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Abstract

The two main topics addressed are: (i) the relationship
between internal, external, and input-output stability,
and (ii) stability of time-invariant systems including
a new Banach-space formula for the stability radius.
With regard to (i), we show that a nonantonomous
system is internally stable if and only if it is stabi-
lizable, detectable and input-output stable; the short
proof seems to be new even for finite-dimensional an-
tonomous systems. For (i), new formulas are given,
in terms of the coefficients of the system, for the L,-
norm of the input-output operator and for the stability
radius of the system.

1 Inmtroduction

Using evolution semigroups we continue a study, begun
in [B] of stability guestions for infinite-dimensional lin-
ear time-varying state-space systems. Of the two main
results, the first characterizes exponential stability of
time-varying systems on Banach spaces in terms of the
input-output operator, while the second provides a for-
mula for the stability radius of time-invariant svstems
in terms of the Ly-norm of this operator. Both re-
sults extend, in a natural way, classical theorems for
Hilbert-space syvstems. We stress that these classical
statements do not generally hold for Banach-spaces or
when p # 2.

Consider svstems of the form

zit) = Bt a)r, + ]" d(t, 7) BT julT) dr,

yit) = Clt)=(t), =0

(L.1)

Here @ = ([t =)}, is a stromgly continu-
ons exponentially bounded evolution family {prop-

agator), B() € Le(Bs, By(U, X)) and C{) €
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LBy, B(X,Y)), where X| Y, I7 are Banach spaces
and B.{-,-) is the set of bounded operators with the
topology of strong convergence. In particular, our re-
sults apply to svstems modeled with time-varying dif-
ferential equations on Banach spaces

a' (1) = A(t)x(t) + Blt)ult), y(t) = Clt)=(t), t = 0,
{1.2)
arising from partial or functional differential equa-
tions where the operators A(2) are not assumed to be
bonnded. For time-invariant (autonomous) svstems,
we consider a “mild” version of (1.2);

'
x(t) = ey +-/; et~ Bu(r) dr, (L3)

plt) =Calt), t=0,

where {e‘-“' be=o 15 a strongly continuous semigroup on
X generated by A, where the operators B 7 = X
and C': X — ¥ are hounded, and where 4, B, and '
are time independent.

For the general svstems (1.1), define the input-output
operator, L, for u € LB U)) 1 < p < 0oy as

:
Luft) = C‘I:t}f St 7)B(riu{r)dr, t=10,
0

and recall the lollowing notions of stability, The sys-
tern (1.1} is inpul-outpul stable if L is a bounded op-
erator from Ly(B . U) to Lp(R,,Y); this system is
called internally stable if the evolution family @ is
exponentially stable, that is, ||®(t,s)] < Me 8lt—
for some constants 4 = 0, M = 0 and all ¢t = s,
The autonomons system {1.3) is called externally sta-
ble if the transfer function His) == C'{4d —s)"'Hisa
bounded analytic function of & in the right half-plane
Co =44 € T Re(A) =0},

Since it is often desirable to deduce stability based
solely on the knowledge of inputs and outputs, the re-
lationship between internal stabilicy and the other two
types of stability has been examined fairly extensively.
See, for example, [1] (finite-dimensional setting) and



[13] (time-invariant, Hilbert-space setting) as well as
[2, 5] and the references therein, Here, we extend a
basic relationship, examined in these references, to the
general seiting of (1.1) (see Theorem 2.3 for a detailed
statment):

Theorem 1.1 System (1.1] is internally stable if and
only if it is stabilizable, detectable and input-ouwfput sta-
bl

Consider now the time-invariant system (1.3)) The fol-
lowing result of G. Weiss [14] holds for the Banach
space setting:

