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Abstract. We study linear control systems with unbounded control and observation
operators using certain regularization techniques. This allows us to introduce a modi-
fication of the transfer function for the system also if the input and output operators
are not admissible in the usual sense. The modified transfer function is utilized to show
exponential stability of sufficiently smooth solutions for the internal system under ap-
propriate admissibility conditions on the system operators and appropriately modified
stabilizability and detectability assumptions. If the internal system satisfies additional
regularity properties, then we even obtain its uniform exponential stability.

1. Introduction

The topic of general infinite-dimensional linear systems has been studied by many

authors focusing on a variety of classes and representations. Among the most general of

these classes are the well-posed systems introduced by Salamon [18] and Weiss [23, 24,

25] which allow for unbounded control and observation operators (see, e.g., the survey

[9]). A subclass of these well-posed systems is the set of regular linear systems. These

were investigated by Weiss [23, 24, 25, 26], who showed that such systems allow nice

generalizations of finite-dimensional systems by admitting the differential representation

x′(t) = Ax(t) +Bu(t), y(t) = CLx(t) (1.1)

on Banach spaces X, U and Y , and the transfer function has a representation of the form

s 7→ H(s) = CL(s−A)−1B. Here, B is the control operator and CL denotes the Lebesgue

extension of the system observation operator, C; the extension is needed to account for

the possibility that the domain of C may not contain (s− A)−1Bu, u ∈ U .

This paper focuses on well-posed systems that are not necessarily regular, but a discus-

sion of the latter is useful for putting our results in context. The main result concerns an
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equivalence between internal and external stability. This type of result has a history of

predecessors and we refer to [7] and [28] for discussion and additional references. With re-

spect to this result for regular systems, Rebarber [17] showed that internal (uniform expo-

nential) stability is equivalent to stabilizability, detectability and external (input-output)

stability. For general well-posed systems Morris [15] and Staffans [21] have formulated

more general definitions of stabilizability and detectability and proved analogous results

on internal versus external stability. These definitions and results lack the realization (1.1)

of a regular system and its transfer function H; as such, they cannot be stated explicitly

in terms of the transfer function given directly by the system operators. The most general

theorem of this type for autonomous systems is by Weiss and Rebarber [28] which also

avoids the assumption of regularity by replacing the concepts of stabilizability and de-

tectability with the more general concepts of optimizability and estimatability. We refer

the reader to that paper for a more detailed history of this result. For nonautonomous

systems, results of this type were proven in [6] and, more generally, in [19], but here we

address only autonomous systems.

The present goal is not to provide another generalization of these concepts but rather

to retain, even for general well-posed systems, an explicit transfer-function-like criteria in

terms of the operators A,B,C for external stability that can be used to infer an internal

stability of the system. An additional consequence of our approach is that we allow

for varying degrees of admissibility and unboundedness in the control and observation

operators. To describe this, we briefly recall the concepts of generalized transfer functions

and well-posed systems; details, references and extensions are given in Sections 3 and 4.

Let A generate a strongly continuous semigroup, {T (t)}t≥0 on X, with domain X1 :=

D(A) ⊂ X. We use the notation R(λ,A) = (λ−A)−1 for λ in the resolvent set ρ(A) of A,

and let X−1 be the completion of X with respect to the norm ‖x‖−1 = ‖R(λ,A)x‖. If B

and C are admissible control and observation operators, the generalized transfer functions

of this triple (A,B,C) are solutions, H : ρ(A)→ L(U, Y ), of the equation

H(λ)−H(µ)

λ− µ
= −CR(µ,A)R(λ,A)B, (1.2)

λ 6= µ, see, e.g., [9] and the discussion in Section 3 surrounding equation (3.10). Here

L(U, Y ) denotes the set of bounded linear operators from U into Y . Due to the admissi-

bility of B ∈ L(U,X−1) and C ∈ L(X1, Y ), the right-hand side of (1.2) makes sense and

any such H is an L(U, Y )-valued function, analytic in some half-plane. If, in addition,

the transfer functions are bounded in some right half-plane Cw = {z ∈ C : Re(z) > w}
then (A,B,C) is called well-posed. Unfortunately, this does not provide a nice transfer

function realization in the classical form of H(s) = C(s − A)−1B. As noted above, this

drawback was overcome by Weiss [25] by focusing on the subclass of regular systems. On

the other hand, while many systems arising in practice may indeed be regular, a proof of

regularity poses additional complications and may require an explicit construction of CL.
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Rather than requiring the existence of a transfer function of the form H, we take our

lead from the right-hand side of (1.2) and note that the operator R(µ,A)R(λ,A) is related

to the ω1-growth bound of the semigroup T (t) in a similar way that the resolvent is related

to the uniform exponential (ω0) stability of the semigroup. That is, a semigroup on a

Hilbert space is exponentially stable (i.e., the uniform growth bound ω0(A) is negative)

if and only if the resolvent, R(λ,A), is bounded and analytic on the right half plane C0.

Similarly, boundedness and analyticity of λ 7→ R(µ,A)R(λ,A) on C0 is equivalent to

ω1(A) < 0; this determines the stability of solutions in the sense that if ω1(A) < 0, then

all orbits starting in X1 are exponentially stable (see Section 2). In view of this, the main

theorem becomes:

for a well-posed system (A,B,C) on a Hilbert space, the condition ω1(A) < 0 is equivalent

to the conditions of stabilizability, detectability and bounded analyticity of λ 7→ Gµ(λ) =

CR(µ,A)R(λ,A)B.

The above observations lead to a wide range of flexibility in formulating stability criteria

by considering the entire scale of growth bounds, ωα(A), α ≥ 0 (see equation (2.1)). To

exploit this we introduce in Section 4 varying degrees of admissibility for B and C that

we call β-admissibility and γ-admissibility, respectively. The modified transfer function

has the form Gµ(λ) := CR(µ,A)γR(λ,A)R(µ,A)β−1B, for a fixed µ ∈ ρ(A).

A scenario of interest concerns hyperbolic systems where the second time-derivatives

are observed (e.g., acceleration in mechanical systems; cf. [3] and Example 5.5). One

may consider C ∈ L(D(A2), Y ) to be a 2-admissible observation operator for A if x 7→
CT (·)x extends to a bounded operator on X1 → L2([0, t], Y ) (t ≥ 0). If, in addition,

B ∈ L(U,X−1) is admissible in the usual sense (Section 3), we must expand the typical

Gelfand triple X1 ↪→ X ↪→ X−1 (of interest provided both B and C are admissible in the

usual sense) to X2 ↪→ X ↪→ X−1. In a setting such as this the main theorem becomes

the stability of solutions as defined by ω2(A) < 0 is equivalent to the conditions of stabi-

lizability, detectability and bounded analyticity of Gµ(λ) = CR(µ,A)2R(λ,A)B.

We note that this equivalence involves the weaker concepts of ωα(A) and Gµ (versus

ω0(A) and H(λ) = CR(λ,A)B) allowing more general application of this type of result.

In many settings (see Remark 2.1) we have ωα(A) = ω0(A), in which case the conclusion

of internal stability is strictly stronger than traditional statements of this type: indeed,

we obtain the conclusion ω0(A) < 0 under weaker hypotheses.

The paper is organized as follows. We first recall necessary prerequisites from the

asymptotic theory of operator semigroups and from infinite dimensional control theory,

having in mind readers familiar with only one of both fields. Section 2 establishes some

notation and relevant background on spectral and growth bounds for semigroups and their

generators. Section 3 provides some background and heuristics on admissible operators

and well-posed systems (as developed by D. Salamon, G. Weiss and others) and proves

a lemma needed for the generalizations of these concepts presented in Section 4. These

generalizations are aimed at an explicit representation of a (modified) transfer function.
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For this, we extend the concepts of admissibility by defining β–admissible control and

γ–admissible observation operators (β, γ ≥ 1). Here, β = 1 and γ = 1 correspond to

the usual definitions of admissibility, and several examples illustrate natural settings in

which β > 1 and γ > 1. This leads to the definition of a “(β, γ)–well–posed system”

and the corresponding concepts of a (β, γ)–regularized transfer function and the modi-

fied transfer function (cf. (4.4) and (1.2)). The main theorem of the paper is proven in

Section 5, Theorem 5.1. Of particular interest is a regularized version of internal sta-

bility (i.e., ωβ+γ−1(A) < 0) under the condition that the system (A,B,C) is stabilizable

and detectable. However, we also allow for regularized versions of the latter concepts,

κ–stabilizability on Xb and ι–detectability on Xc, in order to deal with the increased ir-

regularity of B and C, see Definition 4.9. As an illustration of these concepts, we treat

the Laplacian on the d–dimensional torus with point observation and control in Exam-

ple 4.12. The corresponding system operators B and C are admissible if and only if

β = γ > max{1, d
4

+ 1
2
}. For d > 1, the system is not well-posed in the traditional

sense (i.e., not (1,1)-well-posed), but is (β, β)-well-posed for β > d
4

+ 1
2
. The modified

and regularized transfer functions are computed, and it is checked that they are bounded

on C1. The system is seen to be stabilizable in the sense of Definition 4.9. Moreover,

for d ∈ {2, 3} a (generalized) transfer function H exists, but it is unbounded in every

right halfplane. The paper concludes with corollaries and discussion of the main theorem,

and an example which uses the main theorem to prove the lack of detectability a weakly

damped wave equation.

