–biomarker interactions.

Key words: Case-only estimator; Estimated likelihood; Gene-environment independence; Newton–Raphson algorithm; Pro-
file likelihood; Treatment–biomarker interactions.

1. Introduction
In clinical and epidemiological studies, the effect of an in-
tervention is often influenced by variables reflecting indi-
vidual susceptibility. In pharmacogenetic studies, there is
a growing body of evidence supporting interactions be-
tween genetic polymorphisms and antihypertensive treat-
ments (Arnett et al., 2005). Identifying the effect-modifying
genotypes, or other types of biomarkers helps to disclose the
etiology of diseases, and to understand the mechanism of
the intervention effect. Because bioassays are often expen-
sive and there may be many candidate markers, it is com-
mon to measure biomarkers only in a case–control sample
from the study cohort (Breslow and Day, 1980), or in a strat-
ified case–control sample if additional covariates are involved
in forming the strata (White, 1982; Scott and Wild, 1991).
This often constitutes a two-phase outcome-dependent sam-
pling design, in that the first-phase data contain the response
ascertained for every subject, and perhaps a collection of
“cheap” covariates (e.g., treatment assignment, demographic
factors); the second-phase data contain the biomarker data for
a case–control subsample. If the phase-one cohort is a random-
ized clinical trial, the treatment assignment is independent
of the phase-two biomarkers measured from baseline-stored
blood. This article pertains to the potential efficiency gain
when exploiting this independence in two-phase randomized
trials.

Statistical methods for two-phase sampling have been
studied by many authors. When the covariate partially ob-
served in the second phase is discrete, Ibrahim (1990) uses
a weighted expectation–maximization (EM) algorithm to es-
timate the parameters in a generalized linear model. Dif-
ficulty arises when the missing covariates are continuous:
numerical integration or Monte Carlo methods are needed
when a parametric covariate distribution is assumed (Ibrahim,
Chen, and Lipsitz, 1999). To avoid model misspecification
and ease the computation, a number of pseudolikelihood
methods have been proposed, including the inverse proba-
bility weighted estimator (WE) (Flanders and Greenland,
1991; Lipsitz, Ibrahim, and Zhao, 1999), conditional likeli-
hood (Breslow and Cain, 1988), estimated likelihood (Car-
roll and Wand, 1991; Pepe and Fleming, 1991), mean score
estimators (Reilly and Pepe, 1995), and pseudoscore estima-
tors (Chatterjee, Chen, and Breslow, 2003). These approaches
yield a consistent estimator of the regression parameters, yet
they are not efficient in general. Robins, Rotnitzky, and Zhao
(1994) introduced a class of semiparametric estimators based
on inverse probability weighted estimating equations, and ob-
tained an efficient estimator that attains the semiparamet-
ric variance bound. However, the implementation is difficult.
When the first-phase data can be reduced to discrete stra-
tum labels, a profile likelihood approach has been proposed
to obtain the semiparametric maximum likelihood estimates
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(SPMLE), with the covariate distributions left completely
nonparametric (Scott and Wild, 1997; Lawless, Kalbfleisch,
and Wild, 1999).

Recent work in case–control studies suggests that ex-
ploiting the gene-environment independence improves the
estimation efficiency of regression parameters substantially
(Chatterjee and Carroll, 2005; Chatterjee and Chen, 2007).
Moreover, for rare diseases, the gene-environment interac-
tion in a logistic regression can be estimated by the odds
ratio between the gene and the environmental variable in
cases only (Piegorsch, Weinberg, and Taylor, 1994; Umbach
and Weinberg, 1997). Despite the efficiency advantage, these
analyses are generally sensitive to departures from the gene-
environment independence assumption (Albert et al., 2001).
In two-phase sampling nested within randomized trials, how-
ever, there exists indisputable independence between the
treatment and baseline covariates by design, including mark-
ers ascertained in the phase-two sample. Ignoring such design-
based independence is a waste of information. We present two
examples that motivate our research:

Example 1: The randomized clinical trial of estrogen plus
progestin in the Women’s Health Initiative (WHI) was ter-
minated early in 2002 because of an increased risk of stroke,
breast cancer, and cardiovascular diseases in the treatment
arm (Rossouw et al., 2002). To determine whether the adverse
effect of conjugated equine estrogen and medroxyprogesterone
acetate on stroke was modified by selected baseline blood
biomarkers and genotypes, WHI analyzed baseline blood sam-
ples from cases and controls. Twenty-nine biomarkers were
measured, encompassing inflammatory markers, lipid levels,
thrombosis factors, blood cell counts, and several single nu-
cleotide polymorphisms (SNPs). All markers except the SNPs
yield continuous measurements. More recently in a similar
attempt, the WHI is undertaking a genome-wide association
study in which hundreds of thousands of SNPs are sequenced
in a sample.

Example 2: The genetics of hypertension-associated treat-
ments study is a large-scale, double-blind, randomized
trial attempting to test the interaction between the
insertion/deletion polymorphism in angiotension-converting
enzyme and four antihypertensive treatments (Arnett et al.,
2005). No significant association was found. In a hypothet-
ical secondary study, a number of SNPs on several genes
in rennin–angiotensin–aldosterone system are further inves-
tigated. The outcome is the blood pressure (BP) change af-
ter 6 months treatment. While the outcome and the treat-
ment are collected for every participant, genetic variants
are only measured in three outcome-dependent subsamples:
one from the stratum with BP change lower than 10% per-
centile, one from the stratum with BP change higher than
90% percentile, and one from the stratum with the rest of
participants.

Both studies employ two-phase sampling to identify the
effect-modifying biomarkers. The independence between the
treatment and the biomarkers is dictated by randomization.
The outcome of interest can be categorical (stroke in Exam-
ple 1), or continuous (BP change in Example 2). In fact many
clinical outcomes are continuous, such as cholesterol levels,

HIV viral load, and child’s IQ. It is important to account for
continuous outcomes in analysis. In addition, biomarkers can
be categorical (genotype) or continuous (blood assay); and
as many as hundreds of thousands may be measured (Exam-
ple 1). To our knowledge, the efficient estimation exploiting
covariate independence in two-phase randomized trials has
not been addressed. Chatterjee and Chen (2007) extended the
profile technique to allow gene–environment independence in
studies with two-phase sampling. However, their method only
considers binary outcomes. For continuous outcomes, the pro-
file approach often entails a substantial loss of efficiency, be-
cause it has to reduce the outcome to discrete stratum labels
(Chatterjee et al., 2003). Moreover, computing the variance
matrix when exploiting covariate independence using the pro-
file technique can be algebraically cumbersome.

