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NK Receptors

Roland K. Strong
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington

Immunoreceptors

Recognition events between the archetypical  recep-
tors on T cells (TCRs) and processed peptide fragments 
of endogenous proteins, presented on target cell surfaces 
as complexes with major histocompatibility complex 
(MHC) class I proteins, ultimately mediate activation of 
T cell cytotoxic responses by the cellular arm of the adap-
tive immune system [1]. MHC class I proteins are inte-
gral-membrane, heterodimeric proteins with ectodomains 
consisting of a polymorphic heavy chain, comprising three 
extracellular domains (1, 2 and 3), associated with a 
non-polymorphic light chain, 2-microglobulin (2-m) [2]. 
The 1 and 2 domains together comprise the peptide- and 
TCR binding “platform” domain; the 3 and 2-m domains 
have C-type immunoglobulin (Ig) folds. Crystal struc-
tures of TCR/MHC complexes show that the TCR vari-
able domains sit diagonally on the MHC platform domain, 
making contacts to the peptide and the MHC 1 and 2 
domains (Figure 12.1) [3, 4]. Binding studies show that 
the equilibrium dissociation constants for these interac-
tions range from one to tens of micromolar; the strength 
of these interactions, including consideration of kinetic 
and thermodynamic components, are directly correlated 
with output signal strength [5]. TCR/MHC binding is also 
highly degenerate, with any TCR capable of recognizing a 
range of peptides, often in complexes with different MHCs, 
through “induced-fit” interactions [6, 7].

Natural killer cells

Surveillance against cells undergoing tumorigenesis [8–
13] or infection by viruses [14, 15] or internal pathogens 
[16, 17] is provided by natural killer (NK) cells, compo-
nents of the innate immune system, thus helping to provide  

“covering fire” during the period that responses by the 
adaptive immune system are gearing up [18, 19]. NK cells 
are defined as CD56/CD16 cells comprising 10–20 per-
cent of PBMC. NK cells also act to regulate innate and 
acquired immune responses through the release of various 
immune modulators, chemokines and cytokines, such as 
tumor necrosis factor , interferon , MIP-1 and RANTES. 
Unlike T cells, which clonally express unique TCRs, NK 
cells function through a diverse array of cell-surface inhibi-
tory and activating receptors with varying specificities.

Many NK cell surface receptors (NKRs) are specific 
for classical (such as HLA-A, -B and -C in humans) and 
non-classical (such as HLA-E in humans) MHC class I pro-
teins, and occur in paired activating and inhibitory isoforms 
[20–22]. Different NKRs, with different MHC class I spe-
cificities, are expressed on overlapping, but distinct, subsets 
of NK cells in variegated patterns–where the strength of the 
inhibitory signals may be stronger than stimulatory signals. 
Thus, NK cell effector functions are regulated by integrating 
signals across the array of stimulatory and inhibitory NKRs 
engaged upon interaction with target cell surface NKR 
ligands (“KIR-mismatch”) [21–23], resulting in the elimi-
nation of cells with reduced or altered MHC class I expres-
sion (“missing self”), a common consequence of infection 
or transformation [24, 25]. The developmental mechanisms 
that govern NKR expression patterns are still not fully 
understood, but NK cells that express an inhibitory receptor 
specific for self MHC class I proteins become “licensed”, 
or functionally competent, while those lacking such a 
receptor are rendered functionally inert [26]. Other NKRs, 
such as human and murine NKG2D, recognize divergent 
MHC class I homologs (ULBPs [27], MICA and MICB 
in humans [28], and RAE-1 and H60 in mice [29, 30]) 
not involved in conventional peptide antigen presentation. 
Inhibitory receptors transduce signals through recruitment 
of tyrosine phosphatases, such as SHP-1 and SHP-2, and 
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contain immunoreceptor tyrosine-based inhibitory motifs 
(ITIMs) in their cytoplasmic domains [31, 32]. Activating 
receptors associate with immunoreceptor tyrosine- 
based activation motif (ITAM) -bearing adaptor proteins, 
either DAP12 [33] or DAP10 [34, 35], through a basic 
residue in their transmembrane domain. Spontaneous NK 
effector functions can be activated through triggering recep-
tors, including NKG2D, DNAM-1, and natural cytotoxicity 
receptors (NCRs: NKp30, NKp44, NKp46); alternatively, 
NK-mediated antibody-dependent cellular cytotoxic-
ity (ADCC) can be directed against opsonized target cells 
through antibody Fc/CD16 interactions [18, 36–38]. NKR/