sup [|[H{s)| < L] gk, imy 00,0000 7 1 - (1.4)
&=y

If I7 and ¥ are Hilbert spaces and p = 2, then equality
holds in (1.4) (see, e. g., [3] or [8]}, and so Theorem
1.1 recovers a theorem by R, Rebarber [13], sayving that
a Hilbert space antonomous system s internally stable
if and only of o is stabidizable, detectable and exter-
nally stable. Using known examples, we observe (Ex-
ample 2.2 below) that for Banach spaces, the hypothe-
ses of stabilizability and detectability are not sufficient
to ensure that external stability implies internal stahbil-
ity. This state of affairs is hinted at by the fact that
in Banach spaces a strict inequality can hold in (1.4},
On the other hand, Theorem 3.1 below shows that the
conclusion of the Rebarber's theorem does hold for the
Banach-space setting under the additional assumption
that the equality splA) = wyiA) is satisfied; here, for a
strongly continuous semigroup {e''}i>0, wo(4) denotes
the growth bound and sp{Ad) denotes the abscissa of
uniform boundedness of the resolvent: sp{Ad) = inf{w £
R:C, C p(A) and supyc_ ||(A— 4)7Y| < s}, where
C,i={z€C:Relz) > w} for w € K In Corollary 3.2
we formulate a checkable sufficient condition from [6]
(see also [10, Cor. 4.6.12]) under which this equality
indeed holds.

It should be pointed out that [13] allows for a cer-
tain degree of unboundedness of the operators B and
C'. Such “regular” systems (see [14]), and their time-
varying generalizations, might be addressed by combin-
ing the technigues of the present paper with those of
[3] and [4). This will not be done here,

The next theorem gives a Banach-space replacement
for the Hilbert-space eguality (1.4); that is, it provides
a foromla for the norm of the input-output operator
in terms of the transfer function (see also Theorem 3.3
below)., Here, S(E, 7] denotes the Schwartz class of
rapidly decreasing U-valued functions on R.

Theorem 1.2 Assume that the awlonomous spstem
(1.3) is internally stable. Then L & B{L,(R.U),

Ly (B, Y}, and ||L|| is eqial to

| J, C(A —is) ' Bu(s)e™ ds|l, imyy

I| i uls)e=C dsl|g, im0

SIp
wES (R L)

(L.3)

In view of the recent result in [11], this theorem pro-
vides a new expression for the stability radius, see [3],
a guantity that describes a “distance from instabil-
ity More specifically, assume that the time-invariant
system (1.3) is internally stable, and view B and
as operators describing the structure of a perturba-
tion, If A{-] : By — B{Y.U) denotes a hounded,
strongly measurable operator-valued function—viewed
as an unknown disturbance—then the stability radius
measures the size of the smallest A for which (mild)
golutions to the perturbed equation,

#'(t) = (A+ BAH)C)z(t) (L6)

loose exponential  stability. This iz denoted hy
reaapld, B,C) = sup{r > 0 : [|A|lx < v implies that

(1.6) is exponentially stable}. When p =2 and I7 and
1" are Hilbert spaces, the equality

-1
LI = rans(4.B,C) = [ﬁ:ggllH[s}ll] (L7)

is known; see, e.g., [3]) In the general Banach-space set-
ting the first and third guantitics may differ [8]. How-
ever, using evolution semigroups as in [8, 9], J. van
Meerven [11] has recently shown that the stability ra-
dius equals 1/]|L||. Thus, the reciprocal of {1.5) gives a
Banach-space formula for the stability rading in terms
of the transfer function. As such, it generalizes the
Hilbert-space formula (1.7} and makes a new connec-
tion between the state-space and frequency-domain ob-
jects, Loand H{s).

2 Stahility

The technigues used in proving Theorems 1.1 and 1.2
rely on the concept of evolution semigroups and their
spectral properties. The term evolution semigroup here
refers to a family of operators {E*}i~g on Ly (R4, X)
which is induced by a strongly continuous exponentially
bounded evolution family & by the rule (E'f)(7) =
Slrr—t)f(r—t) for0 <t <7 and (E'f){r) =0 for
0 < 7 < t; its generator will be denoted by T

It is known (see [8, 9, 10, 12] and the references therein),
that the spectrum @(I') 15 invariant under translations
along iR, the spectrum a(E*), is invariant under rota-
tions about the origin, and e = o (E)\ {0}, ¢ > 0
Moreover, @ is exponentially stable if and only if the



semigroup {E'}i=g is stable, or, equivalently, the oper-
ator I' has a bounded inverse on L,{E,, X). In addi-
tion, we have the following fact from [8] which is based
on an autonomous version by J. van Neerven [9],

Theorem 2.1 An evolution fomily of operators @ on
N ie exponentially stable if and only if

Gf(t) = fufm,frmrmn t20,  (28)

defines a bounded operator, G, on Ly(R., X); in ths
case, G = -1,

This characterization of stability allows Theorem 1.1 to
b proven using elementary algebra of operators. Be-
fore giving this proof, we state the general definitions of
stabilizability and detectability and point out an (au-
tonomous) example showing that such conditions are
not sufficient to ensure that external stability implies
internal stability,