In this article, we propose two semiparametric methods
that exploit covariate independence in two-phase sampling.
They are semiparametric because the distribution of the
missing covariates is treated nonparametrically, while the
association between the outcome and covariates remains para-
metric. Both methods use full information from continu-
ous outcomes and provide a straightforward computation
of variance estimates. We first develop a profile likelihood
based Newton–Raphson algorithm that can be used to com-
pute the SPMLE. The independence between covariates is
incorporated transparently. The novelty is that, instead of
replacing the high-dimensional nuisance parameters by a few
low-dimensional parameters as in Scott and Wild (1997), we
profile out the nuisance parameters completely, and explicitly
compute the information matrix through numerical differenti-
ation, thus generating the variance as a byproduct. When very
many biomarkers are investigated, computing the SPMLE for
every marker may be time consuming and unnecessary. This is
particularly the case if the disease is relatively rare and there
are many covariates to be adjusted. We develop a maximal
estimated likelihood estimator (MELE) that is much faster
to compute and accounts for the covariate independence, yet
it does not lose much efficiency. In essence, it plugs a consis-
tent empirical estimator of the covariate distribution in the
likelihood. The amount of variance reduction by imposing the
independence can be derived explicitly.

In Section 2, we define the sampling scheme and likeli-
hood. In Section 3, we describe the profile Newton–Raphson
algorithm that computes the SPMLE and the estimated vari-
ances. In Section 4, we derive the estimated likelihood and
asymptotic distribution of the MELE. In Section 5, we as-
sess the finite sample properties of the proposed estima-
tors in simulations. In Section 6, we show an application
to a biomarker dataset from WHI. We end with a discus-
sion. Technical details are available as online Supplementary
Materials.

2. Sampling Scheme and Likelihood
Let Y be an outcome of interest, X be the treatment that is
randomized, and Z be a collection of covariates which includes
the expensive biomarker, and potentially other important pre-
dictors. Throughout this work, Y and Z can be continuous
or categorical, but X is assumed to be categorical. Suppose
without missing data, N subjects with independent and iden-
tically distributed (i.i.d.) random variables (Y i, Xi, Zi), are
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generated from the joint probability density fβ(Y |X, Z)
g(X, Z), where fβ(Y |X, Z) is the parametric regression
model with parameters β, which often takes the form of a
generalized linear model; g(X, Z) is the joint density function
for (X, Z). We assume sampling takes place so that only a
subset of subjects have Z measured. Let Ri denote the indi-
cator of whether a subject has complete data. The observed
data, therefore, contain (Y i, Xi, ZiRi , Ri), i = 1, . . . N . We
assume that Pr(Ri = 1 |Y i, Xi, Zi) = Pr(Ri = 1 |Y i, Xi),
that is, Z is missing at random in the sense of Rubin (1976).
Let Y and X be the sample spaces of the random variable
Y and X. Let {Sk}, k = 1, . . . ,K, be K mutually exclusive
partitions of Y × X so that Y × X = ∪K

k=1Sk. For a binary
outcome, Sk may be solely defined by case–control status.
For a continuous outcome such as birth weight, categoriza-
tion of outcome by quantiles may be involved. Subjects are
inspected sequentially as they arise from the joint density and
the (Y, X) are observed. When (yi, xi) ∈ Sk, the ith subject
is selected for observing Z with prespecified positive probabil-
ities pk, hence, Pr(Ri = 1 |Yi,Xi) =

∑K

k=1 pk1[(yi,xi)∈Sk ]. This
is i.i.d. Bernoulli sampling (Lawless et al., 1999).

Let V = {i : Ri = 1} and V̄ = {j : Rj = 0} be the sets
containing subjects with complete and incomplete data, re-
spectively. The likelihood for those with missing Z involves
integration of fβ(y |x, Z) by dG(Z | x), where G(Z |x) is the
conditional cumulative distribution function of Z given X.
Parametric modeling of G is subject to model misspecifica-
tion. A semiparametric approach is to treat G nonparametri-
cally, that is, maximizing G over distributions whose support
consists of the observed z. For well-behaved univariate g(Z),
smoothing methods with appropriately selected bandwidths
can estimate g(Z) more efficiently than estimating g(Z) com-
pletely nonparametrically; yet nonparametric estimation pro-
vides flexibility and robustness given that g(Z) is often not
of interest in inference. Let Z be the set of z in the observed
sample space, and let Zx be the restricted set of observed z
with X = x. This leads to an empirical likelihood that contains
the point mass gz |x = Pr(Z = z |X = x) for z ∈ Zx, with the
constraint

∑
z∈Zx

gz|x = 1. Note that Z can be a collection of
covariates, so that g(z) is a point mass on a combination of
several covariate values. If X ⊥ Z, the conditional part in the
point mass vanishes so that gz |x = gz = Pr(Z = z) for z ∈ Z.
The semiparametric likelihoods without and with using the
independence X ⊥ Z are

L(β,G)

=
∏
i∈V

fβ(yi |xi, zi)gzi |xi

∏
j∈V̄

( ∑
zl∈Zxj

gzk |xj
fβ(yj |xj , zl)

)
,

(1)

L⊥(β,G) =
∏
i∈V

fβ(yi |xi, zi)gzi

∏
j∈V̄

( ∑
zl∈Z

gzlfβ(yj |xj , zl)
)
,

(2)

respectively. Throughout this article, we use the superscript ⊥

to indicate expressions that employ the independence between
X and Z. Intuitively, imposing independence shrinks the di-
mension of the nuisance parameter G, because we only need
to estimate the marginal distribution of Z, thereby improving

the estimation of β. Note that the dimension of gz|x and gz
increases with the number of the phase-two subjects for con-
tinuous Z. Maximization of g and β simultaneously using an
EM algorithm was considered in Lawless (1997), though the
convergence is extremely slow if the dimension of g is large
and the proportion of missing data is large. Also, when Y is
continuous, the existing profile likelihood method has to cate-
gorize Y into strata, and therefore loses information (Lawless
et al., 1999).