2. Semigroups and growth bounds

Let T (·) be a strongly continuous (linear) semigroup on a Banach space X generated

by the operator A with domain D(A). The (uniform exponential) growth bound of T (·)
is defined by ω0(A) = inf{a ∈ R : ∃M = M(a) ≥ 1 such that ‖T (t)‖ ≤ Meat, t ≥ 0}.
Thus T (·) is uniformly exponentially stable if and only if ω0(A) < 0. Fix some w > ω0(A)

and let α > 0. Then we can define the bounded linear operator

(w − A)−α =
1

Γ(α)

∫ ∞
0

tα−1e−wtT (t)dt

on X. It can be proved that this map is injective; thus it has a closed inverse denoted by

(w −A)α. Moreover, (w −A)−α converges strongly to the identity I as α→ 0, for α ∈ Z
we obtain the usual powers of R(w, a) and (w − A), and we have (w − A)β(w − A)γx =

(w−A)β+γx for β, γ ∈ R and x belonging to the intersection of the domains of the three

operators. For α ≥ 0, we introduce the Banach space XA
α = Xα = D((w − A)α) with

norm ‖x‖Aα = ‖x‖α = ‖(w−A)αx‖. The superscript ‘A’ will usually be suppressed unless

it may lead to confusion. In particular, X1 = D(A) and X0 = X. It is known that Xα ↪→
Xβ ↪→ X for α ≥ β ≥ 0 with continuous and dense embeddings. The operator (w − A)α

clearly commutes with A and T (t) so that T (·) can be restricted to a C0–semigroup Tα(·)
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on Xα generated by the restriction Aα : Xα+1 → Xα of A. Moreover, the semigroups

Tα(·) and Tβ(·) are similar via the isometric isomorphism (w − A)α−β : Xα → Xβ.

We extend this scale of Banach spaces in the negative direction by introducing the new

norm ‖x‖A−1 = ‖x‖−1 = ‖R(w,A)x‖ for x ∈ X. The completion XA
−1 = X−1 of X with

respect to this norm is called the extrapolation space for A. As usual we identify X with

a dense subspace of X−1. Since T (t) and A commute with R(w,A), we can extend T (·)
to a strongly continuous semigroup T−1(·) on X−1 generated by the unique continuous

extension A−1 : X → X−1 of A. These operators are similar to T (t) and A, respectively,

via the isometric isomorphism w−A−1 : X → X−1. (In reflexive Banach spaces, one can

describe X−1 equivalently via duality.)

Let α ∈ [0, 1]. We are now in the position to define the spaces

Xα−1 = XA
α−1 = (XA

−1)A−1
α with X ↪→ Xα−1 ↪→ X−1

and the restrictions Tα−1(t) : Xα−1 → Xα−1 and Aα−1 : Xα → Xα−1 of T−1(t) and A−1,

respectively. This C0–semigroup and its generator coincide with the unique continuous

extensions of T (t) and A to Xα−1, respectively. This procedure can be iterated (finitely

many times). So we obtain Banach spaces Xα for α ≤ −N and every N ∈ N and C0–

semigroups Tα(·) on Xα generated by Aα : Xα−1 → Xα which are extensions or restrictions

of T (·) and A. Moreover, Xα is continuously and densely embedded in Xβ provided

α ≥ β, and the semigroups Tα(·) and Tβ(·) are similar via the isometric isomorphism

(w − A)α−β : Xα → Xβ. In particular, σ(Aα) = σ(Aβ), where σ(B) = C \ ρ(B) is the

spectrum of a linear operator B. Usually we will omit the subscript ‘α’ for the operators

T (t) and A. We remark that varying w > ω0(A) yields the same spaces and operators,

but gives equivalent norms. See [2] and [10] for detailed expositions of the above facts.

Now fix some w > ω0(A). The fractional (uniform exponential) growth bound of the

semigroup T (·) is defined by

ωα(A) = inf{a ∈ R : ∃M = M(a) ≥ 1 such that ‖T (t)(w − A)−α‖ ≤Meat, t ≥ 0}
= inf{a ∈ R : ∃M = M(a) ≥ 1 such that ‖T (t)x‖ ≤Meat‖x‖α, t ≥ 0, x ∈ Xα}

for α ≥ 0; see [16], [22]. In other words, if ωα(A) < 0, then all orbits starting in Xα

are exponentially stable. For instance, ω1(A) < 0 means that all orbits in C1(R+, X) are

exponentially stable. Obviously,

ωα(A) ≤ ωβ(A) ≤ ω0(A) (2.1)

if α ≥ β ≥ 0, where strict inequality is possible, cf. [22, §4]. In order to describe the

fractional growth bound in terms of (the resolvent of) A, we define the spectral bound and

the abscissa of growth order α by

s(A) = sup{Reλ : λ ∈ ρ(A)} and

sα(A) = inf
{
a ≥ s(A) : sup

Reλ>a

‖R(λ,A)‖
1 + | Imλ|α

<∞
} (2.2)
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for α ≥ 0; see [16], [22]. Of particular interest is the abscissa of uniform boundedness

s0(A). Clearly,

s(A) ≤ sα(A) ≤ sβ(A) ≤ s0(A) (2.3)

for α ≥ β ≥ 0. There are examples (even in Hilbert spaces) showing that s(A) < s0(A);

see, e.g., [5, §2.1.5]. Due to [13, Lem.3.2], we have

sα(A) = inf{a ≥ s(A) : sup
Reλ>a

‖R(λ,A)(w − A)−α‖ <∞}. (2.4)

Since the resolvent of A is the Laplace transform of the semigroup, (2.4) implies that

s(A) ≤ sα(A) ≤ ωα(A), α ≥ 0, (2.5)

for each generator A on a Banach space X. Again strict inequality may occur in this esti-

mate as shown in Section 4 of [22]. On the other hand, Weis and Wrobel have established

in Theorem 3.2 of [22] that

ωα+1(A) ≤ sα(A), α ≥ 0. (2.6)

In fact, they proved a more precise result. We say that a Banach space X has Fourier

type p ∈ [1, 2] if the Fourier transform is bounded from Lp(R, X) to Lq(R, X), where

1/p + 1/q = 1. Obviously, every Banach space has Fourier type 1. A Banach space

has Fourier type 2 if and only if it is isomorphic to a Hilbert space and Lr–spaces have

Fourier type min{r, s} with 1/r+1/s = 1; see [16] and [22] for references for these results.

Theorem 3.2 of [22] now says that

ωα−1+ 2
p
(A) ≤ sα(A), α ≥ 0, (2.7)

if the underlying Banach space X has Fourier type p ∈ [1, 2]. Combined with (2.5), this

inequality yields

ωα(A) = sα(A), α ≥ 0, if X is a Hilbert space. (2.8)

In particular, one obtains the well known and important equality s0(A) = ω0(A) for a

C0–semigroup on a Hilbert space (which is a consequence of Gearhart’s theorem, [5], [16]).

We point out that all these quantities coincide if we know that s(A) = ω0(A), because of

(2.1), (2.3), and (2.5). This happens for several important classes of semigroups collected

in the following remark.

Remark 2.1. If one of the following conditions holds, then s(A) = sα(A) = ωβ(A) for

α, β ≥ 0.

(a) t 7→ T (t) is continuous in operator norm at some t0 > 0, e.g., if T (·) is analytic or

T (t0) is compact; see e.g. [10, Cor.IV.3.12].