ligand affinities span considerable ranges, from hundreds of 
micromolar to tens of nanomolar (Table 12.1), both within 
and between NKR families, suggesting signaling mecha-
nisms that respond differentially, comparable to TCRs, 
likely impacting both activation and developmental path-
ways. NKRs also display widely varying degrees of specifi-
city, from many KIRs, where binding is determined by the 
identity of a single residue, to NKG2D, which binds a range 
of highly polymorphic, structurally divergent ligands.

NKRs can be divided into two broad groups based on 
structural homologies [39, 40], with some families differ-
entially represented across species. The first group includes 

Table 12.1  Cell-surface NK receptor/ligand interactions

Type Receptor Polymorphism Signal (/) Ligand KD Ref. Structures 
available?

KIRs

KIR2DL1-5 High  1: HLA-CK80 157 M [69] Yes

(CD158a–f) 2–3: HLA-CN80

4: HLA-G

5: ?

KIR2DS1-5 High  1: HLA-CK80 5023 M [69] Yes

(CD158g–j) 2: HLA-CN80

3–5: ?

KIR3DL1-3 High  1: HLA-Bw4 ? No

(CD158e1, k, z) 2: HLA-A3, -A11

KIR3DS1 High  ? ? No

(CD158e2)

LILRs High/low / MHC class Ia & Ib 10015 M [70] Yes

(LIRs, ILTs, CD85) CMV UL18 2 nM/14 M [53]

KLRs

NKG2A/B-CD94 Low  Human: 200.7 M [67, 71] Yes*

HLA-E (varies with peptide)

Murine:

Qa-1

NKG2C/E/H-CD94 Low  Human: 1200.7 M [67, 72] No

HLA-E (varies with peptide)

(Continued)
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Table 12.1  (Continued)

Type Receptor Polymorphism Signal (/) Ligand KD Ref. Structures 
available?

Murine:

Qa-1

NKG2D Low  Human: Yes

MIC-A/B 0.90.3 M [63]

ULBPs 4.01.1 M [73]

Murine: 1.90.35 M [74]

RAE-1– 0.028 M [75]

RAE-1 0.02 M [75]

H60 [73, 74]

Ly49A-W Low / MHC class Ia, ? 10010 M [58, 76] Yes

(CMV m157) 0.2 M [60]

NCRs

NKp30 Low  ? No

NKp44 Low  ? Yes

(Viral HA?)

NKp46 Low  ? Yes

(Viral HA?)

NKp80 Low  ? No

CD2 Low  LFA-2 Yes

CD16 Low  IgG Yes

CD59 Low  ? Yes

2B4 Low  CD48 Yes

(CD244)

DNAM-1 Low  Nectin-2 (CD112) No

(CD226) PVR (CD155)

LFA-1 Low  ICAM Yes

TLRs Low  PAMPs Yes

(dsRNA, LPS,

flagellin, etc.)

Alternate nomenclature is italicized within parentheses; *: Kaiser et al., personal communication.
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the killer cell Ig receptors (KIR, restricted to NK cells) and 
the leukocyte Ig-like receptors (LILR, found on many cell 
types), and consists of type I transmembrane glycoproteins 
with ectodomains containing tandem Ig domains. The sec-
ond group, including the rodent Ly49 receptor family and 
the CD94/NKG2x and NKG2D receptor families found in 
primates and rodents, comprises homo- and heterodimeric 
type II transmembrane glycoproteins containing C-type 
lectin-like NK receptor domains (CTLDs) [41]. Ongoing 
X-ray crystallographic analyses continue to detail NKR/
ligand interactions (Figure 12.1).

