# Treatment of Acute Leukemia In Adolescents and Young Adults



Source: http://www.cancer.gov/types/aya





# Case 1

# BP

- 22 Yo Female, Ugandan
  - High school student
- oh/o Alcohol, otobacco use
- HIV Negative
- Nulliparous

leukemia

2 June 2016

**Referral Diagnosis** 

POORLY DIFFERENTIATED ACUTE LEUKEMIA

(BMA/Bx)



# Case 2

# MI

- 21 Yo Male Ugandan (African)
- DJ,
- Single, with no children
- +ve Hx of alcohol intake
- HIV-Ve

August 2016

**Referral Diagnosis** 

- ACUTE LYMPHOBLASTIC LEAUKEMIA



# Distinguishing between AML and ALL by morphology\*

# Myeloid

- Larger blasts with more voluminous cytoplasm
- Auer rods (most specific)



# Lymphoid

- Smaller blasts with very little cytoplasm
- "Hand mirror" sign with pinched cytoplasm



\*Except for Auer rods, these features are helpful, but not entirely specific

# Distinguishing between AML and ALL using cytochemical stains (1)

| Cytochemical<br>Reaction      | Cellular<br>Element<br>Stained | Positive Staining                                        | Negative Staining                 |
|-------------------------------|--------------------------------|----------------------------------------------------------|-----------------------------------|
| Myeloperoxidase<br>(MPO)      | Myeloid<br>granules            | Myeloblasts Promyelocytes (strong) Monoblasts (weak +/-) | Lymphoblasts Early myeloblasts    |
| Sudan Black B<br>(SBB)        | Phospholipid                   | Myeloblasts Lymphoblasts (+/-)                           | Erythroblasts<br>Megakaryoblasts  |
| Non-specific esterase (NSE)   | Cellular<br>enzyme             | Monoblasts and promonocytes Megakaryoblasts (+/-)        | Most myeloblasts and lymphoblasts |
| Periodic-Acid<br>Schiff (PAS) | Glycogen                       | Erythroblasts Lymphoblasts (granular)                    | Most myeloblasts/monoblasts       |

# Distinguishing between AML and ALL using cytochemical stains (2)

|              | МРО | SBB        | SPE | NSE | PAS                |
|--------------|-----|------------|-----|-----|--------------------|
| Myeloblasts  | ++  | ++         | ++  | +   | Diffuse-Weak       |
| Lymphoblasts | -   | - / weak + | -   | -/+ | Block-<br>Granular |
| Monoblasts   | +/- | ++         | -   | ++  | Diffuse-Weak       |

- Myeloblast: M0: neg for all; M1 through M6: +MPO; M7: neg for MPO
- Lymphoblast: +PAS and acid phosphatase, +/- sudan black, neg for others
- Monoblast: strong +NSE, Lysozyme; neg to weak for MPO



esterase (NSE)

(SPE)

# **Adolescents and Young Adults with ALL**

- Acute Lymphoblastic Leukemia (ALL) survival rate is close to 90% in young children.
- In older adolescents and young adults (AYA), event-free survival is only 30-45%.
- Improved outcome, with disease-free survival rates of 60-70%, are achieved when AYA patients are treated with "pediatric-inspired" approaches.
- National Cancer Institute has defined the AYA population as those between 15 and 39 years of age.

# **Treatment Regimens - ALL**

- Adult Regimens:
  - Intensive use of myelosuppressive agents:
    - Daunorubicin
    - Cytarabine
    - Cyclophosphaminde
    - Allogeneic stem cell transplantation (SCT)
- Pediatric Regimens:
  - Berlin-Frankfurt-Munster (BFM) backbone:
    - Glucocorticoids
    - Vincristine
    - Asparaginase
    - Early and frequent CNS prophylaxis and prolonged maintenance therapy

# Standard supportive care and monitoring

- Allopurinol is recommended for the first 10 days of induction therapy to prevent hyperuricemia.
- Antimicrobial prophylaxis: antiviral and *Pneumocystis jiroveci* prophylaxis should be used throughout treatment.
- Fungal prophylaxis should include mold coverage throughout induction therapy.
  - Broader spectrum azole antifungals cannot be used with vincristine.
- Asparaginase-related toxicities
  - Asparaginase-related hypersensitivity reactions can occur in 20% of children and adults.

# Adolescent and Young Adults with AML

- Acute Myeloid Leukemia (AML) represents 33% of adolescent and 50% of young adult leukemia.
- Diagnosis should be based on cytogenetic and molecular factors to avoid overtreatment.
- Poorer prognosis of AYAs with ALL can be overcome with intensive pediatric protocols; whether a similar approach would benefit AYAs with AML has not yet been established.
- Intensifying therapy, or "one-size-fits-all" therapy, does not improve survival rates.

# **Treatment Regimens - AML**

- "3+7" continues to be the backbone of induction therapy.
  - (daunorubicin 60–90 mg/m²/day idarubicin 10–12 mg/m²/day or mitoxantrone 10–12 mg/m²/day) and seven days of cytarabine (100–200 mg/m²/day)
- AYA patients usually receive one or two cycles of induction therapy.
- Additional CNS therapy is routine in most pediatric protocols.
- Bone marrow assessment on the 7<sup>th</sup> or 10<sup>th</sup> day after completion of induction treatment.

# AML in AYA is often curable with chemotherapy alone

Retrospective analysis of 432 AYA (16-29) with AML at MDACC, 1965-2009:

- Median age 23
- 17% had core binding factor (CBF; t(8;21) or inv(16) AML)
- 12% had acute promyelocytic leukemia (APL; t(15;17))
- CR rates:
  - 93% for CBF AML
  - 78% for APL
  - 77% with diploid karyotype
  - 68% for other AML
- AML outcome in AYA superior to that in older adults

# Factors contributing to improved AML outcome in AYA

- Disease biology is different in AYA
  - Lower incidence of abnormal/complex cytogenetics
  - Reduced incidence of secondary/therapy-related AML than is seen in older patients
- Better tolerance of AML chemotherapy
  - Better suited for more dose-intense regimens
- Less comorbid conditions at baseline
- Taking less concomitant medications
  - Fewer drug-drug interactions and toxicities
- Lower incidence of abnormal/complex cytogenetics

# References

- http://www.cancer.gov/types/aya
- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470138
   Z
- Pemmaraju et al., Clinical characteristics and outcomes of AYA with AML. Clin Lymph Myel Leuk, in press (2016).
- Curran, E., & Stock, W. (2015). How I treat acute lymphoblastic leukemia in older adolescents and young adults. <u>Blood</u>, 125(24), 3702-3710. Accessed June 14, 2016. <a href="http://dx.doi.org/10.1182/blood-2014-11-551481">http://dx.doi.org/10.1182/blood-2014-11-551481</a>