(b) T (·) is essentially compact, i.e., ‖e−s(A)tT (t) − K‖ < 1 for some t > 0 and a

compact linear operator K; see e.g. [10, Thm.V.3.7].

(c) T (·) is a bounded group; see e.g. [10, Thm.IV.3.16].
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(d) X = Lp(µ) or X = C0(Ω) for some p ∈ [1,∞) and a σ–finite measure space (M,µ)

or for a locally compact Haussdorff space Ω, and T (t)f ≥ 0 for t ≥ 0 and f ≥ 0;

see e.g. [16, Thm.3.5.3, 3.5.4].

If one looks at this list, one sees that many standard applications of semigroup theory

lead to semigroups with s(A) = ω0(A), but that nonconservative wave equations are

not covered by the above conditions. In fact, Renardy exhibited a wave equation with a

corresponding semigroup on a Hilbert space satisfying s(A) < ω0(A); see, e.g., [5, Ex.2.26].

3. Well–posed systems and transfer functions

There are several more-or-less equivalent ways to introduce well–posed control systems

as found, for example, in [8], [14], [15], [18], [21], [23], [24], [25], [26] (and [19] for nonau-

tonomous systems). For us it is convenient to use admissible control and observation

operators (rather than input and output maps) and to concentrate on frequency–domain

concepts like the transfer function (rather than the input–output map).

As in the previous section, X, Y, U denote Banach spaces and A generates the C0–

semigroup T (·) on X. Thus there exists the associated scale of Banach spaces Xα and

the extended, respectively restricted, semigroups and generators on Xα which we usually

denote by the same symbols T (t) and A. We fix numbers M ≥ 1 and w > ω0(A) such

that ‖T (t)‖ ≤Mewt and use the same w to define the fractional powers of A.

Definition 3.1. An operator B ∈ L(U,X−1) is an admissible control operator for A if

for all t > 0 and u ∈ L2([0, t], U) the input function

Φtu :=

∫ t

0

T (t− s)Bu(s) ds (3.1)

takes values in X.

We note that the above integral is defined in X−1. For an admissible B, it is easy to see

that Φt is bounded from L2([0, t], U) to X with norm less than M ′ew
′t for some M ′ ≥M

and w′ ≥ w (where w′ = w if w > 0, w′ > 0 is arbitrary if w = 0 and w′ = 0 if w < 0).

Moreover, t 7→ Φtu is continuous in X. Observe that

Φt+su = T (t)Φsu1 + Φtu2 (3.2)

for t, s ≥ 0 if u = u1 on [0, s] and u = u2(· − s) on [s, s + t]. If a family of bounded

linear operators Φt : L2([0, t], U)→ X, t ≥ 0, satisfies (3.2), then (T (t),Φt)t≥0 is called an

abstract control system. Every abstract control system can be represented by a uniquely

determined admissible control operator B ∈ L(U,X−1) as in Definition 3.1. See [18], [21],

[24] for these facts.

Definition 3.2. An operator C ∈ L(X1, Y ) is an admissible observation operator for A

if for all t ≥ 0 the output function Ψtx := CT (·)x, defined on X1, extends to a bounded

operator Ψt : X → L2([0, t], Y ).
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Again one can verify that Ψtx is continuous in Y if x ∈ X1, that ‖Ψt‖ ≤ M ′ew
′t (for a

possibly larger M ′ and the same w′), and that

Ψt+sx = Ψsx on [0, s] and Ψt+sx = [ΨtT (s)x](· − s) on [s, s+ t] (3.3)

for t, s ≥ 0 and x ∈ X if C is admissible. If a family of bounded linear operators

Ψt : X → L2([0, t], Y ), t ≥ 0, satisfies (3.3), then (T (t),Ψt)t≥0 is called an abstract

observation system. Such a system can be represented as in Definition 3.2 by a uniquely

determined admissible observation operator C ∈ L(X1, Y ). In addition, the Lebesgue

extension CL of C is defined as the limit

CLx := lim
t→0

1

t

∫ t

0

(Ψtx)(s) ds (3.4)

for x ∈ D(CL) := {x ∈ X : the above limit exists in Y }. In general, CL is not closable in

X. It is not difficult to prove that C ⊆ CL and that T (s)x ∈ D(CL) and Ψtx(s) = CLT (s)x

for all x ∈ X and all Lebesgue points s ∈ [0, t] of the output function. See [18], [21], [23]

for these facts.

The following lemma is known for α = 0, [7, Lem.2.5]. It plays an important role in

the proof of our main results. Recall that ωα(A) ≥ s(A) by (2.5).

Lemma 3.3. Let A be the generator of the C0–semigroup T (·). Assume that a > ωα(A)

for some α ≥ 0.

(a) If B is an admissible control operator, then the L(U,X)–valued functions λ 7→
(w − A)−αR(λ,A)B and λ 7→ (1 + | Imλ|α)−1R(λ,A)B are bounded on Ca.

(b) If C is an admissible observation operator, then the L(X, Y )–valued functions λ 7→
CR(λ,A)(w − A)−α and λ 7→ (1 + | Imλ|α)−1CR(λ,A) are bounded on Ca.

Proof. It is well known that

R(λ,A)(w − A)−α =

∫ ∞
0

e−λtT (t)(w − A)−α dt

for Reλ > ω0(A). By analytic continuation, this equality in fact holds for Reλ ≥ a >

ωα(A). We first show the boundedness of the first-mentioned functions in (a) and (b),

respectively. This part of assertion (a) follows from the assumptions and the identities

(w − A)−αR(λ,A)Bz =

∫ ∞
0

e−λt(w − A)−αT (t)Bz dt

=
∞∑
n=0

e−λnT (n)(w − A)−α
∫ 1

0

T (1− s)Be−λ(1−s)z ds

for z ∈ U and Reλ > a. Similarly,

CR(λ,A)(w − A)−αx =
∞∑
n=0

∫ 1

0

e−λsCT (s)[e−λnT (n)(w − A)−αx] ds

for x ∈ D(A) implies the first part of (b). These arguments show in particular that

R(λ,A)B and CR(λ,A) are bounded for Reλ ≥ ω0(A) + 1, so that the functions (1 +
8



| Imλ|α)−1R(λ,A)B and (1 + | Imλ|α)−1CR(λ,A) are bounded for Reλ ≥ ω0(A) + 1.

Finally, on the strip a ≤ Reλ ≤ ω0(A) + 1 the boundedness of the two functions in (a)

and (b), respectively, is in fact equivalent. This can be seen as in Lemma 3.2 of [13], where

the case B = C = I was studied. (Here one has to use the boundedness of R(λ,A)B and

CR(λ,A) for Reλ ≥ ω0(A) + 1.) �

Let B and C be admissible control and observation operators for A, respectively. In

terms of semigroup theory, x(t) = Φtu is the mild solution of the evolution equation

x′(t) = Ax(t) +Bu(t), t ≥ 0, x(0) = 0, (3.5)

with input u ∈ L2
loc(R+, U), where the sum is defined in X−1. Thus y(t) = Cx(t) = CΦtu

should be the output of (3.5) under the observation operator C. However, in general,

x(t) does not belong to X1 (or to D(CL)) so that we cannot apply C (or CL) directly. To

circumvent this problem, we follow [18] and restrict ourselves to inputs u ∈ C1(R+, U)

with u(0) = 0. It is easy to see that x(·) is differentiable in X with derivative

x′(t) =

∫ t

0

T (t− s)Bu′(s) ds (3.6)

and x(·) satisfies (3.5), see also [18, Lem.2.5]. Equation (3.5) further implies that

x(t) = R(w,A)(wx(t)− x′(t)) +R(w,A)Bu(t).

We thus introduce the output y(·) of (3.5) by setting

y(t) := CR(w,A)(wx(t)− x′(t)) +Hwu(t) (3.7)

= C
[ ∫ t

0

T (t− s)Bu(s) ds−R(w,A)Bu(t)
]

+Hwu(t), t ≥ 0, (3.8)

for u ∈ C1(R+, U) with u(0) = 0, where the operator Hw ∈ L(U, Y ) is not yet determined.