The system (1.1) is said to be stabilizable if there exists
F() & LBy, B, X, 7)) and a corresponding expo-
nentially stable evolution family, {®gr(t, s)}i=. such
that, for £+ > s and « € X, one has Pt sl =
®(t,s)a + [! ®(t,7)B(r)F(r)®pp(r,8)rdr. The sys-
tem (1.1} is said to be detectable if there exists K(-) €
Lo By, B.(Y, X)) and a corresponding exponentially
stable evolution family, {®xc(t.s)}e=s such that, for
t = sand r € X, one has $go(f, s)r = Bt s)r +
j: Prol(t, T)K(T)C(T)®(r, 8)z dr.

Example 2.2 Let A be a generator of a strongly con-
tinuous semigroup {e'}=0. It is always the case
that sg(A) < wp(d), see, e. g, [10]. Consider an
A with the strict inequality salA) < wopl(d). To be
maore specific, rescaling an example doe to W, Arendt
(see [10], Example 1.4.5) gives a (positive) strongly
continuous semigroup with a generator A4 having the
property that sp(d) < wel{d) = 0. With this par-
ticular 4, and B = [ and ' = [, the system (1.3)
is stabilizable (take F' = —al where o > 0, and s0
wold + BF) = wp{A) — a < 0), and detectable. Also,
splA) < 0, and so H(s) = (s — A)7! is a bounded
function of & on Ty by the definition of sg{A). Since
walA) =0, this system is not internally stable, &

For the detailed version of Theorem (1.1) which fol-
lows, we define multiplication operators 5 and C by
Bu(t) = B{tu(t), v € LR, U) and Cf(t) =
C()f(t), f € Ly(B;. X); if B(-) and C(-) are as in
(1.1}, then B € B{L,(B4.U), Ly(E4. X)) and € €
Bl{L(Ry,X), Ly(Rs, Y)).

Theorem 2.3 The following are equivalent :

i) {®(t, 5]}, is exponentially stable on X;
ii) G s a bounded operator en Ly(Bo, X);

iii) system (110 is stabilizable and GBE is a
bounded aperator from Ly(Bo, U7 to Lp(Re, X;

iv) system (1.1) is detectable and CG i a bounded
operator from L,(B X} fo Ly(Ry Y);

v) systemn (L1} iz stabilizable and detectable and
L = CGE s a bounded operator from Ly(B.. 17
to Lp(By, Y).

Proof:  Assume that L = CGE is a bounded oper-
ator. The definition of detectability gives @ . (¢, 2)Bu
= Pt 5| Hu +_[:"EI'M_.{t, 71 K{T)C{r) e (7, s)Budr for
some K(-) € Lo(By, B(Y, X)), and {@xrc(t.8)}ize.
Since the latter is exponentially stable, the operator
Gref(t) = f.j Py (t.7)f(7) d7 is a bounded opera-
tor on Ly(Ei, X). Integrating from 0 to ¢ leads to
GpoBu = GBu + Groe 0GB, Since OGH, and Gyo
are hounded, the operator GB is bounded. Using the
hypothesis of stabilizability, a similar caleulation re-
sults in the equation Gy = G + GBFGgp. where
GGrrflt) = fl_: Prpit,r)flr)dr defines a bounded
operator since {$#pp(t. 5)}iz, 15 exponentially stable.
Hence, 3 is hounded. By Theorem 2.1, {®(t, 5)}i5. is
then exponentially stable. m

3 The autonomous case

The main result of this section is Theorem 3.3, a de-
tailed version of Theorem 1.2, This theorem parallels
Theorem 2.3 and the main point is to provide explicit
conditions, in terms of the operators A, B and O, which
imply internal stability. In particular, the equivalence
of (1) and (6) in Thearem 3.3 gives a direct Banach
space generalization of the standard Hilbert space char-
acterization of internal stability via the boundedness of
the transfer function in the right half-plane.

Before proceeding with this theorem, recall [see Ex-
ample 2.2) that the properties of stabilizability and
detectability are not sufficient to ensure that external
stability implies internal stability. As seen by the fol-
lowing Theorem 3.1, this failure is a consequence of the
fact that sp{A), the abseissa of uniform houndedness,
can be strictly less than the growth hound, wg{A).

