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. (22)

Figure 4

Simulating (22) with the analog com-
puter, we used only four integrations and
two multiplications of time dependent vari-
ables to illustrate polynomials of degree up
to 37 as shown in Figure 4. ❑
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Tyre A. Newton, Professor Emeritus of Pure and
Applied Mathematics at Washington State University,
has long had an interest in differential equations and
computing. Though retired in 1985, Tyre is still doing
mathematics; he is an inspiration to graduate stu-
dents and faculty alike. His office is a veritable
museum of late 20th century computing technology,
complete with analog computer, an Apple II, and
every Intel PC whose CPU identifier contains the
numeral “8”. In his spare time Tyre travels the coun-
try with his lovely wife Ellie, and is an expert fly-fish-
erman and outdoorsman.—M.E.M.

Introduction. The equation

(1)

was first proposed by Verhulst in 1836 to
describe a process in which the growth of a
population, whose census at time  is ,
would be limited by its size; that is, should

 become too large, the rate of change of
 should then be small—perhaps even

negative. Equation (1) is called the logistic
differential equation, and growth described
by this equation is said to be logistic growth.
The constant  is said to be the intrinsic
growth rate and the constant  is said to be
the carrying capacity of the environment.

The logistic equation is the starting point

AN EXPERIMENTAL

HARVEST FROM THE

LOGISTIC EQUATION

Steve Clark, Scott Coble, Tim
Randolph, Michael Moody

n' t( ) rn t( ) 1 n t( )
k

--------–⎝ ⎠
⎛ ⎞=

t n t( )

n t( )
n t( )

r
k



10

C•ODE•ESummer-Fall 1994

for the development of many models in pop-
ulation biology. In this experiment we will
explore a variation of the logistic model that
incorporates harvesting. We begin with a
few exercises to review the qualitative
behavior of the logistic equation. The follow-
ing exercises may be done with pencil and
paper, or use your CAS as appropriate.

Exercise 1. Show that the constant func-
tions  and  for all  are
solutions of the logistic equation. The first of
these solutions, , corresponds to a pop-
ulation that has gone extinct. What situation
does the other constant solution describe?
Why are these solutions called equilibrium
solutions to the equation?

Exercise 2. Show that if  then
 (the population size is increasing),

whereas if  then the population size
decreases ( ).

Exercise 3. Using the result of the previ-
ous exercise, argue that  if

. Check your result by solving the
logistic equation using separation of vari-
ables. Why does it make sense to call  the
carrying capacity?

Exercise 4. You proved in the previous
exercise that the population size
approaches the carrying capacity :

. This result does not depend
on the specific value of the growth rate .
What role does  play in the logistic equa-
tion? To help see the answer, take
and plot solutions using your computer to
the IVP

, (2)

for ; compare the graphs of the
solutions.

A modified equation—harvesting. The
experiments that follow explore the effects
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of harvesting on an isolated species. Imag-
ine that our population represents some
resource, such as the fish in a lake or the
amount of timber in a forest. The resource
has some economic value, and so we
humans wish to remove or harvest the
resource. We will assume that in the
absence of harvesting, the resource popula-
tion obeys the logistic growth law with
growth rate  and carrying capacity .

To account for consumption of the
resource population, we modify the logistic
equation by subtracting a nonnegative func-
tion, , describing the rate at which the
resource is harvested:

. (3)

The harvesting rate  could be speci-
fied as an explicit function of time, such as

, or implicitly through dependence
on the size of the resource population, such
as .

Exercise 1. Consider two harvest func-
tions:  and , where
is a positive constant. Describe in words the
qualitative difference between these two
harvest functions. Which harvest function
would most likely describe the harvesting of
fish from a lake by sport fishermen, and
which might describe the harvesting of a
large hardwood forest?

Exercise 2. Explore the effect of a con-
stant harvesting rate using  and .
Let  and . Use your com-
puter to plot solutions for  for val-
ues of  ranging from 10 to 1000 in
increments of 100. Is it possible under these
conditions to drive the resource population
to extinction? How might this depend on the
initial size of the resource population?
Repeat your work, but now raise the har-
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vesting rate to . Repeat again for
. What effect does this increased

harvesting have on the resource? Describe
any “threshold effect” that you observe.