In (3.8) we have employed (3.5); observe that the term in brackets belongs to D(A). Using

the function y given by (3.7), we further define the input–output operator F : u 7→ y for

the above class of inputs u. Taking Laplace transforms, we deduce from (3.7), (3.1), and

(3.6) that

ŷ(λ) = CR(w,A) [wR(λ,A)Bû(λ)−R(λ,A)Bλû(λ)] +Hwû(λ) (3.9)

for Reλ > ω0(A). Observe that F commutes with right translations (i.e., the operators

(S(t)f)(s) = f(s− t) for s ≥ t and (S(t)f)(s) = 0 for s < t). Thus the restrictions Ft of F

to the time interval [0, t] are well defined for t ≥ 0. If these operators can be extended to

bounded operators from L2([0, t], U) to L2([0, t], Y ) (denoted by the same symbol), then

there are uniformly bounded operators H(λ) ∈ L(U, Y ) such that ŷ(λ) = H(λ)û(λ) holds

for Reλ ≥ a > ω0(A), see [3], [26]. In the above calculations we can replace w by µ with

Reµ > ω0(A). Setting Hµ = H(µ) in (3.9), we arrive at the equation

H(λ)−H(µ) = (µ− λ)CR(µ,A)R(λ,A)B (3.10)
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for Reλ,Reµ > ω0(A). These arguments motivate the concept of a “well–posed” system

(see [8], [14], [18], [20], [21], [26]):

Definition 3.4. Let X, Y, U be Banach spaces. Assume that A generates the semigroup

T (·) on X, that B is an admissible control operator for A, and that C is an admissible

observation operator for A. A transfer function of the system (A,B,C) is a function

H : Ca → L(U, Y ) satisfying (3.10) for some a > ω0(A). The system is well–posed if it

has a bounded transfer function on Ca. We then denote the system by (A,B,C,H).

Observe that two transfer functions for (A,B,C) only differ by a fixed operator and that

they are analytic due to (3.10). We point out that, if U and Y are Hilbert spaces, then

the well–posedness of (A,B,C) implies the boundedness of Ft; see [8], [26].

Weiss has developed a different approach to input–output operators which we now want

to explain. Define Ft : u 7→ y as above by (3.8). Then one obtains

Fs+tu = Fsu1 on [0, s] and Fs+tu = ΨtΦsu1(· − s) + Ftu2(· − s) on [s, s+ t] (3.11)

for t, s ≥ 0 and inputs u ∈ C1(R+, U) with u = u1 on [0, s], u = u2(· − s) on [s, s+ t], and

u1(0) = u2(0) = 0. If Ft can be extended to a bounded linear operator Ft : L2([0, t], U)→
L2([0, t], Y ) for each t ≥ 0, then equation (3.11) holds for every u ∈ L2([0, s+ t], U). This

means that Ft, t ≥ 0, are input–output maps in the sense of [25], [26]. We note that

then ‖Ft‖ ≤ M ′ew
′t (with the same w′ as above but possibly a larger M ′). Moreover,

(T (t),Φt,Ψt,Ft)t≥0 is an abstract linear system as defined in [25], [26].

Such a system is called regular (with feedthrough D = 0) if limt→0
1
t
Ftuz = 0 for the

constant input uz(s) = z, s ≥ 0, z ∈ U . This is the case if and only if R(λ,A)Bz ∈ D(CL)

for all z ∈ U and some/all λ ∈ ρ(A). Then a transfer function and the input–output

operator of (A,B,C) are given by

H(λ) = CLR(λ,A)B, Reλ > ω0(A), and Ftu(τ) = CLΦτu, τ ∈ [0, t]; (3.12)

see [25], [26]. It should be noted that the operator CL is usually not explicitly given and

that its definition (3.4) depends both on C and T (t). Thus there may be no concrete

representation of H even for regular systems.

4. Generalizations of well-posedness

In order to allow for less regular control and observation operators and to replace the

transfer function by an object given in terms of A,B,C, the concepts discussed in the

previous section will now be extended. We use the notation introduced in Section 2, and

U and Y are Banach spaces.

Definition 4.1. (a) Let β ≥ 1. An operator B ∈ L(U,X−β) is called β–admissible control

operator for A if the input function Φtu :=
∫ t

0
T (t− s)Bu(s) ds takes values in X1−β for

t ≥ 0 and u ∈ L2
loc(R+, U).

(b) Let γ ≥ 1. An operator C ∈ L(Xγ, Y ) is a γ–admissible observation operator for A

if for all t ≥ 0 the output function Ψtx := CT (·)x, defined on Xγ, extends to a bounded

operator Ψt : Xγ−1 → L2([0, t], Y ).
10



Observe that 1–admissibility is just admissibility in the sense of Definitions 3.1 and 3.2.

The theory presented in the previous two sections easily implies the following characteri-

zations of generalized admissibility.

Proposition 4.2. Let X, Y, U be Banach spaces and let β, γ ≥ 1. Assume that A gener-

ates the C0–semigroup T (·) on X with associated spaces Xα = XA
α . Fix w > ω0(A).

(1) For B ∈ L(U,X−β) let Φt be given as in Definition 4.1. Then the following assertions

are equivalent.

(a) B is a β–admissible control operator for A.

(b) B̃ := (w − A−β)1−βB ∈ L(U,X−1) is an admissible control operator for A.

(c) Φ̃t := (w − A−β)1−βΦt, t ≥ 0, is an abstract control system for A on X.

(d) B is an admissible control operator for A1−β on X1−β.

(e) Φt, t ≥ 0, is an abstract control system for A1−β on X1−β.

Conversely, if B̃ ∈ L(U,X−1) is an admissible control operator for A, then the operator

(w − A−β)β−1B̃ ∈ L(U,X−β) is a β–admissible control operator for A.

(2) For C ∈ L(Xγ, Y ) let Ψt be given as in Definition 4.1. Then the following assertions

are equivalent.

(a) C is a γ–admissible observation operator for A (with Lebesgue extension CL).

(b) C̃ := C(w − A1)1−γ ∈ L(X1, Y ) is an admissible observation operator for A (with

Lebesgue extension C̃L = CL(w − A1)1−γ).

(c) Ψ̃t := Ψt(w − A1)1−γ, t ≥ 0, is an abstract observation system for A on X.

(d) C is an admissible observation operator for Aγ−1 on Xγ−1.

(e) Ψt, t ≥ 0, is an abstract observation system for Aγ−1 on Xγ−1.

Conversely, if C̃ ∈ L(X1, Y ) is an admissible observation operator for A (with Lebesgue

extension C̃L), then C̃(w−Aγ)γ−1 ∈ L(Xγ, Y ) is a γ–admissible observation operator for

A (with Lebesgue extension C̃L(w − Aγ)γ−1).

One can interpret the above results in two ways. If B and C are β– and γ–admissible

control and observation operators, respectively, then the corresponding abstract control

and observation systems act on the larger state space X1−β, respectively on the smaller

state space Xγ−1. This looks somewhat awkward, but the picture becomes more agreeable

if we look at the regularized operators B̃ and C̃ whose control and observation systems

act on X itself. The following examples show that β– and γ–admissible control and

observation operators arise quite naturally in standard situations.

Example 4.3. Consider the heat equation with Dirichlet boundary control and Neumann

boundary observation:

∂tw(t, x) = ∆w(t, x), x ∈ Ω, t ≥ 0,

w(t, x) = u(t, x), x ∈ ∂Ω, t ≥ 0,

y(t, x) = ∂νw(t, x), x ∈ ∂Ω, t ≥ 0,

w(0, x) = w0(x), x ∈ Ω,

(4.1)
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on a bounded domain Ω ⊂ Rn with smooth boundary, ∂Ω. Let X = L2(Ω), w0 ∈ H2(Ω),

Y = U = L2(∂Ω), u ∈ L2
loc(R+, Y ), and Cf = ∂νf ∈ Y be the trace on ∂Ω of the

outer normal derivative of f . Let A be the Dirichlet Laplacian, i.e., Af = ∆f , with

D(A) = H2(Ω) ∩H1
0 (Ω). Since A generates an analytic semigroup and C : Xε+3/4 → Y

is bounded for every ε > 0, see e.g. [11, §3.1], it follows that

‖C(−A)1−γT (t)‖2 = ‖C(−A)−ε−3/4(−A)−γ+ε+7/4T (t)‖2 ≤ c t2γ−2ε−7/2

is integrable near 0 for every γ > 5/4. This means that C is γ–admissible for γ > 5/4 by

Proposition 4.2. We have to reformulate the boundary control employing the Dirichlet

map D : Y → H1/2(Ω) ↪→ X−ε+1/4 (ε > 0) defined by v = Dϕ if ∆v = 0 on Ω and

v = ϕ on ∂Ω (in the sense of distributions and trace); see, e.g., [11, (3.1.7)]. Setting