Theorem 3.1 Let {e''}og be a Cy semigroup with
the property that sgld) = weld).  Asswme (1.3) is
stabilizable and detectable. If Ty C pld) and M =
sup,ep |[C(A — is) 7 B|| < oo, then {e'}sy is expo-
nentially stable.



Proof: Choose operators Fl € X, L) and K &
LY, X such that the semigroups generated by A+ BF
and A + KO are exponentially stable, so it follows that
spld + BF) < 0 and spld + KO < 0. Set My =
sup,ep [[(A+BF—is)~!|| and Ma = sup, g |[(A+KC—
is) 71|, Since (A—is) ' B = (A+ KC—is)"'B+(A+
KO —is)7VKCO(A —is)7' B, it follows that

My = sup ||(A —is) "' B|| < Ma||B|| + M:||K]|M.
SER

Also, (A—is) ! = (A+BF —is) ' +({A—is) " 'BF{A+

BF — is)™', and so sup,g|/{4 —is)7Y € M, +

M| F|| My . Therefore, wy(A) = sp(4) < 0. m

Corollary 3.2 Asswme there erists an w > wylA)
such that, for ench x € X and each &% € X°, the ad-
joint space, one has [ ||[(w+ir—A) " 2|} dr < oc and
Jg e + ir — A*)~ ' ||k, dr < oo Then (1.3) is in-
ternally stable if and only if it is stabilizable, detectable
and externally stable.

Proof:  According to [6] (see also [10, Cor. 4.6.12]),
the conditions above imply sa{A) = wel(d). Now The-
orem 3.1 gives the result.

We now state the main theorem of the section. Let
Ay = A — al denote the generator of the rescaled
semigroup {e~ e}, 50,

Theorem 3.3 The following are equivalent for a
strongly continuous semigroup {e}i=q generated by
A on a Banach space:

(1) {e"'}is0 is exponentially stable;

(2] G iz a bounded operator on Ly(R., X;

A, — i) Yu{)e™ ) ds|| ;i
9 Il flda . is) _l['{.]ﬂf' e, im.%)
vES(R,X) | g vlshetst) dsllg, i, xy
is findte for all o > 0;

(4) i I fg'[:iu —is) "' Bu(s)e™" ds|| g, (5.x)

WESIR) | 5 ulshe*th ds||pim.on
is finite for all o = 0 and (1.3) is stabilizable;

| f; €l Aa — sy u{s)e™ ) ds||f, (z.v

(5)  sup
vES(R,X) ||f (a)eisl) ds||, m.x)

15 finite for all o 2 0 and (1.3) is detectable;

| fi; C(An — is) ' Bu(s)e™ ) ds|ly, vy

(6) sup
wES(R,U) || J wislet® dally, irar

is finite for all o = 0 and (1.3) is both stabilizable
and detectable,

Moreover, if {e'} is erponentially stable, them the

norm of the input-output operator, L = OB, s

||Jrﬁ (Ag — i8) ' Bu(s)e il Jl1!"!'”:,.1:1 X
||.|rq ‘u'[ﬂ"”"’ Vsl ray

sup
wiE SR, L)

As noted in (1.7), If &7 and 17 are Hilbert spaces and
p= 2| then ||L|| = sup,cp |C{A —is) 7' Bllgv,v)-

Proof: The proof proceeds by first showing that
statements (1)-13) are equivalent. This is done by re-
lating properties of the evolution semigroup {E'}izn
on Lp(ly, X} to the properties of an evolution semi-
group of operators acting on Ly(R, X). This argument
also proves the last statement (see Theorem 3.7) as well
as the implication {1)=+{6). The proof of Theorem 3.3
is completed by proving the implications (6)=»{4)=+(3)
and (6)=>(5)=(3).

We begin by considering an evolution semigroup on the
entire real axis: for an evolution family {®(4, 5) }y=., de-
fine a semigroup {E4}so on Ly(R, X) by (EBLf)(r) =
Dr,m —t)f(r — ), 7 € B and denote its generator
by I'e. The current focus s on autonomons systems,
so Ef takes the form (Eff)(r) = etd f(r — ). The
geuera,tc:-l_ T'g. is given by the closure (in Ly(R, X))
of the operator —d/dt + 4 where (Af)(t) = Af(t),
and D({—dfdt + A) = Di—djdt) n DA} = {v €
LB X) :v € AC(R,X), o € LR, X), wis) €
D(A) fora. a s and o' + Av € L (R, X)}.