3. A Profile Likelihood Based Newton–Raphson
Algorithm to Compute SPMLE

To maximize likelihoods with a Euclidian parameter θ, a
Newton–Raphson algorithm iteratively updates θ̂ by θ(m+1) =
θ(m) + I(θ(m))S(θ(m)) until convergence, where S(θ(m)) is the
score function and I(θ(m)) is the observed information evalu-
ated at the current θ(m). Near the solution the convergence of
Newton–Raphson algorithm is always fast (exponential), and
it automatically leads to variance estimates. When maximiz-
ing the semiparametric likelihoods (1) and (2), the interest
is in inference on β, not in the infinite-dimensional nuisance
parameter g. A profile likelihood can be derived in which g is
maximized first for a fixed β, then maximized with respect to
β using a Newton–Raphson algorithm.

Specifically, let �p(β, ĝβ) denote the profile log likelihood
for β, where ĝβ is the maximizer of g given β. Let Sp(β, ĝβ) =
∂�p(β, ĝβ)/∂β and Ip(β, ĝβ) = ∂Sp(β, ĝβ)/∂β. The Newton–
Raphson algorithm iterates the following steps: (1) Given
β(m), compute ĝβ(m) . (2) Compute Sp(β

(m), ĝβ(m)). (3) Com-

pute Ip(β
(m), ĝβ(m)) via numerical differentiation. (4) Up-

date β by β(m+1) = β(m) + Ip(β
(m), ĝβ(m))Sp(θ

(m), ĝβ(m)). Go
to step (1).

This algorithm relies on a fast computation of ĝβ(m) for any

fixed β(m). By introducing a Lagrange multiplier that respects
the fact that g sums to 1, we can show that ĝβ(z |x) satisfies∑
i∈V

1[xi=x,zi=z]

+
∑
j∈V̄

∑
zk∈Zx

fβ(yj |xj , zk)g(zk |xj)1[xj=x,zk=z]∑
zk∈Zx

g(zk |x)fβ(yj |xj , zk)1[xj=x]

= Nxg(z |x),

(3)

where Nx =
∑N

l=1 1[xl=x], the total number of subjects with
the covariate value x. Note that X is discrete and observed
for everyone. The second term of equation (3) on the left-
hand side is essentially g(z | yj , xj = x), hence the left- and
the right-hand side are both the expected number of subjects
with covariate value (x, z) in the phase-one data. Solving equa-
tion (3) for ĝ(z |x) is not immediate, because the denomina-
tor of the second term in equation (3) involves all g(zk |x).
However, note that

∑
zk∈Zx

g(zk |x)fβ(yj |x, zk) = f(yj |x), a
quantity that can be approximated using the phase-one data.
Let f̂ 0(yj |xj) be the estimated probability of yj given xj in
the phase-one data. In the online Supplemental Material, we
describe a fast computation of ĝβ(z |x) based on the approx-

imation by f̂ 0(yj |xj).
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After ĝβ(z |x) is computed, Sp(β, ĝβ) is readily obtainable.
Observe that

Sp(β, ĝβ) =

{
N∑
i=1

∂

∂ĝβ
�(β, ĝβ |xi, yi, rizi)

}
∂ĝβ
∂β

+

N∑
i=1

∂

∂β
�(β, ĝβ |xi, yi, rizi, ĝβ). (4)

Because ĝβ is the maximizer for every fixed β,
∑N

i=1 ×
∂

∂ĝβ
�(β, ĝβ |xi, yi, rizi) = 0. Hence the first term of equation

(4) equals to 0. Therefore

Sp(β, ĝβ) =
∑
i∈V

S(yi |xi, zi) +
∑
j∈V̄

∑
zk∈Zxj

× ĝβ(zk |xj)fβ(yj |xj , zk)∑
zk∈Zxj

ĝβ(zk |xj)fβ(yj |xj , zk)
S(yj |xj , zk).

(5)

Once the profile score is computed, we use numerical differ-
entiation to approximate the profile information matrix:

Ip
(
β, ĝβ(m)

)
=

∂Sp

(
β(m), ĝβ(m)

)
∂β(m)

=
Sp

(
β(m) + ε, ĝβ(m)+ε

)
− Sp

(
β(m) − ε, ĝβ(m)−ε

)
2ε

.

This involves perturbing each element of β(m) in both direc-
tions, computing two new ĝβ , and evaluating their profile
scores. A highly accurate Ip can be achieved with ε in the
order of 1/n.

When X ⊥ Z, we only need to maximize g on the pooled
sample space Z, rather than on the restricted sample space
Zx. We can now compute ĝ⊥β (z |x) using

ĝ⊥β (z |x) = ĝβ(z)

≈

∑
i∈V

1[zi=z]

N −

∑
j∈V̄

∑
zk∈Z

fβ(yj |xj , zk)1[zk=z]∑
zk∈Z

ĝβ(zk)fβ(yj |xj , zk)

 ,

and equation (5) becomes

S⊥
p (β, ĝβ) =

∑
i∈V

Sβ(yi |xi, zi)

+
∑
j∈V̄

∑
zk∈Z

ĝβ(zk)fβ(yj |xj , zk)∑
zk∈Z

ĝβ(zk)fβ(yj |xj , zk)
Sβ(yj |xj , zk).

(6)

A slight modification of the Newton–Raphson algorithm
suffices.

Starting from a naive estimator of β, for example, the in-
verse probability WE (Flanders and Greenland, 1991; Lipsitz
et al., 1999), the profile Newton–Raphson algorithm usually
takes three to four iterations to achieve 1e-5 accuracy. At con-
vergence, we obtain the variance estimates of β̂ by inverting

the information matrix of the profile likelihood Ip(β̂, ĝβ̂) as a
byproduct of the algorithm. When Z is discrete, the parame-
ter space (β, g) is of fixed dimension. The usual large sample
theory for maximum likelihood estimates applies with stan-
dard regularity conditions (Cox and Hinkley, 1974, chapter 9).
When Z contains continuous covariates, the parameter space
(β, g) is of infinite dimension, so that modern semiparamet-
ric inference theory is required to prove the consistency and
asymptotic normality. The proofs of asymptotic theories fol-
low Murphy and van der Vaart (2000), Breslow, Robins, and
Wellner (2003) and they are not presented here.