B = −A−1D, one can verify that a function w ∈ L2([0, T ], H2(Ω)) ∩ H1([0, T ], L2(Ω))

solves (4.1) if and only if it satisfies

w′(t) = A−1w(t) +Bu(t), t ≥ 0,

y(t) = Cw(t), t ≥ 0,

w(0) = w0

(cf. [11, §3.1] and [18]). Since (−A−1)−ε−3/4B : Y → X is bounded by the properties of

D and A, we see as above that B is β–admissible for every β > 5/4. 3

Example 4.4. We consider the wave equation with Neumann boundary control of the

position and Dirichlet boundary observation of the velocity

∂ttw(t, x) = ∆w(t, x)− w(t, x), x ∈ Ω, t ≥ 0,

∂νw(t, x) = u(t, x), x ∈ ∂Ω, t ≥ 0,

y(t, x) = ∂tw(t, x), x ∈ ∂Ω, t ≥ 0,

w(0, x) = w0(x), ∂tw(0, x) = w1(x), x ∈ Ω,

(4.2)

on a bounded domain Ω ⊂ Rn with smooth boundary. Let w0 ∈ H2(Ω), w1 ∈ H1(Ω),

Y = U = L2(∂Ω), u ∈ L2
loc(R+, Y ). In order to put this problem in our framework, we use

the space X = H1(Ω)× L2(Ω) and the Neumann Laplacian ∆Nf on L2(Ω) with domain

D(∆N) = {f ∈ H2(Ω) : ∂νf = 0 on ∂Ω}. We introduce C(f, g)T = g|∂Ω, i.e., the trace

operator acting on the second component and A(f, g)T = (g, (∆N − I)f)T with D(A) =

D(∆N) × H1(Ω). It is well known that A generates an unitary C0–semigroup on X. It

can be seen that X−1 = L2(Ω)×H1(Ω)∗, where H1(Ω)∗ is the dual of H1(Ω) with respect

to the pivot space L2(Ω). Moreover, A−1(f, g)T = (g, (∆N − I)f)T for (f, g)T ∈ X, where

we write ∆N instead of (∆N)−1/2. The operator CA−1 : X → Y is bounded since it is the

trace operator acting on the first component. Hence, C is 2–admissible by Proposition 4.2.

Further, let N : Y → H3/2(Ω) be the solution map of the elliptic boundary value problem

∆f−f = 0 on Ω and ∂νf = ϕ on ∂Ω (see e.g. [11, (3.3.1.8)]). As in the previous example,

we set Bu = −(0, (∆N − I)Nu)T = −A−1D, where Du = (Nu, 0)T (see also [11, §8.6.1]

or [18]). Since A−1B : Y → X is bounded, B is 2-admissible by Proposition 4.2. Here the
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exponent 2 can be improved to β > 7/5 using deeper regularity results for this hyperbolic

partial differential equation (see Lemma 8.6.1.1 of [11]). Due to Lemma 3.3.1.1 of [11] we

have B∗ = −C, so that C is γ–admissible for γ > 7/5 by duality. 3

In accordance with (3.10), we define a (β, γ)–regularized transfer function H̃ : Ca →
L(U, Y ) for (A,B,C) as a solution of the equation

H̃(λ)− H̃(µ) = (µ− λ) C̃R(µ,A)R(λ,A)B̃

= (µ− λ)C(w − A)2−β−γR(µ,A)R(λ,A)B (4.3)

for some a > ω0(A). Here w > ω0(A) is fixed. Note that H̃ is analytic by (4.3) and that

two different (β, γ)–regularized transfer functions differ by a fixed operator.

Definition 4.5. Let β, γ ≥ 1. A (β, γ)–well–posed system (A,B,C, H̃) consists of a

generator A on X, a β–admissible control operator B for A, a γ–admissible observation

operator C for A, and a bounded (β, γ)–regularized transfer function H̃ : Ca → L(U, Y )

for (A,B,C) and some a > ω0(A).

Clearly, (1, 1)–well–posedness is just well–posedness in the sense of Definition 3.4, where

we may take H = H̃. It is easy to see that the results stated in the two previous sections

allow to characterize the above concepts in terms of a regularized system.

Proposition 4.6. Let X, Y, U be Banach spaces and let β, γ ≥ 1. Assume that A gen-

erates the C0–semigroup T (·) on X with associated spaces Xα = XA
α , that B is a β–

admissible control operator for A, and that C is a γ–admissible observation operator for

A. For a fixed w > ω0(A) we define B̃ := (w−A−β)1−βB and C̃ := C(w−A1)1−γ. Then

(A,B,C) is (β, γ)–well–posed if and only if (A, B̃, C̃) is well–posed. A (β, γ)–regularized

transfer function for (A,B,C) is a transfer function for (A, B̃, C̃), and vice versa.

In our main result, instead of H̃, we use the function

Gw(λ) = G(λ) := C(w − A)1−β−γR(λ,A)B = C̃R(w,A)R(λ,A)B̃, Reλ > ω0(A), (4.4)

=
H̃(λ)− H̃(w)

w − λ
, λ 6= w, Reλ > ω0(A). (4.5)

Definition 4.7. Let X, Y, U be Banach spaces, β, γ ≥ 1, A be a generator on X, B be a

β–admissible control operator for A, and C be a γ–admissible observation operator for A.

Fix w > ω0(A). The function G defined in (4.4) is called the modified transfer function

for (A,B,C).

Observe that G is given quite explicitly in terms of the operators A,B,C, in contrast to

H̃ (or H). Its definition does not require the existence of a (regularized) transfer function

for (A,B,C). In the setting of Example 4.3 we obtain

G(λ) = C(−A)1−β−γR(λ,A)B = ∂ν(−A)2−β−γR(λ,A)D;

see also Example 4.12 below. In our main results we will assume, in particular, the

boundedness of G on C0. This property corresponds to linear growth of H̃ as λ→∞ by
13



(4.5). Hence, it is a weaker statement than external stability of the regularized system,

i.e., boundedness of H̃ on C0.

In view of the above proposition, there exists the input–output operator F̃ (given by

(3.7)) of the regularized system (A, B̃, C̃, H̃) if we have a (β, γ)–well–posed system. We

can thus define the regularized output of (A,B,C, H̃) by ỹ = F̃u. Then ˆ̃y(λ) = H̃(λ)û(λ)

for Reλ > ω0(A), and formulas (3.7), (3.6), and (3.8) imply

ỹ(t) = C(w − A)1−β−γ
∫ t

0

T (t− s)B[wu(s)− u′(s)] ds+ H̃(w)u(t)

= C(w − A)2−β−γ
(∫ t

0

T (t− s)Bu(s) ds−R(w,A)Bu(t)
)

+ H̃(w)u(t), t ≥ 0,

for u ∈ C1(R+, U) with u(0) = 0. If (A, B̃, C̃, H̃) is regular, we obtain the representations

H̃(λ) = CL(w − A)2−β−γR(λ,A)B and F̃u(t) = CL(w − A)2−β−γ
∫ t

0

T (t− s)Bu(s) ds

due to (3.12) and Proposition 4.2. For our main result we need the following estimate for

a ‘modified regularized input–output operator’.

Lemma 4.8. Let X, Y, U be Banach spaces, β, γ ≥ 1, A be a generator on X, B be a

β–admissible control operator for A, and C be a γ–admissible observation operator for A.

Assume that ωβ+γ−1(A) < 0. For u ∈ L2(R+, U) we define the function

z(t) = C(w − A)1−γR(w,A)

∫ t

0

T (t− s)(w − A)1−βBu(s) ds, t ≥ 0.

Then ‖z‖L2(R+,Y ) ≤ c ‖u‖L2(R+,U) for a constant c > 0.

Proof. Using the operators B̃ = (w − A)1−βB and C̃ = C(w − A)1−γ, we can restrict

attention to the case that β = γ = 1, i.e., B and C are admissible and ω1(A) < −δ < 0.

Let t ∈ [n, n+ 1) for some n ∈ N. Then

z(t) = CR(w,A)

∫ t

n

T (t− s)Bu(s) ds

+
n∑
k=1

CT (t− n)T (n− k)R(w,A)

∫ k

k−1

T (k − s)Bu(s) ds,

‖z‖L2([n,n+1],Y ) ≤ c ‖u‖L2([n,n+1],U) + c

n∑
k=1

e−δ(n−k)‖u‖L2([k−1,k],U)

for a constant c > 0. Setting ak = e−δk if k ∈ N0 and ak = 0 otherwise, and bk =

‖u‖L2([k,k+1],U) if k ∈ N0 and bk = 0 otherwise, we obtain

‖z‖2
L2(R+,Y ) ≤ c2 e2δ‖(ak) ∗ (bk)‖2

`2(Z) .