As shown in [7], the existence of an exponential di-
chotomy for solutions to £'{t) = Az(t), t € R, is
characterized by the condition that Ty is invertible on
LpR, X, On the other hand, exponential stability of
solutions to z'(f) = Axit), ¢ > 0, is characterized by
the condition that T is invertible on Ly(R . X) [8]. We
shall begin by assuming that (1) holds. In this case
hoth T and I'z are invertible.

Given v € S[{B, X, let g, and f, denote the func-
1 . 1 |
7 /1:[3} daand fi () = _rfﬁ(.ii

is) 'u(s)e ds, and define the sets & = {g, : v €
S(E, X)} and § = {f, : v € S(R, X}

tions g, () =

Proposition 3.4 The set & consisls of differentiable
Junetions and s dense i Lp(B, X} the sel § is dense
in P(Cg); for v € S(R, X} one has T'nfu = gu.

Proof:  Note that & = {g: E — X : there exists
v € S(E, X)) so that g = v}, where * is the Fourler
tran*ifurm and so & contains the set {g € L'(E, X) :

@ € S(B, X))}, which is a dense in Ly(R, X). The rest
15 a direct caleulation. m

For an operator B on a Banach space £ we denote



|Blle = ||R]le,z = inf{]|Rz|| : = € D{R),||z] = 1}.
Also, get A = {v e S{E, X v(s) € D(A) for = € B}

Corollary 3.5 Let T and Uy, respectively, be the gen-
erators of the evolution semigroups on LRy, X and
Li(R, X). as defined above. Assume o{d) NiE = @
Then the following essertions hold:

i) ITxlle,,(zx) is egual to

i || Sl — g (8)e*0) dlg,m,x)
ot Il fr vis)e™t) ds|lp, r.x)

ii) if Ty is invertible on L,(R,X), then {e'1}
has exponential dichotomy and Uy ||, =30
is equal to

Il fzld —is)
Fmp -!ﬂ[ 1
res | [ v(s)etat ds|l g im x)

“Lu(s)e™) ds|l, %)

1

iii) if T is invertible on Ly(RE,, X), then {e!1])
i fﬂ‘-mﬂﬂﬂﬁﬂ”y St-l'lb:ﬁ and ||P"J”HI'L,-_.I'R+..T:IJ =

]
g im0 -

Proof: To show i) let v € S(R, X). Then wis) =
(4 —is) w(s), s € R, defines a function, w, in A

1 )
Now, g.(1} = ﬁf'{-’i —ishw(s)e”" ds, and f.(7) =
R

5 'LL-{S}t 7 ds. However, from Proposition 3.4,

ITRfull .l
r = inf = inf
Ielle = jnf 52 = S 17

||fR —isjw(s)e") ds||
N u-e,\ || fy we(8)ei=t ) dsl|

To see i) note that

ITefull] ™ ||f=||
Il s Nl

=1 -1 __
I3 = Wl = [ing

For iii) note that |[Celle s ex) £ Ille,me.x) 8
trivial. To see that ||[I'zlls = ||T)le . let € = 0 and
choose f & D{['g) with compact support such that
1fll,=.x) = 1 and ICalls > [Cxf] - e Now choose
7 € B such that f.(z) := flzs — 1), 5 € R, defines a
function, f; € Ly(B.X), with supp f; C Ry. Then
ITelle = ITrfll —€= [(Trf)cll — €= |ITlls —e. =

Proposition 3.6 The set & = {gy :u € S(R, U} is
dense in Ly(RU). If u € S(BR,U) and B € B(U, X)
then Bu € S(R, X)) and U's fay = By,

Theorem 3.7 If Tz is invertible on L,(IE X}, then
ICT: B]| is equal to

| i (A —is) *Bm‘a) ””Eﬁ*llmma

E1RN ]
nES{lI?.L-] | f uls)e
(3.9
IfTU is invertible on L,(Ry, X)), then, for L=CT15,
Wl i, tmy 20,2007 v = ICTR B (3.10)

Proof: For w e S{E, ), consider functions fg, and
- Proposition 3.6 gives fg, = I‘E'Byu and