4. Estimated Likelihood
The main computational burden of obtaining the SPMLE
lies in updating ĝβ̂ and the numerical differentiation to get

Ip(β̂, ĝβ̂). When the disease is rare, updating ĝβ̂ can be time
consuming; when there are many covariates to be adjusted,
numerical differentiation can slow down the algorithm. Much
computation may not be needed in a genome-wide study,
where most markers do not exhibit signal. An estimated like-
lihood approach may be a good alternative to exploit the
independence in these situations. Pepe and Fleming (1991)
propose an estimated likelihood approach which first plugs an
empirical estimator Ĝ(Z |x) into the likelihood for the incom-
plete data, i.e., f̂β(y |x) =

∫
fβ(y |x,Z) dĜ(Z |x), and then

maximizes the estimated likelihood solely with respect to β.
Robins et al. (1994) and Lawless et al. (1999) compared a vari-
ety of methods used in two-phase studies. The estimated like-
lihood approach was found to perform closely to the SPMLE
in efficiency. Pepe and Fleming (1991) assume the valida-
tion sample is a random sample from the cohort, i.e., miss-
ing completely at random. Weaver and Zhou (2005) extend
the methodology to outcome-dependent sampling schemes,
though they consider a slightly different scenario of a simple
random sample in addition to the outcome-dependent sample.
Here we derive the estimated likelihood based estimator under
the two-phase sampling scheme as specified in Section 2.

When the phase-two sampling is outcome dependent, a con-
sistent estimator of G(z | x) can be formulated as a weighted
average of the empirical distribution of Z | x in each stratum
Sk (Hu and Lawless, 1996; Lawless et al., 1999). Observe that

G(z |x) =

K∑
k=1

Pr(Z < z | Sk, x)Pr(Sk |x).

Because the probability of observing Z is assumed constant
in each stratum, we observe that Pr(Z < z | Sk, x) = Pr(Z <
z | Sk, x,R = 1).

Therefore, we obtain an empirical estimate of G(z | x) using
Z in the validation data,

Ĝ(z |x) =

K∑
k=1

Nkx

Nx

∑
i∈Sk

1[zi<z,xi=x,ri=1]∑
i∈Sk

1[xi=x,ri=1]

,
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where Nkx =
∑N

i=1 1[i∈Sk,xi=x], Nx =
∑N

i=1 1[xi=x]. The esti-
mated likelihood for incomplete data becomes

f̂β(y |x) =

K∑
k=1

Nkx

Nx

∑
i∈Sk

fβ(y |x, zi)1[xi=x,ri=1]∑
i∈Sk

1[xi=x,ri=1]

.

Let L̂N (β) denote the estimated likelihood. We want to
maximize

L̂N (β) =
∏
i∈V

fβ(yi |xi, zi)
∏
j∈V̄

f̂β(yj |xj). (7)

Using X ⊥ Z we can improve the estimation of the likeli-
hood. Following the same derivation for Ĝ(z |x) with X ⊥ Z,
the estimated empirical distribution is simplified to

Ĝ⊥(z |x) = Ĝ(z) =

K∑
k=1

Nk

N

∑
i∈Sk

1[zi<z,ri=1]∑
i∈Sk

1[ri=1]

,

where Nk =
∑N

i=1 1[i∈Sk ]. Essentially we are able to use all
observed Z to estimate the empirical distribution, not con-
strained by a particular x. Hence the estimated likelihood
becomes

f̂⊥
β (y |x) =

K∑
k=1

Nk

N

∑
i∈Sk

fβ(y |x, zi)1[ri=1]∑
i∈Sk

1[ri=1]

.

It is immediately apparent that applying the independence
assumption reduces the variability of the estimated likelihood,
Var[f̂⊥

β (yj |xj)] < Var[f̂β(yj |xj)], because the former involves
an average of more terms. The estimated likelihood using the
independence assumption is

L̂⊥(β) =
∏
i∈V

fβ(yi |xi, zi)
∏
j∈V̄

f̂⊥
β (yj |xj). (8)

Let β̃ denote the estimator maximizing equation (7), and
β̃⊥ the estimator maximizing equation (8). We describe the
asymptotic properties of β̃⊥ in the following two theorems.
The derivation of the large sample properties is somewhat
similar to Weaver and Zhou (2005). The emphasis here is on
the efficiency gain when using β̃⊥ instead of β̃. Let ρV be
the probability of a subject falling in the validation sample,
and let ρk be the probability of a subject falling in the stra-
tum k. We assume ρV and ρk are strictly positive, so that∑N

i=1 1[ri=1]/N → ρV > 0 and Nk/N → ρk > 0 for every k.
Let {x} be the set of unique values attainable by X. With
the main assumptions of missing at random and the covariate
independence (X ⊥ Z), we derive the following theorems:

Theorem 1. (Consistency) β̃ and β̃⊥ are both consistent
w.r.t. true parameter β.

Theorem 2. (Asymptotic Normality)
√
N(β̃ − β) →d N

(
0, I(β)−1 + I(β)−1ΣI(β)−1

)
.

√
N(β̃⊥ − β) →d N

(
0, I(β)−1 + I(β)−1Σ⊥I(β)−1

)
,

where

I(β) = ρV E

[
−∂2logfβ(Y |X,Z)

∂β2

]
+(1 − ρV )E

[
−∂2logfβ(Y |X)

∂β2

]
,

Σ =

K∑
k=1

∑
{x}

Pr(Sk,X = x) [Pr(R = 0 |X = x)]2

pk

×VarZ [EY[W |x, z,R = 0] |x, z ∈ Sk] ,

Σ⊥ =

K∑
k=1

ρk(1 − ρV )2

pk
VarZ [EY,X[W | z,R = 0] | z ∈ Sk] ,

W =
∂fβ(Y |X,Z)/∂β

fβ(Y |X)
− ∂fβ(Y |X)/∂β

f 2
β(Y |X)

fβ(Y |X,Z).

We assume the usual regularity conditions for maximum
likelihood holds for fβ(Y |X, Z) and fβ(Y |X) (Cox and
Hinkley, 1974, chapter 9) and that the sampling probability
in each stratum is strictly positive. The proof of existence,
uniqueness, and consistency of an estimated likelihood esti-
mator follows the results of Foutz (1977). The key step is
that the second derivative of the estimated likelihood con-
verges to a positive definite information matrix I(β), i.e.,

− 1
N

∂2 log L̂(β)
∂β2 →p I(β). Consistent estimators for I(β), Σ, and

Σ⊥ can be formulated using empirical terms. See online Sup-
plementary Material. Unlike the SPMLE in Section 3, the
estimated variance matrix can be computed explicitly. There-
fore β̃ and β̃⊥ can be obtained much faster than the SPMLE.
Clearly Σ⊥ < Σ. The asymptotic variance reduction when
exploiting the independence is I(β)−1 (Σ − Σ⊥) I(β)−1.