So Young’s inequality implies the assertion. �

We need two more concepts for our main results.
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Definition 4.9. Let X, Y, U be Banach spaces, β, γ ≥ 1, 1 − β ≤ b ≤ 0, 0 ≤ c ≤ γ − 1,

ι, κ ≥ 0, A be a generator on X, B be a β–admissible control operator for A, and C be a

γ–admissible observation operator for A.

(a) (A,B) is called κ–stabilizable on XA
b if there exists a C0–semigroup TK(·) on XA

b

with generator AK and an admissible observation operator K ∈ L(D(AK), U) for

AK such that ωκ(A
K) < 0 on XA

b and

R(λ,AK)x = R(λ,A)x+R(λ,A)BKR(λ,AK)x (4.6)

for x ∈ XA
b , Reλ > a, and some a ∈ R, where the equality holds in XA

1−β.

(b) (A,C) is called ι–detectable on XA
c if there exists a C0–semigroup T J(·) on XA

c

with generator AJ and an admissible control operator J ∈ L(Y, (XA
c )A

J

−1) for AJ

such that ωι(A
J) < 0 on XA

c and

R(λ,AJ)x = R(λ,A)x+R(λ,AJ)JCR(λ,A)x (4.7)

for x ∈ XA
γ−1, Reλ > a, and some a ∈ R, where the equality holds in XA

c .

Remark 4.10. We are mostly interested in the case where ι = κ = 0, but we need the

more general definition given above to state the implication (b) in our main Theorem 5.1.

For β = γ = 1 we have of course b = c = 0. It seems to be most natural to consider

b = 1− β and c = γ − 1, that is, to look for stablizability and detectability in the spaces

X1−β and Xγ−1, respectively. First, then the equations (4.6) and (4.7) are understood in

the space from which x is taken, respectively. Second, in the setting of Definition 4.9(a),

if (A1−β, B,K) is a regular system on X1−β with U = Y and if I is an admissible feedback

for this system, then there is a generator AK on X1−β satisfying (4.6) such that K is an

admissible observation operator for AK on X1−β, due to [21, Chap.7] or [27]. An analogous

fact holds for Definition 4.9(b). Moreover, the conclusion of Theorem 5.1(a) is stronger

if we choose b = 1 − β and c = γ − 1. On the other hand, it could be easier to work on

the given space X itself instead of the usually more complicated spaces X1−β and Xγ−1,

so that we also want to treat the case b = c = 0. See also Examples 4.12 and 5.5.

The next result shows that the equations (4.6) and (4.7) can be formulated equivalently

in the time domain.

Proposition 4.11. Let X, Y, U be Banach spaces, β, γ ≥ 1, 1−β ≤ b ≤ 0, 0 ≤ c ≤ γ−1,

ι, κ ≥ 0, A be a generator on X, B be a β–admissible control operator for A, and C be a

γ–admissible observation operator for A. Let TK(·) and T J(·) be C0–semigroups on XA
b

and XA
c generated by the operators AK and AJ , respectively, let K ∈ L(D(AK), U) be

an admissible observation operator for AK, and let J ∈ L(Y, (XA
c )A

J

−1) be an admissible

control operator for AJ . Then (4.6) holds if and only if

TK(t)x = T (t)x+

∫ t

0

T (t− s)BKLT
K(s)x ds (4.8)
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for all t ≥ 0 and x ∈ XA
b , where the equation is understood in XA

1−β. Similarly, (4.7)

holds if and only if

T J(t)x = T (t)x+

∫ t

0

T J(t− s)JCLT (s)x ds (4.9)

for all t ≥ 0 and x ∈ XA
γ−1, where the equation is understood in XA

c .

Proof. First observe that by approximation we can restrict ourselves in (4.8) to x ∈ D(AK)

and in (4.9) to x ∈ XA
γ . So we can use K and C and instead of their Lebesgue extensions.

Assume that (4.6) holds. Then the Laplace transform in XA
b ↪→ XA

−β of the function

TK(·)x− T (·)x, x ∈ D(AK), is given by R(λ,AK)x−R(λ,A)x for Reλ > ω0(A). On the

other hand, applying Fubini’s theorem twice, we obtain∫ ∞
0

e−λt
∫ t

0

T (t− s)BKTK(s)x ds dt =

∫ ∞
0

∫ ∞
s

e−λ(t−s)T (t− s)BKe−λsTK(s)x dt ds

=

∫ ∞
0

∫ ∞
0

e−λrT (r)BKe−λsTK(s)x ds dr

= R(λ,A)BKR(λ,AK)x.

Here the Laplace integral is defined in XA
−β. Therefore, (4.8) is valid due to the uniqueness

of the Laplace transform. If (4.8) holds, then (4.6) follows directly by taking Laplace

transforms in X−β. The second assertion is shown similarly using the Laplace transform

in XA
c ↪→ (XA

c )A
J

−1 . �

As a result, 0–stabilizability on X and 0–detectability on X are just the autonomous

versions of stabilizability and detectability as introduced in Definitions 5.7 and 5.8 of [19]

for nonautonomous systems (if β = γ = 1). Moreover, optimizability and estimatability

(as defined in [28]) imply 0–stabilizability on X and 0–detectability on X due to formulas

(3.10) and (4.11) in [28]. One can find several variants of the concepts ‘stabilizability’ and

‘detectability’ in the literature (see e.g. [7], [15], [17], [21]) which are (mostly) stronger

than ours since usually well–posedness or regularity of the respective closed–loop systems

is required. The following example illustrates the notions introduced in this section.

Example 4.12. Consider a control system governed by the Laplace operator with periodic

boundary conditions and point control and observation. Thus we look at the problem

xt = ∆x + Bu, y = B∗x, where x = x(t, ξ), ξ = (ξ1, . . . , ξd) ∈ Td = R
d/2πZd (the

d-dimensional torus), d ≥ 1, and B∗ is the point evaluation at ξ = 0 = (0, . . . , 0). Let

Hα(Td;C), α ∈ R, denote the Sobolev space which, via the Fourier transform

v(ξ) =
∑
k∈Zd

vke
ik·ξ 7→ v = (vk)k∈Zd , vk := (2π)−d

∫
Td

eik·ξv(ξ) dξ,

we will identify with the sequence space `2
α = `2

α(Zd;C), α ∈ R, defined as

`2
α :=

{
v = (vk)k∈Zd : ‖v‖2

`2α
:=
∑
k∈Zd

(1 + ‖k‖2)α|vk|2 <∞
}
,
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‖k‖2 =
∑d

j=1 k
2
j , k = (k1, . . . , kd). Under this identification, the Laplacian becomes

A : (vk)k∈Zd 7→ (−‖k‖2vk)k∈Zd , the observation operator B∗, B∗v = v(0), is transformed

into C : (vk)k∈Zd 7→
∑

k∈Zd vk, and the control operator B becomes B, defined via duality

by 〈v, Bz〉 = z
∑

k∈Zd vk for z ∈ C. If sequences v are viewed as “columns” (vk)k∈Zd ,

then C : `2
α → C is a “row” (. . . 1, 1, . . .) = 1

T , while the control operator B : C → `2
α :

z 7→ (z)k∈Z is the transposed “column” 1 = (. . . 1, 1, . . .)T . We thus consider the control

system (A,B,C) on X = `2 and Y = U = C. Since D((I−∆)α) = H2α we have Xα = `2
2α

for α ∈ R.