Exercise 3. If harvesting is at a constant
rate , show analytically that  for all

 if ; thus the resource will
always be exhausted if harvesting is too
intense.

Exercise 4. Suppose that the constant
harvesting rate  is not too large: .
Now show that if the resource is initially suf-
ficiently abundant when harvesting begins
( ), then the resource population
converges to a sustainable equilibrium level
(i.e., , etc.), where

, .

 Show that if the initial population size is
below , then harvesting will exhaust the
resource.

Exercise 5. Does it bother you that
is not an equilibrium solution for the logistic
equation with constant harvesting? Discuss
this apparent contradiction with reality; try to
answer the question: when is this model
likely to be reasonable, and when not.

Exercise 6. How does the situation
change if we use  for the harvesting
rate? Does this model ever lead to biologi-
cally absurd population sizes? Can you find
the “best” harvesting rate that sustains the
resource?

Exercise 7. To prevent over exploitation
of resources, conservation authorities often
restrict harvesting (fishing, hunting etc.) to
sharply defined “seasons”; no (legal) har-
vesting occurs out-of-season. We can
model periodic harvesting using a “square
wave” harvesting function. Suppose, for
example, that harvesting occurs at the con-
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stant rate  for one unit of time and that
there is no harvesting for the next three
units of time, with the pattern repeating. We
could model this harvesting pattern using
the function  if  and zero
otherwise. Use your computer to plot a
graph of this for . A plot of this
harvesting rate function appears in Figure 1.

Figure 1

Suppose that the resource that we are
harvesting is fish, and that population size is
measured in some natural unit, say thou-
sands of fish. Set .
Let ; with this value of  con-
firm that with constant harvesting and

 the population goes extinct (see
Exercise 3). Now plot the solution to the
ODE using the seasonal harvest rate func-
tion and show that the population persists
with seasonal harvesting. A plot of popula-
tion size versus time for this situation
appears in Figure 2. Can you explain the
“jagged” appearance of the plot?

Exercise 8. Fix the period of the harvest-
ing function at 4 time units. Now modify the
periodic harvesting function to increase the
duration of the harvesting season relative to
the non-harvesting season. Try to discover,
to a reasonable approximation, the maxi-
mum length of the harvesting season that

ρ
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will sustain a population that begins with
200 individuals.

Figure 2

Conclusions and extensions. There
are many models used by ecologists and
wildlife biologists to describe the effects of
harvesting on resource populations. Though
many of these models are more compli-
cated than those that we have investigated
above, our simple model shares several
important kinds of behavior with them. In
particular, we discovered that over-exploita-
tion can lead to ruin; that whether or not a
given harvest rate is sustainable may
depend on the initial state of a population;
and that seasonal harvesting can be
adjusted to accommodate sustainable
exploitation of a resource.

A simple way to modify our harvest func-
tion to imitate a constant harvest rate at high
population densities, and a density-depen-
dent harvest rate at low population numbers
would be to take

,

where  is a new parameter that can be
used to adjust the transition between the
low-density and high-density regimes. If you

h p
n

η n+
------------=

η

are interested, explore the dynamics of the
model using this harvest function. ❑

The last time I taught the first course in
differential equations I organized the mate-
rial around a collection of particular equa-
tions rather than around a collection of
solution techniques. Most of the class time
was spent on student exploration using
MDEP. I also included some ideas from
dynamical systems that I hadn’t mentioned
in the past. These three conditions caused
me to carefully weigh which analytic tech-
niques and which mathematical models to
include. The topics that were included are
listed below. Hopefully this will add to the
debate about what topics to include in a first
year course.

MSU is a small state school in North
Texas. We offer one semester of differential
equations. A section typically has 15–20
students majoring predominantly in Mathe-
matics, Chemistry, or Computer Science. In
the Fall ’93 semester the class met twice a
week for 80-minute sessions in a laboratory
equipped with 24 networked 386 machines.
Students worked independently or in pairs.
Students that worked in pairs often used two
machines at a time. While MDEP was the
primary tool, several students supple-
mented this with graphing calculators and
occasionally a spreadsheet. The absence of
symbolic manipulation software was prima-
rily due to local financial constraints, but it is
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