5. Simulation
We conducted a series of simulations to evaluate the proposed
estimators, and to investigate the efficiency gain when exploit-
ing covariate independence. We consider a two-phase sam-
pling scheme with the following features: the outcome Y may
be binary or continuous; a binary covariate X indexing the
treatment assignment, which takes the distribution form of
Bernoulli(0.5); both Y and X are observed for everyone, thus
form the phase-one data; in the second phase, a case–control
sample is identified from the cohort by Bernoulli sampling,
independent of X. A continuous biomarker is measured for
subjects in the case–control sample. In all simulations, X is
independent of Z.

5.1 Binary Outcome
We generated data for 10,000 subjects using the logistic model

logit(Pr(y = 1 |x, z)) = exp(β0 + β1x + β2z + β3xz).

Set β0 = −3,β1 = 0.2,β2 = 0.1, and vary β3 to achieve
different amounts of interaction between X and Z. We gen-
erated the biomarker data (Z) from a log-normal distribu-
tion with a ceiling of 10 for Z, that is, Z ∼ min(eN(0,1), 10).
The Bernoulli sampling probabilities for cases and controls
are such that on average 800 cases and 800 controls were se-
lected; 5000 datasets are simulated. Table 1 summarizes the
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Table 1
Binary Y: a comparison of weighted estimation equation estimator (WE), SPMLE, the MELE,

with (⊥) and without exploiting independence assumption in 5000 simulations

β̂1 β̂2 β̂3

Method Bias SD REa Bias SD REa Bias SD REa

β3 = 0
CC −0.0009 0.135 65 0.0022 0.039 100 0.0001 0.054 100
WE 0.0009 0.110 97 0.0027 0.040 96 0.0001 0.055 96
MELE 0.0009 0.110 98 0.0025 0.040 97 0.0001 0.055 97
SPMLE 0.0008 0.109 100 0.0021 0.039 100 0.0001 0.054 100
MELE⊥ 0.0006 0.091 144 0.0010 0.034 135 0.0003 0.037 215
SPMLE⊥ 0.0006 0.091 144 0.0009 0.033 137 0.0003 0.037 214

β3 = 0.5
CC −0.0025 0.161 67 −0.0004 0.045 100 0.0048 0.071 100
WE −0.0021 0.141 87 0.0001 0.046 97 0.0074 0.076 87
MELE −0.0047 0.133 98 −0.0001 0.045 98 0.0047 0.072 98
SPMLE −0.0050 0.132 100 −0.0004 0.045 100 0.0048 0.071 100
MELE⊥ −0.0041 0.121 118 −0.0002 0.039 128 0.0046 0.058 148
SPMLE⊥ −0.0063 0.120 120 −0.0027 0.038 137 0.0055 0.057 154

β3 = 1
CC −0.0067 0.189 68 −0.0010 0.049 100 0.0093 0.101 100
WE −0.0122 0.164 89 −0.0008 0.050 99 0.0117 0.107 88
MELE −0.0079 0.156 99 −0.0010 0.050 99 0.0090 0.102 98
SPMLE −0.0083 0.155 100 −0.0010 0.049 100 0.0093 0.101 100
MELE⊥ −0.0052 0.149 108 −0.0023 0.046 118 0.0067 0.091 122
SPMLE⊥ −0.0083 0.147 110 −0.0027 0.045 124 0.0086 0.089 127

Note: aRelative efficiency comparing to the SPMLE ignoring the independence. The phase-one cohort size
is 10,000, 800 cases and 800 controls are selected in phase two. The data are generated by logit[P (Y =
1 |X, Z)] = β0 + β1X + β2Z + β3XZ , where β0 = −3,β1 = 0.2,β2 = 0.1. X ∼ Ber(0.5),Z ∼ min (10, eN(0,1)).

biases and the sample variances of the various estimators. The
complete-case (CC) estimator only uses the subjects with
complete data in a logistic regression, ignoring the sampling.
This estimator is consistent for the slope parameters (Prentice
and Pyke, 1979). The WE uses the estimated sampling prob-
abilities from the four strata defined by Y and X to weight
the estimation equations. SPMLE and SPMLE exploiting in-
dependence (SPMLE⊥) are computed as in Section 3. MELE
and MELE⊥ are computed as in Section 4. All estimators
are unbiased for the three slope parameters. The efficiency
is relative to the SPMLE ignoring independence. Among the
methods ignoring independence, the SPMLE achieves the low-
est variance. The CC estimator yields the same efficiency as
SPMLE in estimating β2 and β3, but it has a much lower effi-
ciency in estimating β1 because it does not utilize the phase-
one data. The WE is the worst in terms of estimating the
interaction, while the MELE is very close to the SPMLE in
efficiency, especially when β3 is small. The trend observed here
is consistent with Lawless et al. (1999). Interestingly, when us-
ing the independence (MELE⊥ and SPMLE⊥), the sampling
variances drop markedly. The efficiency gain in estimating β3

ranges from over 100% (β3 = 0) to 20% (β3 = 1). The effi-
ciency gain in the main effects are 10%–50% depending on
the effect size. In the parameter values we considered, the es-
timated likelihood approach performs closely to the semipara-
metric likelihood approach. We expect the relative efficiency
of the MELE to decrease when parameter values get larger
(Lawless et al., 1999).

Table 2 evaluates the validity of the estimated variances
for the SPMLE, MELE, SPMLE⊥, and MELE⊥ based on
5000 simulations. The means of the estimated variances agree
very well to the corresponding sample variances. The empiri-
cal 95% coverage probabilities are close to the nominal 95%.
We also studied many different parameter choices, as well as
the situation where Z is categorical. The results are similar to
those in Tables 1 and 2 (results not shown).