We claim that B is a β-admissible, β ≥ 1, control operator for A in the sense of

Definition 4.1(a) if and only if β > d
4

+ 1
2
. Hence, if d = 1 then B is an admissible control

operator for A in the sense of Definition 3.1, while if d = 2 then B is not 1-admissible, but

2-admissible. Similarly, we claim that C is a γ-admissible, γ ≥ 1, observation operator

for A in the sense of Definition 4.1(b) if and only if γ > d
4

+ 1
2
. Indeed, to verify that

B ∈ L(U,X−β), we note that for z ∈ C the series

‖Bz‖2
`2−2β

= |z|2
∑
k∈Zd

(1 + ‖k‖2)−2β

converges if and only if β > d
4

(by passing to spherical coordinates in the corresponding

d-dimensional improper integral). Thus, C = B∗ ∈ L(Xγ,C) if and only if γ > d
4
. To see

whether Φtu ∈ X1−β for t ≥ 0 and u ∈ L2
loc(R

+;C), we use the Cauchy-Schwarz inequality

to compute:

‖Φtu‖2
`2
2(1−β)

=
∑
k∈Zd

(1 + ‖k‖2)2(1−β)

∣∣∣∣∫ t

0

e−(t−s)‖k‖2u(s)ds

∣∣∣∣2
≤ ‖u‖2

L2

∑
k∈Zd

(1 + ‖k‖2)2(1−β)

∫ t

0

e−2(t−s)‖k‖2ds

≤
(
t+

∑
k∈Zd\{0}

(1 + ‖k‖2)
)1−2β

‖u‖2
L2 .

As above, the last sum converges provided 4β > 2 + d. Using a constant control u, we

conclude that this condition is equivalent to Φtu ∈ `2
2(1−β). This proves the β–admissibility

of B and C for β > d
4

+ 1
2

and β ≥ 1.

Now we look for transfer functions. If γ = β > d
4

+ 1
2
, then the sum

H̃(λ) =
∑
k∈Zd

(1 + ‖k‖2)2−2β(λ+ ‖k‖2)−1

converges for Reλ > 0 and is uniformly bounded on, say, C1. It is easy to check that H̃

is a (β, β)–regularized transfer function for (A,B,C). Therefore the system (A,B,C, H̃)

is (β, β)–well–posed for β > d
4

+ 1
2

and β ≥ 1; in particular, it is well–posed in the sense
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of Definition 3.4 if d = 1. Observe that the natural candidate for a transfer function

CR(λ,A)B =
∑
k∈Zd

(λ+ ‖k‖2)−1 , Reλ > 0,

yields a divergent sum for every λ if d ≥ 2. However, for d = 2, 3 the function

H(λ) =
∑
k∈Zd

1− λ
(λ+ ‖k‖2)(1 + ‖k‖2)

, Reλ > 0,

is a transfer function for (A,B,C). But H is unbounded on every right halfplane because

H(n) behaves as log n if d = 2 and as
√
n if d = 3 as n→∞. (Use again the corresponding

integral to check this fact.)

Next, for β = γ ≥ 1 and β > d
4

+ 1
2
, the modified transfer function G(λ) = C(1 −

A)1−2βR(λ,A)B is given by

G(λ) =
∑
k∈Zd

(1 + ‖k‖2)1−2β(λ+ ‖k‖2)−1.

If Reλ ≥ 1 then the last sum converges and gives an analytic function bounded in C1 (this

is even true for β > d/4). Clearly, G is not uniformly bounded on C0 which corresponds

to the fact that σ(A) = {−‖k‖2 : k ∈ Zd}.
Finally, (A,B) is 0-stabilizable on X1−β in the sense of Definition 4.9(a) with the

operator K : (v)k∈Zd 7→ −v0. Indeed, consider on X1−β = `2
2(1−β) the operator AK ,

formally defined as AK : (vk)k∈Zd 7→ (wk)k∈Zd with w0 = −v0 and wk = −‖k‖2vk− v0 for

k 6= 0. Since K ∈ L(X1−β,C) and B is β-admissible for A, we conclude that∫ t

0

T (t− s)BKf(s)ds ∈ X1−β for f ∈ L2([0, t];X1−β) (4.10)

and all t ≥ 0. Therefore AK := (A−β + BK) |X1−β generates a strongly continuous

semigroup TK(·) on X1−β satisfying (4.6) due to the Desch-Schappacher perturbation

theorem (see, e.g., Corollary III.3.4 and Equation (III.3.8) in [10]). Observe that A

generates an analytic semigroup on X1−β which implies that TK(·) is also analytic (cf.

[10, Exer.III.3.8]). Since σ(AK) = {−‖k‖2 : k ∈ Zd \ {0}}, the semigroup TK(·) is

uniformly exponentially stable on X1−β. The above argument can be modified to deduce

the stabilizability of (A,B) on X if d ∈ {1, 2, 3}. (One has to use f ∈ Lq([0, t];X1−β) in

(4.10) for a sufficiently large q < ∞.) For d ≥ 4, the operator AK does not generate a

semigroup on X since one even has (λ− AK)−1(1, 0, · · · )T 6∈ `2. 3

5. Internal and external stability

We now come to the main result of this paper, which we discuss after the proof. We

recall that we are mainly interested in the cases ι = κ = 0, b = 1− β ≤ 0 (or b = 0), and

c = γ − 1 ≥ 0 (or c = 0), cf. Remark 4.10. We abbreviate Xb = XA
b and Xc = XA

c .
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Theorem 5.1. Let X, Y, U be Banach spaces, β, γ ≥ 1, 1 − β ≤ b ≤ 0, 0 ≤ c ≤ γ − 1,

ι, κ ≥ 0, A be a generator on X, B be a β–admissible control operator for A, and C be

a γ–admissible observation operator for A. Set α = β + b + γ − c + κ + ι − 1 and fix

w > ω0(A).

(a) Assume that (A,B) is κ–stabilizable on Xb, that (A,C) is ι–detectable on Xc, and

that the modified transfer function G(λ) = C(w−A)1−β−γR(λ,A)B ∈ L(U, Y ) has

a bounded analytic continuation to C−ε for some ε > 0. Then we have sα(A) < 0

and, hence, ωα+1(A) < 0. Moreover, if X is a Hilbert space, then ωα(A) < 0; if X

has Fourier type p ∈ [1, 2], then ωα−1+2/p(A) < 0.

(b) Conversely, if ωβ+γ−1(A) < 0, then G has a bounded analytic continuation to C−ε
for some ε > 0 and (A,B,C) is (β + γ − 1)–stabilizable on Xb and (β + γ − 1)–

detectable on Xc (for every b ∈ [1− β, 0] and c ∈ [0, γ − 1]).

Proof. (a) In view of (2.6), (2.7), and (2.8), it remains to show that sα(A) < 0. This is

done in four steps.

(1.i) Since (A,C) is ι–detectable on Xc, there is a generator AJ on Xc and an admissible

control operator J ∈ L(Y, (Xc)
AJ

−1) for AJ such that s(AJ) ≤ ωι(A
J) < 0 and

R(λ,AJ)(w − A)1−β−γBz = R(λ,A)(w − A)1−β−γBz

+R(λ,AJ)JCR(λ,A)(w − A)1−β−γBz (5.1)

for large Reλ and z ∈ U . Observe that x = (w − A)1−β−γBz ∈ Xγ−1 ↪→ Xc, and the

above equation holds in Xc. Using the inequality s(AJ) < 0 and the analytic continuation

of G, we can extend the left hand side and the second summand on the right hand side

of (5.1) to analytic functions on a halfplane C−η for some η > 0. Therefore the function

λ 7→ R(λ,A)(w − A)1−β−γB ∈ L(U,Xc) possesses an analytic continuation to C−η.

(1.ii) The κ–stabilizability of (A,B) on Xb yields a generator AK on Xb and an admissible

observation operator K ∈ L(D(AK), U) for AK such that s(AK) ≤ ωκ(A
K) < 0 and

(w − A)1−β−γR(λ,AK)x = (w − A)1−β−γR(λ,A)x

+R(λ,A)(w − A)1−β−γBKR(λ,AK)x (5.2)

for large Reλ and x ∈ Xb, where the equation holds in Xc and Xγ ↪→ Xc. Due to this

equation, part (1.i), and s(AK) < 0, the map

λ 7→ F̃ (λ) := (w − A)1−β−γR(λ,A) ∈ L(Xb, Xc)

(initially defined for Reλ > ω0(A)) can be extended to an analytic function on a halfplane

C−η for some η > 0 (possibly η > 0 has to be decreased). This means that

λ 7→ F (λ) := (w − A)cF̃ (λ)(w − A)−b = (w − A)1−β−b−γ+cR(λ,A) ∈ L(X) (5.3)

has an analytic extension to C−η. Set −δ = 1− β − b− γ + c ≤ −1. We temporarily use

subrscripts to distinguish the different versions of A. By (5.3), the identity

(w − A)−δx = (λ− A−1)F (λ)x, x ∈ X, (5.4)
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holds in X−1 for Reλ > −η. This can be rewritten as

(w − A−1)F (λ)x = (w − λ)F (λ)x+ (w − A)−δx.