T4 o2 5
||EF;E1E” — E-:_Il].'.l ” B Q“HLNELF] = = ” fﬂﬂ”
ety ||gullLpmo gueusv (A

whirh is (3.9),

Now, if T' is invertible on Ly(B,, X, then {e'1}] is ex-
ponentially stable [8, 9). Hence, [y is invertible on
Lo, X). Moreover, for the case of the stable semi-
group {e' te=o. the formula for Fr:] Jfor f e Ly(R, X)
with supp f C (0, oc), takes the form

i
zf =914 £ (3} da
o
(3.11)
see, e g, [7]. For a function h € L[y, X}, define an
extension h € Ly(R, X) by h(t) = h(t) for t > 0 and
F‘a.[f] =0 for { < 0. Then {3.11) shows that FE’& =
(T=R)~. In particular, for u € L,{R{,X) one has
Lu = €0~ 'Bu = (T3 ' Bii. Therefore, ||IL|| < [|€T5 Bl
qinee

sl ey vy = It vy < NICTR Bl Jlu

To prove that equality holds in (3.10), let € > 0 amd
choose a compactly supported v € Ly (R, 7). ||| =1,
such that ”{jFEEiHH”LF{RIy] = ||.|,’j'1" 1ﬁll — & Now
choose r such that suppu(- — r) C (0,0¢) and set
w(-) := u(- —r). Then w € L (R, U7) with suppw €
(0,00). Let @ denote the element of Ly(R.,U7) that
coincides with w on By, As in {3.11) we have

(5 f)(t) = [_ =914 £(5) ds

BBy L0y

t
Crs Bult) = cf =94 () ds,
—

which implies that

Ll = Lalle, 5y ) = 1Bl ppir.yy = L8] £pim. vy
= ||ICg " Bu|| = |CT7" Bul| = ||ICTg ' Bl — e

To complete the proof of Theorem 3.3 we note that
(2) follows from (1) by [9]. By Theorem 2.1, (1) is a
consequence of (2). Exponential stability of {e'}2y



is equivalent to the invertibility of I's, and as a conse-
quence, (31 follows from (1) by Corollary 3.5.

To show that (3) implies (1) we consider the case o = 0
and assume that the expression in (3) is finite, By
Proposition 3.4 and Corollary 3.5,
Eo |
L0y 5

ICefll _ (
reS(R.X) ”ﬂt-“

wesiRX] [ foll

This shows that () ¢ r:ruF[I. 3;] and so (see, e.g., [7] or
[12]). it follows that o,,(e"*)NT = ¢. On the other
hand, since a(4) Nik = ¢, it follows from the Spec-
tral Mapping Theorem for o.(e') that o) NT =
[r:ruF[ tAY U e 1:I] MT = W. The same argument holds
for any & > 0. As a result, {¢'4=},54 is hyperbolic for
each o = 0, and thus wy{Ad) < 0

IT%[ls =

To see that (1) implies (6) note that if (1) holds
then (1.3) is trivially exponentially stabilizable and deq
tectable, and that {e"‘“ bizo is exponentially stable for
all av == 0 thus (6) follows from Theorem 3.7. The last
statement of Theorem 3.3 also follows from Theorem
3.7

To show that (6) implies (4), we begin by assuming
that o = 0. Sinee (1.3) is detectable, there exists K €
B(Y, X)) such that A+ KO generates an exponentially
stable semigroup. By the equivalence of (1) and (3},

| (A + KC = i) u{s)e™ ! ds|
I fj: v(s)e 1 ds||

M, = sup
VESIR.X]

is finite, and so,

| ol A+ KC — is)~* Bu(s)e™) ds|
T )T ds]

Sup
yESRLN

is bounded by M| 8], By hvpothesis,

L C(A — is)~ Bufs)e'*() ds|
[T uls)en ds]

= KC{A—is) " Bu(s), s €

My = sup
wES(R, L)

For u € S(|, U}, let wis)
K. Then,

| Jo(A + KC —is) " KC(A — is)~ ! Bu(s)e™" ds]|
”j‘R uis)etsld ds||

is bounded by M, [|K||Ma. Finally, since (A—is)7'B =
A+ KC—is) "B+ (A+ KC—is) ' KC(A—is)7'B,
it follows that
| oA = is) " Bu(s)e™ ds|

[ f;a utsJﬁ**‘ ! ds|

is bounded by M, |8 + My Ms|| K| =0 (6) implies (4).

sup
wE S (R, L

Arguments similar to these show that (4] implies (3),
(6] implies (5) and that (5) implies (3). =
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