5.2 Continuous Outcome
We simulated a continuous outcome variable Y ∼ N(µ, σ2),
with µ = −1 + 0.2x + 0.1z + β3xz,σ

2 = 1,X and Z as in
Section 5.1. In the first phase, 2000 subjects are generated
with X and Y observed. To create the phase-one strata, Y
is divided at its 90th quantile. Individuals in the upper stra-
tum are “cases,” and those in the lower stratum are “con-
trols.” All cases and a random sample of about 200 controls
enter the second phase and their Z’s are measured. In Table 3,
we compare the efficiencies of WE (using the estimated sam-
pling probability), MELE, MELE⊥, SPMLE, and SPMLE⊥.
We also include the SPMLE with reduced phase-one data by
Lawless et al. (1999) (referred to as “LKW”) to see how much
information is lost in categorizing the phase-one continuous
outcome. Note both the WE and the LKW reduce the phase-
one data: the WE estimates the sampling probabilities using
observed counts in each strata and uses it as if it is fixed in the
weighted log likelihood; the LKW treats the phase-one data
as stratum labels, but maximizes the likelihood with respect
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Table 2
Binary Y: the performance of variance estimators based on the profile information: 5000 simulations

SPMLE SPMLE⊥

Parameter Var(β̂) V̂ar(β̂) 95% C.I. Var(β̂) V̂ar(β̂) 95% C.I.

β3 = 0

β̂1 0.0118 0.0119 95.1% 0.0082 0.0082 94.9%

β̂2 0.0015 0.0015 94.7% 0.0011 0.0011 95.4%

β̂3 0.0029 0.0029 94.6% 0.0014 0.0013 94.9%

β3 = 0.5

β̂1 0.0173 0.0171 94.6% 0.0144 0.0142 95.2%

β̂2 0.0020 0.0020 95.0% 0.0015 0.0014 95.1%

β̂3 0.0051 0.0050 94.8% 0.0033 0.0033 94.9%

β3 = 1

β̂1 0.0241 0.0244 95.3% 0.0217 0.0224 95.4%

β̂2 0.0025 0.0024 95.4% 0.0020 0.0020 95.6%

β̂3 0.0101 0.0101 95.5% 0.0079 0.0081 95.0%

MELE MELE⊥

Parameter Var(β̃) V̂ar(β̃) 95% C.I. Var(β̃) V̂ar(β̃) 95% C.I.

β3 = 0

β̃1 0.0121 0.0121 95.2% 0.0082 0.0082 94.8%

β̃2 0.0016 0.0015 94.7% 0.0011 0.0011 95.3%

β̃3 0.0030 0.0029 94.7% 0.0014 0.0013 95.0%

β3 = 0.5

β̃1 0.0176 0.0176 94.7% 0.0147 0.0146 95.1%

β̃2 0.0020 0.0020 95.1% 0.0016 0.0015 94.8%

β̃3 0.0052 0.0053 94.9% 0.0034 0.0034 95.4%

β3 = 1

β̃1 0.0244 0.0248 95.5% 0.0222 0.0229 95.3%

β̃2 0.0025 0.0024 95.5% 0.0021 0.0021 95.5%

β̃3 0.0103 0.0108 95.4% 0.0083 0.0085 96.0%

Note: The phase-one cohort size is 104, 800 cases and 800 controls are selected in phase two. The data are generated
by logit[P (Y = 1 |X, Z)] = β0 + β1X + β2Z + β3XZ , where β0 = −3, β1 = 0.2, β2 = 0.1.X ∼ Ber(0.5), Z ∼
min(10, eN(0,1)).Var(β̂) is the sample variance of β̂ in 5000 simulations. V̂ar(β̂) is the sample mean of the estimated
variance of β̂ in 5000 simulations.

to β and g simultaneously; therefore, the weight is updated in
the iterations.

The biases of all estimators are negligible and therefore
omitted in Table 3. As expected, the WE and the LKW have
much bigger variances than the SPMLEs and the MELEs be-
cause the latter use more information from the first phase.
Exploiting the independence between X and Z yields an
additional efficiency gain, ranging from 10% to 50%. Con-
sistent with the results in Table 1, the efficiency gain de-
creases with β3. The estimated likelihood approach yields a
second-best performance with respect to efficiency, next to
the likelihood-based methods. Note when β3 = 1 the per-
formance of WE is better than that of LKW. This may be
caused by the relatively small sample size (2000 phase-one
subjects, 400 phase-two subjects). To improve the perfor-
mance of the LKW method, one can create more strata for
the phase-one data (poststratification) hence gaining more
precision (Lawless et al., 1999). However, it will still be in-
ferior to methods using continuous outcomes from the first
place.

6. Data Application
We took the WHI biomarker study as in Example 1 to
illustrate our methods. The aforementioned 29 biomarkers
were picked by WHI investigators as markers that are pos-
sibly associated with either stroke, venous thrombotic dis-
ease, or myocardial infarction. A comprehensive analysis of
these samples was published by Kooperberg et al. (2007). In
our terminology, this biomarker study is a two-phase study.
The first-phase data consist of the randomized treatment as-
signment and stroke outcome for 16,608 study participants.
The second phase consists of 124 cases and 504 controls from
whom blood was analyzed. All blood biomarkers are continu-
ous and were logarithm (base 10) transformed. To eliminate
potential confounding factors, we included a number of im-
portant clinical characteristics in the second-phase data, such
as age, physical activity levels, diabetes, hypertension, sys-
tolic and diastolic BP, and waist:hip ratio. We are interested
in the interaction between the hormone treatment and each
of the biomarkers in a logistic regression adjusting for both
main effects and aforementioned clinical characteristics. We
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Table 3
Continuous Y: a comparison of the WE, the reduced SPMLE as in the (Lawless et al., 1999;
LKW), the SPMLE, the MELE, with (⊥) and without exploiting independence assumption in

1000 simulations

β̂1 β̂2 β̂3 σ̂

SD REa SD REa SD REa SD REa

β3 = 0
WE 0.152 25 0.045 57 0.064 54 0.036 22
LKW 0.149 26 0.038 81 0.054 73 0.036 22
MELE 0.078 94 0.037 86 0.050 88 0.017 99
SPMLE 0.076 100 0.034 100 0.047 100 0.017 100
MELE⊥ 0.070 117 0.032 110 0.038 154 0.017 99
SPMLE⊥ 0.070 117 0.031 121 0.038 153 0.017 100

β3 = 0.5
WE 0.160 25 0.051 53 0.060 49 0.039 21
LKW 0.158 26 0.041 79 0.052 67 0.041 19
MELE 0.084 92 0.038 93 0.044 95 0.018 99
SPMLE 0.080 100 0.037 100 0.042 100 0.018 100
MELE⊥ 0.077 109 0.034 117 0.039 116 0.018 101
SPMLE⊥ 0.075 113 0.033 122 0.039 120 0.018 101