Since the right hand side belongs to X, we obtain F (λ)x ∈ D(A) = X1. Iterating this

argument, one deduces F (λ)X ⊂ Xδ+1. Formula (5.4) thus shows that λ−Aδ : Xδ+1 → Xδ

is surjective for all λ ∈ C−η. If (λ − Aδ)x = 0 for some λ ∈ C−η and x ∈ Xδ+1, then we

obtain in the same way that 0 = F (λ)(λ− Aδ)x = (w − A)−δx which yields x = 0. As a

result, C−η ⊆ ρ(Aδ) = ρ(A).

(2.i) Consequently, (5.1) is valid for λ ∈ C−η. We multiply (5.1) by (1 + | Imλ|ι)−1. Due

to the assumptions and Lemma 3.3, the multiplied equation shows that the function

λ 7→ (1 + | Imλ|ι)−1R(λ,A)(w − A)1−β−γB ∈ L(U,Xc)

is bounded on C−η.

(2.ii) Also (5.2) is valid on C−η. This equation is multiplied by (1 + | Imλ|κ)−1(1 +

| Imλ|ι)−1. Then part (2.i), the assumptions, and Lemma 3.3, imply that the maps

λ 7→ (1 + | Imλ|κ)−1(1 + | Imλ|ι)−1(w − A)1−β−γR(λ,A) ∈ L(Xb, Xc),

λ 7→ (1 + | Imλ|κ)−1(1 + | Imλ|ι)−1(w − A)−δR(λ,A) ∈ L(X)

are bounded on C−η. One can now conclude that sα(A) < 0 as in Lemma 3.2 of [13].

(b) If ωβ+γ−1(A) < 0, it is clear that (A,B) is (β+γ−1)–stabilizable on every Xb (take

K = 0) and that (A,C) is (β + γ − 1)–detectable on every Xc (take J = 0). Moreover,

by Lemma 4.8 the operator mapping u to the function

z(t) = C(w − A)1−γR(w,A)

∫ t

0

T (t− s)(w − A)1−βu(s) ds, t ≥ 0,

is bounded from L2(R+, U) to L2(R+, Y ). Since this operator is clearly translation invari-

ant, this fact implies the boundedness of G(λ) = C(w −A)1−β−γR(λ,A)B for Reλ > −ε
due to Theorem 3.1 and Remark 3.8 in [26]. �

Modifying part (a) of the above proof, one obtains the following facts.

Corollary 5.2. Let X, Y, U be Banach spaces, β, γ ≥ 1, 1 − β ≤ b ≤ 0, 0 ≤ c ≤ γ − 1,

ι, κ ≥ 0, A be a generator on X, B be a β–admissible control operator for A, and C be a

γ–admissible observation operator for A.

(a) Assume that (A,B) is κ–stabilizable on Xb and that the function λ 7→ R(λ,A)(w−
A)1−βB ∈ L(U,X) has a bounded analytic continuation to C−ε for some ε > 0.

Then we have sβ+b+κ−1(A) < 0, and thus ωβ+b+κ−2+2/p(A) < 0 if X has Fourier

type p ∈ [1, 2].

(b) Assume that (A,C) is ι–detectable on Xc, and that the function λ 7→ C(w −
A)1−γR(λ,A) ∈ L(X,Y ) has a bounded analytic continuation to C−ε for some

ε > 0. Then we have sγ−c+ι−1(A) < 0, and thus ωγ−c+ι−2+2/p(A) < 0 if X has

Fourier type p ∈ [1, 2].
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The spectral theory of semigroups (see Remark 2.1) allows improvement on the above

results in certain cases:

Corollary 5.3. Assume that the hypotheses of Theorem 5.1(a) or of Corollary 5.2 hold

and that one of conditions in Remark 2.1 is satisfied. Then ω0(A) < 0.

We stress that Theorem 5.1 shows that each orbit T (·)x starting in x ∈ D((w −
A)β+b+γ−c+ι+κ−2+2/p) is exponentially stable. It would be optimal to have it for x ∈ X
(which is true in the setting of Corollary 5.3). The possible loss in regularity comes from

four different sources. We may loose

(a) β − 1 + b and γ − 1− c powers of w−A if the degrees of generalized admissibility

and stabilizability/detectability do not match;

(b) κ and ι powers of w − A due to the weakened concepts of stabilizability and

detectability, respectively;

(c) 2
p
− 1 powers of w − A depending on the Fourier type p ∈ [1, 2] of X;

(d) 1 power of w − A since we use G instead of H (or H̃).

Observe that points (a) and (b) only occur if there is a certain additional irregularity in

the problem (compared with systems being well–posed in the usual sense). In particular,

we obtain α = 1 if we have 0–stabilizability on X1−β and 0–detectability on Xγ−1, which is

the most natural case. Item (c) does not occur if one can take a Hilbert space as the state

space X. Point (d) is the price we pay for avoiding the (regularized) transfer function or

the input–output operators.

Thus we can account for most of the difference between our results and the more

standard theorems of the type

stabilizability, detectability, Hilbert space, sup
C0
‖H(λ)‖ <∞ =⇒ ω0(A) < 0;

see, e.g., [7], [15], [17], [28], [20], [21]. It only remains to explain why we must require

the boundedness of G on the halfplane C−ε rather than just on C0. If G is bounded on

C0, our proof establishes that (w−A)−αR(·, A) is bounded on C0. For α = 0, a standard

power series argument then shows that s0(A) < 0 (and thus ω0(A) < 0 if X is a Hilbert

space). This conclusion does not hold if α > 0, as seen in the next example [12, Ex.3.1].

Example 5.4. LetX = `2 andA(xn)n = ((in− 1
n
)xn)n. Then σ(A) = {in− 1

n
: n ∈ N} and

R(λ,A)(xn)n = ((λ− in + 1
n
)−1xn)n for λ /∈ σ(A). Further, A generates a C0–semigroup

T (·) on X with ‖T (t)‖ = 1 for t ≥ 0 and, hence, ω0(A) = s(A) = s1(A) = ω1(A) = 0. On

the other hand, for λ ∈ C0 we have

‖R(1, A)R(λ,A)‖ = sup
n∈N
|1− in+ 1

n
|−1 |λ− in+ 1

n
|−1 ≤ sup

n∈N

n

|1− in+ 1
n
|
≤ 1. 3

We use our main result to show that certain problems are not detectable. The following

example could be generalized in various directions.
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Example 5.5. Consider the weakly coupled wave equation with acceleration point sens-

ing, cf. [3],

∂ttv(t, x) = ∆v(t, x)− b∂tv(t, x) + κw(t, x), t ≥ 0, x ∈ Ω,

∂ttw(t, x) = ∆w(t, x) + κv(t, x), t ≥ 0, x ∈ Ω,

v(t, x) = 0, w(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

v(0, x) = v0(x), ∂tv(0, x) = v1(x), w(0, x) = w0(x), ∂tw(0, x) = w1(x), x ∈ Ω,

y(t) = ∂ttw(t, 0) = ∆w(t, 0) + κv(t, 0), t ≥ 0,

on the interval Ω = (−1, 1). Here b, κ > 0 and κ is smaller than the absolute value of

the first eigenvalue of the Dirichlet Laplacian ∆D on L2(−1, 1) with domain H2(−1, 1) ∩
H1

0 (−1, 1). We set X = H1
0 (−1, 1)× L2(−1, 1)×H1

0 (−1, 1)× L2(−1, 1) and

A =


0 1 0 0

∆D −b κ 0

0 0 0 1

κ 0 ∆D 0


with domain D(A) = D(∆D) × H1

0 (−1, 1) × D(∆D) × H1
0 (−1, 1). It is shown in [1]

and [4, §4.2] that A generates a bounded C0–semigroup T (·) on X, the spectrum of A

belongs to the open left half plane, s(A) = 0, R(λ,A)A−2 is bounded for Reλ ≥ 0, and

‖T (t)A−2‖ ≤ c/t. (This result does not require that the space dimension is equal to 1.)

We further introduce the observation operator

C = (κδ0, 0, δ0∆, 0) = (0, 0, 0, δ0)A

where δ0f = f(0). Since CA−2 is bounded, C is (at least) 3–admissible. Moreover,

CA−4R(λ,A) is bounded for Reλ ≥ 0. Since ωα(A) = 0 for all α ≥ 0, we deduce from

Corollary 5.2 that the above problem is not 0–detectable on Xα for α ∈ [0, 4]. 3
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