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Abstract
GFLMs are often used to estimate the relationship between a predictor function and a
response (e.g. a binary outcome). This manuscript provides an extension of a method re-
cently proposed for functional linear models (FLM) - PEER (partially empirical eigenvec-
tors for regression) to GFLM. The PEER approach to FLMs incorporates the structure of
the predictor functions via a joint spectral decomposition of the predictor functions and
a penalty operator into the estimation process via a generalized singular value decom-
position. This approach avoids the more common two-stage smoothing basis approach
to estimating a coefficient function. We apply our estimation method to a magnetic
resonance spectroscopy data with binary outcomes.

1. Introduction

The coefficient function, β, in a GFLM represents the linear relationship between
a transformed mean of the scalar response, y, and a predictor, x, formally written as
g(E[y]) =

∫

x(t)β(t) dt, where g(·) is a so called link function. The problem typically
involves a set of n responses {yi}

n
i=1 corresponding to a set of observations {xi}

n
i=1, each

arising as a discretized sampling of an idealized function; i.e., xi ≡ (xi(t1), ..., xi(tp)), for
some, t1, ..., tp, of [0, 1]. We assume the predictors have been sampled densely enough to
capture a spatial predictor structure and thus p >> n.



Classical approaches (see for example, Crambes et.al., 2009 and Hall et.al., 2007)
to the ill-posed problem of estimating β use either the eigenvectors determined by the
predictors (e g. principal components regression - PCR) or methods based on a projec-
tion of the predictors onto a pre-specified basis and then obtaining an estimate from a
generalized linear model formed by the transform coefficients. These methods, however,
do not provide an analytically tractable way of incorporating the predictor’s functional
structure directly into the GFLM estimation process.

Here, we extend the framework developed in Randolph et al. (2011) which exploits
the analytic properties of a joint eigen-decomposition for an operator pair—a penalty
operator, L, and the operator determined by the predictor functions, X . More specifi-
cally, we exploit an eigenfunction basis whose functional structure is inherited by both
L and X . As this basis is algebraically determined by the shared eigenproperties of both
operators, it is neither strictly empirical (as with principal components) nor completely
external to the problem (as in the case of B-spline regression models). Consequently,
this approach avoids a separate fitting or smoothing step. We refer to this approach as
PEER (partially empirical eigenvector regression) and here provide an overview of PEER
as developed for FLMs and then describe the extension to GFLMs.

2. Overview of PEER

We consider estimates of the coefficient-function β arising from a squared-error loss
with quadratic penalty. These may be expressed as

β̃α,L = argminβ{||y −Xβ||2
Rn + α||Lβ||2L2}, (1)

where L is a linear operator.
Within this classical formulation, PEER exploits the joint spectral properties of the

operator pair (X,L). This perspective allows the estimation process to be guided by
an informed construction of L. It succeeds when structure in the generalized singular
vectors of the pair (X,L) is commensurate with the appropriate structure of β. How L
imparts this structure via the GSVD is detailed in Randolph et al. (2011), and so the
discussion here is restricted to providing the notation necessary for the GFLM setting.

A least-squares solution, β̂, satisfies the normal equations X ′Xβ = X ′y. Estimates
arise as minimizers, β̂ = argminβ ||y−Xβ||2, but there are infinitely many such solutions
and so regularization is required. The least-squares solution with a minimum norm is
provided by the singular value decomposition (SVD): X = UDV ′ where the left and
right singular vectors, uk and vk, are the columns of U and V , respectively, and D =
diag{σk}

p
k=1, with σ1 ≥ σ2 ≥ . . . ≥ σr (r = rank(X), σr ≈ 0). The minimum-norm

solution is β̂+ = X†y =
∑

σk 6=0(1/σk)u
′
ky vk, where X† denotes the Moore-Penrose

inverse of X : X† = V D†U ′, where D† = diag{1/σk if σk 6= 0; 0 if σk = 0}.