β3 = 1
WE 0.175 35 0.056 73 0.064 66 0.044 19
LKW 0.188 30 0.060 65 0.069 57 0.046 18
MELE 0.109 89 0.048 101 0.052 99 0.019 99
SPMLE 0.103 100 0.048 100 0.052 100 0.019 100
MELE⊥ 0.098 111 0.046 113 0.049 112 0.019 100
SPMLE⊥ 0.096 117 0.045 116 0.049 114 0.019 100

Note: aRelative efficiency comparing to SPMLE ignoring independence. The phase-one cohort size
is 2000, 200 cases and 200 controls are selected in the phase two. The data are generated by a
normal distribution with the mean E[Y = 1 |X, Z] = β0 + β1X + β2Z + β3XZ and variance
σ2 = 1, β0 = −1, β1 = 0.2, β2 = 0.1.X ∼ Ber(0.5), Z ∼ min(10, eN(0,1)).

compared five different methods to analyze two-phase data:
the standard method ignoring the missing data and the inde-
pendence between the treatment and biomarkers, namely, CC
analysis, the proposed estimated likelihood estimator with or
without exploiting independence, and the proposed SPMLE
with or without exploiting covariate independence.

Table 4 shows the estimates of the interaction between the
treatment and the thrombosis biomarkers using the aforemen-
tioned five methods. The model used in this table is

logit(P (stroke | . . .)) = β0 + β1HT + β2 log(B) + β3HT

× log(B) +
∑
i

βi+3Xi,

where stroke is the event of a WHI participant having a
stroke, HT an indicator of whether this participant was as-
signed to hormone therapy, B the (continuous) biomarker,
and the Xi are other confounding factors. For ease of expo-
sition, we only show the results of one class of biomarkers.
Without exploiting the independence, there is essentially no
improvement in efficiency over the CC analysis using either
the MELE or the SPMLE. On the other hand, the standard
errors of the two proposed methods exploiting independence
are markedly smaller than the standard CC analysis and two
other semiparametric methods. We found three thrombosis
markers show a markedly increased significance. In particular,
the p-values for PAP (plasmin–antiplasmin complex) are sig-
nificant after adjusting for 29 tests by Bonferroni correction.

A similar pattern of variance reduction, though in a smaller
magnitude, is observed for the main effects—the treatment
effect and the biomarker effect. The results of the MELE
and the SPMLE exploiting independence are mostly indis-
tinguishable. This is probably because stroke is a rather rare
event (124 cases out of 16,608 participants in this study) in
the study cohort, the one-step estimated covariate distribu-
tion in the MELE is close to the iteratively estimated one
in the SPMLE. These results demonstrate the advantage of
our methods: exploiting the independence between the ran-
domized treatment and the biomarker improves the power of
detecting the interaction between them.

7. Discussion
With the rapid advance of biotechnologies such as gene
chips and proteomics, it is increasingly popular to employ
some form of two-phase sampling to measure the expensive
biomarker data for a sample of the study cohort, while col-
lecting the cheap covariates and outcomes for everyone. When
the phase-one cohort is a randomized clinical trial, there is in-
dependence between the treatment and baseline covariates.
In this article, we show that exploiting this independence
substantially improves the estimation efficiency, particularly
for treatment–biomarker interactions. This is especially rele-
vant to many pharmacogenetic studies where drug–genotype
interactions are under investigation. In an observational two-
phase study, however, unless we have strong a priori evidence
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about the gene–environment independence, we should exert
extra caution when exploiting it in estimation as deviation
from the independence can draw a substantial bias (Albert
et al., 2001).

Beyond exploiting the independence caused by randomiza-
tion, our methods have general merits in semiparametric es-
timation. Existing methods to compute the SPMLE, such as
the EM algorithm and the profile likelihood, all have limita-
tions. We propose a profile likelihood based Newton–Raphson
algorithm that computes the SPMLE for a wide range of data
forms including continuous outcomes, as long as the phase-
one covariate is discrete and the phase-two data are miss-
ing at random. An innovation in our algorithm is the usage
of numerical differentiation to compute the profile informa-
tion matrix, thus avoiding the complicated algebraic deriva-
tion of Lawless et al. (1999). In situations where computing
the SPMLE is time-consuming, the proposed estimated like-
lihood approach may help. A contribution of this article is
to derive the asymptotics for the estimated likelihood in two-
phase sampling and work out the efficiency gain when using
the covariate independence. In our simulations and data ap-
plication, the MELE performs almost as well as the SPMLE.
Simulations in Lawless et al. (1999) suggest that the relative
efficiency of MELE may decline when the effect size increases.
In genetic association studies with many markers, the major-
ity of markers have no effect and some may have weak effect;
the estimated likelihood will be time efficient in screening for
a subset of interesting markers. The SPMLE can be used sub-
sequently to get a more precise estimate for the biggest hits.

Semiparametric efficient estimators can be alternatively de-
rived in the framework of augmented inverse probability WEs
(Robins et al., 1994). When parametric models involved are
correctly specified, the estimates are asymptotically equiv-
alent to the SPMLE derived under the likelihood frame-
work, but are harder to implement (Carpenter, Kenward,
and Vansteelandt, 2006). The augmented inverse probability
weighted approach has its appeal in that it remains consistent
if either the selection probability or the conditional distribu-
tion of missing data given observed data are correctly mod-
eled. In randomized clinical trials, when baseline covariates
(Z) to be adjusted are continuous and high dimensional, it
is almost impossible to correctly specify the parametric dis-
tribution of Y |X, Z. Then the SPMLE assuming the wrong
model of Y |X, Z will not be consistent. However, because the
sampling probabilities are precisely controlled by the investi-
gators, it is possible to construct a doubly robust estimator
that exploits the independence introduced by randomization,
yet yields consistent estimators of treatment–biomarker in-
teractions. Indeed, Robins and Ritov (1997) show that in this
setting any estimator that fails to use the knowledge of sam-
pling probabilities can perform poorly in moderate samples.
It remains interesting for future methodological studies to ex-
ploit the independence in the framework of doubly robust
estimators.

8. Supplementary Materials
Web Appendices referenced in Sections 3 and 4 are available
under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.



Semiparametric Estimation Exploiting Covariate Independence 187

Acknowledgements

This work was supported in part by NIH grant R01 CA 74841,
P01 CA53996, and U01 CA125489. The Women’s Health Ini-
tiative program is funded by the National Heart, Lung, and
Blood Institute, US Department of Health and Human Ser-
vices. The authors are grateful to the associate editor and
the referee for their helpful comments, which led to improved
clarity of our presentation.

