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Abstract-Conventionally, the eigenanalysis of a nonclassically damped dynamic system is performed 
in a space of twice the system’s dimension. This and the properties of the matrices characterizing 
the system in this space make the analysis costly, particularly for large systems. Prior to the development 
several years ago by Cronin of a new computational method, there was no alternative to the conventional 
analysis. The convergence of the new method was not established then by Cronin, but he illustrated it 
by analyzing a number of representative systems. We set out in a present work to develop a predictor 
of convergence for the new method, and observed that a subtle revision of the method leads to a rigorous 
and useful convergence condition. The revised method for eigenanalysis is derived here, as is its 
convergence condition. Illustrative worked examples are included, notably an example involving a 
gyroscopic system that illustrates the utility of the method for the case of a non-symmetric damping 
matrix. 

1. INTRODUCTION 

To determine the free or forced vibration of large 

dynamic systems, efficient numerical analysis first 

requires that an eigenanalysis be performed. This 

process is low in cost if the system is proportionally 
damped [l], or, more generally, if it is classically 
damped [2]. If the system is nonclassical, the eigen- 
analysis becomes relatively expensive because it is 
conventionally performed in a space of twice the 
system’s dimension, and because, depending on the 
formulation used, the matrices characterizing the 
system in the new space are either nonsymmetric or 
non-positive definite. 

The high relative cost of the eigenanalysis of 
nonclassically damped systems is possibly a motiv- 
ation for investigators who explored alternate means 
for the exact analysis of such systems, [3,4], and their 
approximate analysis, [5-71. A series approach is 
common to these investigations. The approximate 
work led to the first one or two terms of series 
descriptions for the eigenvalues and eigenvectors. The 
exact analysis produced an expression for the general 
term of each series. 

Although Cronin, the author of the exact analysis, 
illustrated the convergence of his method by 

4 To whom all correspondence should be addressed. 

examining a number of dynamic systems, he provided 
no means to determine whether (or how well) the 
series will converge for a given dynamic system. 
Related, of course, is the matter of estimating the 
quality of the various approximations described in 
the above references. The authors involved offered no 
estimators of quality. 

In the present paper we examine rigorously the 
matter of the convergence of perturbation series 
solutions to the perturbed special eigenvalue problem 
as discussed by Kato [lo], and we develop a simple 
convergence condition for the case of a normal 
unperturbed matrix. We transform the eigenvalue 
problem for a nonclassically damped system into 
the form of a special eigenvalue problem. We observe, 
thereby, that the exact series analysis of Refs [3,4] 
requires a subtle reformulation before a simple 
convergence condition can be used. We do the 
needed reformulation and, using the steps given 
in the above references, we produce new expressions 
for the general terms of the eigenvalue series and 
the eigenvector series. We also state in appropriate 
terms the convergence condition for these series. 

We include several examples to show how the new 
series behave and how the convergence condition 
works. Since our approach is intended to be suitable 
for nonsymmetric damping matrices, we illustrate this 
with the example of a gyroscopic system. 
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2.1. Discussion 

2. ANALYSIS undamped system, that is, of the system for which 
[C] = [O]. We assume that [@I is normalized such that, 

Given the assumption of linearity, the homo- 
geneous equations of motion for an nth order 
dynamic system are: 

where [Ml, [C] and [K] are real (n x n) matrices 
describing the mass, damping and stiffness properties 
of the system, respectively. The (n x 1) vector {x) 
describes the system’s displacements. The mass and 
stiffness matrices are assumed to be symmetric and 
positive definite. No special properties are assumed 
for the damping matrix. 

The eigenanalysis of the system described by eqn 
(1) is straightforward if the system is proportionally 
damped, that is, if 

(2) 

where tl and /I are arbitrary constants, or, more 
generally, if 

~ClI~lr’~~l= Klhw’[Cl. (3) 

When eqn (3) is not satisfied, the system is said to be 
nonclassically damped. 

In the following sections, we address the conver- 
gence of the series-based method described in Refs 
[3,4]. Having observed that the convergence of the 
method as described in the references is not a 
straightforward matter, we noted that a subtle 
modification of the formulation leads to a simple 
convergence condition. We thus describe in the next 
section our modification to the method, and in the 
section following the next, we develop the criterion 
for the convergence of the revised series-based 
method. 

In the work reported here, we limited ourselves to 
nonrepeated eigenvalues. We allow nonsymmetric 
damping matrices. In such cases the eigenvectors 
discussed here are properly termed “right eigenvec- 
tars”. For brevity we shall, however, use the terms 
“eigenvector”, and “eigenvectors” throughout. We 
note in passing that for nonsymmetric systems, left 
eigenvectors may also be developed by the method we 
describe. Our work on convergence applies to these 
vectors, too. 

2.2. Eigenanalysis 

Equation (1) is transformed by the change of 
variables, 

ix) = PHY }3 (4) 

and a premultiplication by [@IT. The (n x n) matrix 
[@] has as its columns the eigenvectors of the 

where [I] is the identity matrix. 
The result of the above operations is, 

[N9 + v-l{Jj~ + ml{Yl= (01. (6) 

In eqn (‘3, 

[A] = diag(of , . , wf,). 

Assuming a solution to eqn (6) of the form, 

{Y) = {u}e”, 

we obtain a quadratic eigenproblem, 

(s2Vl + SW1 + [nl){ul = PI. 

(5) 

(7) 

(8) 

(9) 

Equation (9) is solved in Refs [3,4] after the 
transformed damping matrix, [f], is written as, 

Fl = [rol+ 6 r, I? (10) 

where [r,] is diagonal and where [r,] has zeros on 
the diagonal. For the jth eigenvalue and eigen- 
vector, power series in t are assumed. These are 
respectively: 

T 

s, = 1 s,,t ’ 
r=O 

(11) 

(12) 

The substitution of eqns (lo)-(12) into eqn (9), 
with observations and manipulations, led in the 
references cited to expressions for sji and {u,,}, the ith 
correction to the jth eigenvalue and eigenvector, 
respectively. 

For the reason to be discussed in the next section, 
we do not use the substitution given in eqn (10). 
Rather, we replace [r] by c[F], that is, 

VI =r tm. (13) 

Substituting eqns (1 1)-( 13) into eqn (9), we obtain 
after manipulations, 

where 