For functional data, however, β̂+ is an unstable estimate which motivates PCR es-
timate: β̃PCR = VdD

−1
d Ud

′y where Ad ≡ col[a1, ..., ad] denotes the first d columns of a
matrix A. Another classical way to obtain a more stable estimate in terms of the ordinary
singular vectors is to impose a ridge penalty, L = I (see Hoerl et.al., 1970) for which the



minimizing solution to (1) is

β̃α,R = (X ′X + αI)−1X ′y =

r
∑

k=1

(

σ2
k

σ2
k + α

)

1

σk

u′
ky vk, (2)

For a given linear operator L and parameter α > 0, the estimate in (1) takes the form

β̃α,L = (X ′X + αL′L)−1X ′y. (3)

This cannot be expressed using the singular vectors of X alone, but the generalized
singular value decomposition of the pair (X,L) provides a tractable and interpretable
vector expansion.

We provide here a short description of the GSVD method. Additional details are
available in the Randolph et al. (2011). It is assumed that X is an n× p matrix (n ≤ p)
of rank n, L is an m × p matrix (m ≤ p) of rank m and the null spaces of X and L
intersect trivially: Null(L)∩Null(X) = {0}. This condition is needed to obtain a unique
solution and is natural in our applications. It is not required, however, to implement the
methods. We also assume that n ≤ m ≤ p, with m+n ≥ p, and the rank of Z := [X ′L′]′

is at least p.
Then there exist orthogonal matrices U and V , a nonsingular matrix W and diagonal

matrices S and M such that

X = USW−1 , S =
[

0 S
]

, S = diag{σk}

L = VMW−1 , M =

[

I 0
0 M

]

, M = diag{µk}.
(4)

The diagonal entries of S and M are ordered as

0 ≤ σ1 ≤ σ2 ≤ ...σn ≤ 1

1 ≥ µ1 ≥ µ2 ≥ ...µn ≥ 0
where σ2

k + µ2
k = 1, k = 1, ..., n. (5)

Denote the columns of U , V and W by uk, vk and wk, respectively. For the majority of
matrices L the generalized singular vectors uk and vk are not the same as the ordinary
singular vectors of X . One case when they are the same is for L = I.

The penalized estimate is a linear combination of the columns of W and the solution
to the penalized regression in (1) can be expressed as

β̃α,L =

p
∑

k=p−n+1

(

σ2
k

σ2
k + αµ2

k

)

1

σk

u′
ky wk , (6)

We refer to any β̃α,L (L 6= I) as a PEER (partially empirical eigenvectors for regression)
estimate. The utility of a penalty L depends on whether the true coefficient function
shares structural properties with this GSVD basis. With regard to this, the importance
of the parameter α may be reduced by a judicious choice of L (Varah, 1979) since the
terms in (6) corresponding to the vectors {wk : µk = 0} are independent of α.
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Figure 1: Partial sums of penalized estimates. The first five odd-numbered partial sums
from (6) for three penalties, L: 2nd-derivative (dotted black), ridge (solid gray), targeted (solid
black); see text. The last panel exhibits β (solid black) and several predictors, xi (light gray),
from the simulation.

2.1 Structured and targeted penalties
A structured penalty refers to a second term in (1) that involves an operator chosen to
encourage certain functional properties in the estimate. Here we give examples of such
penalties. If we begin with some knowledge about the subspace of functions in which
the informative signal resides, then we can define a penalty based on it. For example,
suppose β ∈ Q := span{qj}

d
j=1 for some qj ∈ L2(Ω). Set Q =

∑d

j=1 qj ⊗ qj and consider

the orthogonal projection PQ = QQ†. Define LQ = I − PQ, then β ∈ Null(LQ) and
β̃α,LQ

is unbiased.
Figure 1 illustrates the estimation process with plots of some partial sums from equa-

tion (6) for three estimates. The ridge estimate is, naturally, dominated by the leading
eigenvectors of X . The second-derivative penalized estimate is dominated first by low-
frequency structure. The targeted PEER estimate shown here begins with the largest
peaks corresponding the largest GSV components, but quickly converges to the informa-
tive features.