References

Albert, P. S., Ratnasinghe, D., Tangrea, J., and Wacholder, S.
(2001). Limitations of the case-only design for identifying gene-
environment interactions. American Journal of Epidemiology
154, 587–693.

Arnett, D. K., Davis, B. R., Ford, C. E., Boerwinkle, E., Leiendecker-
Foster, C., Miller, M. B., Black, H., and Eckfeldt, J. H. (2005).
Pharmacogenetic association of the angiotensin-converting en-
zyme insertion/deletion polymorphism on blood pressure and car-
diovascular risk in relation to antihypertensive treatment: The
genetics of hypertension-associated treatment (GenHAT) study.
Circulation 111, 3374–3383.

Breslow, N. E. and Cain, K. C. (1988). Logistic regression for two-stage
case-control data. Biometrika 75, 11–20.

Breslow, N. E. and Day, N. E. (1980). Statistical Methods in Cancer
Research I. The Analysis of Case-control Studies. Lyon, France:
International Agency for Research on Cancer.

Breslow, N. E., Robins, J. M., and Wellner, J. M. (2003). Large sam-
ple theory for semiparametric regression models with two-phase,
outcome-dependent sampling. Annals of Statistics 31, 1110–1139.

Carpenter, J. R., Kenward, M. G., and Vansteelandt, S. (2006). A com-
parison of multiple imputation and doubly robust estimation for
analyses with missing data. Journal of the Royal Statistical Soci-
ety, Series A 169, 571–584.

Carroll, R. J. and Wand, M. P. (1991). Semiparametric estimation in lo-
gistic measurement error models. Journal of the Royal Statistical
Society, Series B 53, 573–585.

Chatterjee, N. and Carroll, R. J. (2005). Semiparametric maximum
likelihood estimation exploiting gene-environment independence
in case-control studies. Biometrika 92, 399–418.

Chatterjee, N. and Chen, Y. H. (2007). Maximum likelihood infer-
ence on a mixed conditionally and marginally specified regres-
sion model for genetic epidemiologic studies with two-phase sam-
pling. Journal of the Royal Statistical Society, Series B 69, 123–
142.

Chatterjee, N., Chen, Y. H., and Breslow, N. E. (2003). A pseudoscore
estimator for regression problems with two-phase sampling. Jour-
nal of the American Statistical Association 98, 158–168.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. New York:
Chapman and Hall.

Flanders, W. D. and Greenland, S. (1991). Analytic methods for two-
stage case-control studies and other stratified designs. Statistics
in Medicine 10, 739–747.

Foutz, R. V. (1977). On the unique consistent solution to the likelihood
equations. Journal of the American Statistical Association 72,
147–148.

Hu, X. J. and Lawless, J. F. (1996). Estimation from truncated lifetime
data with supplementary information on covariates and censoring
times. Biometrika 83, 747–761.

Ibrahim, J. G. (1990). Incomplete data in generalized linear models.
Journal of the American Statistical Association 85, 765–769.

Ibrahim, J. G., Chen, M., and Lipsitz, S. R. (1999). Monte Carlo EM
for missing covariates in parametric regression models. Biometrics
55, 591–596.

Kooperberg, C., Cushman, M., Hsia, J., Robinson, J. G., Aragaki, A.
K., Lynch, J. K., Baird, A. E., Johnson, K. C., Kuller, L. H.,
Beresford, S. A., and Rodriguez, B. (2007). Can biomarkers iden-
tify women at increased stroke risk? PLoS Clinical Trails 2(6),
e28.

Lawless, J. F. (1997). Likelihood and pseudo likelihood estimation based
on response-biased observation. Proceedings of the Georgia Sym-
posium on Estimation Functions. Hayward, California: Institute
of Mathematical Statistics.

Lawless, J. F., Kalbfleisch, J. D., and Wild, C. J. (1999). Semiparamet-
ric methods for response-selective and missing data problems in
regression. Journal of the Royal Statistical Society, Series B 61,
413–438.

Lipsitz, S. R., Ibrahim, J. G., and Zhao, L. P. (1999). A weighted esti-
mating equation for missing covariate data with properties similar
to maximum likelihood. Journal of the American Statistical As-
sociation 94, 1147–1160.

Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood
(with discussion). Journal of the American Statistical Association
95, 449–485.

Pepe, M. S. and Fleming, T. R. (1991). A non-parametric method for
dealing with mismeasured covariate data. Journal of the Ameri-
can Statistical Association 86, 108–113.

Piegorsch, W. W., Weinberg, C. R., and Taylor, J. A. (1994). Non-
hierarchical logistic models and case-only designs for assessing
susceptibility in population based case-control studies. Statistics
in Medicine 13, 153–162.

Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models
and case-control studies. Biometrika 66, 403–411.

Reilly, M. and Pepe, M. S. (1995). A mean score method for missing
and auxiliary covariate data in regression models. Biometrika 82,
299–314.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of
regression coefficients when some regressors are not always ob-
served. Journal of the American Statistical Association 89, 846–
866.

Robins, J. M. and Ritov, Y. (1997). Toward a curse of dimensional-
ity appropriate (CODA) asymptotic theory for semiparametric
models. Statistics in Medicine 16, 285–319.

Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z.,
Kooperberg, C., Stefanick, M. L., Jackson, R. D., Beresford, S.
A., Howard, B. V., Johnson, K. C., Kotchen, J. M., and Ock-
ene, J. (2002). Risks and benefits of estrogen plus progestin
in healthy postmenopausal women: Principal results from the
women’s health initiative randomized controlled trial. Journal of
American Medical Association 288, 321–333.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581–
592.

Scott, A. J. and Wild, C. J. (1991). Fitting logistic regression models
in stratified case-control studies. Biometrics 47, 497–510.

Scott, A. J. and Wild, C. J. (1997). Fitting regression models to case-
control data by maximum likelihood. Biometrika 84, 57–71.

Umbach, D. M. and Weinberg, C. R. (1997). Designing and analyz-
ing case-control studies to exploit independence of genotype and
exposure. Statistics in Medicine 16, 1731–1743.

Weaver, M. A. and Zhou, H. (2005). An estimated likelihood method for
continuous outcome regression models with outcome-dependent
sampling. Journal of the American Statistical Association 100,
459–469.

White, J. E. (1982). A two-stage design for the study of the relationship
between a rare exposure and a rare disease. American Journal of
Epidemiology 115, 119–128.

Received June 2007. Revised February 2008.
Accepted February 2008.