2.2 Analytical properties

For a general linear penalty operator L, the analytic form of the estimate and its basic
properties of bias, variance and MSE are provided in Randolph et al. (2011). Any direct
comparison between estimates using different penalty operators is confounded by the
fact there is no simple connection between the generalized singular values/vectors and
the ordinary singular values/vectors. Therefore, Randolph et al. (2011) first considered
the case of targeted or projection-based penalties. Within this class, a parameterized
family of estimates is comprised of ordinary singular values/vectors. Since the ridge and
PCR estimates are contained in (or a limit of) this family, an analytical comparison with
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Figure 2: A sample magnetic resonance spectroscopy (MRS) spectrum displaying
brain metabolite levels in one frontal gray matter (FGM) voxel.

some targeted PEER estimates is possible.

3. Extension to GFLM

Generalization of PEER to the GFLM setting proceeds via replacement of the contin-
uous responses y1, . . . , yn by responses coming from a general exponential family whose
expectations g(µi) are linearly related to a functional predictor Xi. We specifically focus
here on the binary responses and logistic regression setting. We replace the least squares
criterion by a likelihood function appropriate for the member of the exponential family
distribution and find the estimate of β by minimizing the following expression:

β̃α,L = argminβ{
∑

i

l(g(yi), Xiβ) + α||Lβ||2L2}, (7)

where l(·) is the log-likelihood function. The fitting procedure for PEER in GFLM set-
ting is a modification of an iteratively reweighted least squares (IRLS) method. In a
similar spirit to the BLUP and REML estimation of the tuning parameter in the linear
mixed model equivalent setting, we select the tuning parameter using the penalized quasi-
likelihood (PQL) method associated with the generalized linear mixed models. REML
criterion is preferred here, since it has been been shown to outperform the GCV method
(see Reiss and Ogden, 2007).

4. Application to a magnetic resonance spectroscopy
data

We apply the GFLM-PEER method to study the relationship of the magnetic res-
onance spectroscopy (MRS) data and neurocognitive impairment arising from the HIV
Neuroimaging Consortium (HIVNC) study (see Harezlak et al., 2011 for the study de-



scription). In particular, we are interested in studying the relationship of the metabolite
level concentrations in the brain and classification of the patients into neurologically
asymptomatic (NA) and neurocognitively impaired (NCI) groups. The predictor func-
tions come in the form of spectra for each studied voxel in the brain (see Figure 2). Our
method provides promising results when compared to the more established functional
regression methods which do not take into account the external pure metabolite spectra
profiles . We also obtain interpretable functional regression estimates that do not rely
on a two–step procedure estimating the metabolite concentrations first and then using
them as predictors in a logistic regression model.

5. Discussion

Estimation of the coefficient function β in a generalized functional linear model re-
quires a regularizing constraint. When the data contain natural spatial structure (e.g.,
as derived from the physics of the problem), then the regularizing constraint should ac-
knowledge this. In the FLM case, exploiting properties of the GSVD provided a new
analytically-rigorous approach for incorporating spatial structure into functional linear
models. In the GFLM case, we extend the IRLS procedure to take into account the
penalty operator.

A PEER estimate is intrinsically based on GSVD factors. This fact guides the choice
of appropriate penalties for use in both FLM and GFLM. Heuristically, the structure of
the penalty’s least-dominant singular vectors should be commensurate with the informa-
tive structure of β. The properties of an estimate are determined jointly by this structure
and that in the set of predictors. The structure of the generalized singular functions pro-
vides a mechanism for using a priori knowledge in choosing a penalty operator allowing,
for instance, one to target specific types of structure and/or avoid penalizing others. The
effect a penalty has on the properties of the estimate is made clear by expanding the
estimate in a series whose terms are the generalized singular vectors/values for X and L.
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