Ig-type NK receptors: KIR

Two crystal structures of complexes between inhibi-
tory KIR family NKRs and their MHC class I ligands, 
KIR2DL2/HLA-Cw3 [42] and KIR2DL1/HLA-Cw4 
[43], show that the receptor binds in a 1 : 1 complex with 
HLA-C, making contacts to both the 1 and 2 platform 
domains and the carboxy-terminal end of the bound peptide 

(Figures 12.1, 12.2). [KIR receptor nomenclature identi-
fies the number of Ig domains (2D(omains) or 3D, specific 
for HLA-C or HLA-A/B respectively), and whether the 
receptor is a long (L) form, containing ITIM repeats, or a 
short (S) form, interacting with ITAM-containing adaptor 
proteins.] Both complexes have interfaces showing both 
significant shape and charge complementarity, with the N-
terminal KIR domains interacting primarily with the 1 
domains of HLA-C, the C-terminal KIR domains contact-
ing the 2 domains, and with additional contacts provided 
by the interdomain KIR linker peptides (the “elbow”). The 
kinetics of binding, rapid on and off rates, are consistent 
with interactions dominated by charge–charge interactions. 

Despite a high degree of conservation of binding sur-
face residues between both KIR2DL2 and KIR2DL1, and 
HLA-Cw3 and -Cw4, few actual intermolecular interac-
tions are conserved. This recognition flexibility is accom-
plished through altered side-chain conformations. KIR2D 
receptors distinguish between HLA-C allotypes on the 
basis of the residue at position 80: KIR2DL1 recognizes 
lysine and KIR2DL2 recognizes asparagine, and this  

Figure 12.1  Ribbon representations of an  TCR/MHC class I complex (upper left) and several NKR and NKR/ligand complex structures are 
shown. PDB accession codes for the coordinate files used to generate the figure are indicated. Only one half of the 1 : 2 Ly49C:MHC complex is shown, 
for simplicity.
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specificity is conferred by the identity of the residue at 
position 44 in the receptor. In KIR2DL1, Lys80 is shape- 
and charge-matched to a distinct pocket on the surface of 
the receptor; while Asn80 is sensed through a direct hydro-
gen bond in the KIR2DL2 complex. Additional struc-
tures for isolated KIRs are also available: KIR2DL1 [44], 
KIR2DL2 [45], KIR2DL3 [46] and KIR2DS2 [47].

Other IG-type receptors on NK cells

Several structures are available for isolated NCRs (NKp44 
[48] and NKp46 [49, 50]), but little is currently known 
about their ligands or the details of NCR/ligand interac-
tions. While LILRs contribute significantly to NK function 
and are subverted through viral decoys like the MHC class 
I homolog CMV UL18 [51], they are expressed on many 
cell types and are, therefore, not a focus of this review. 
Structures are available for isolated LILRs (LILRA5 
[52], LILRB1 [53]) and for the LILRB1/HLA-A2 [54] 
and LILRB2/HLA-G [55] complexes, which show that 
the receptor Ig-like ectodomains interact with MHC class 
Ia and Ib ligands in a similar, peptide-independent man-
ner (Figure 12.1), contacting mostly 2-m and, to a lesser 
extent, the MHC class I 3 domain. While neighboring to 

an extent that would result in competition, the Ly49C- and 
LILR binding sites on MHC class I proteins are distinct.

C-type lectin-like NK receptors: Ly49A

Ly49A is a disulfide-linked, symmetric, homodimeric, 
CTLD-type NKR that is specific for the murine MHC class 
I protein H-2Dd (the human ortholog is non-functional) 
[56]. The crystal structure of the Dd/Ly49A complex [57] 
shows Dd homodimers binding to two distinct sites on the 
MHC protein (Figure 12.2). The first binding site positions 
Ly49A on the Dd platform domain, contacting both 1 
and 2 and the N-terminal end of the bound peptide–the 
opposite end from where KIR2D binds. The second bind-
ing site positions Ly49A in the cleft between the underside 
of the platform domain (the top being the peptide and TCR 
binding surface), the 3 domain and 2-m. The second 
site is considerably more extensive than site #1, though 
less shape-complementary and less dominated by charge–
charge interactions, and is likely to be the immunologically 
relevant interaction on the basis of subsequent mutagenesis 
studies. Site #2 also overlaps the CD8 binding site on MHC 
class I proteins (Figure 12.2). As predicted, Ly49A clearly 
displays a C-type lectin-like fold, though failing to retain 
any remnant of the divalent cation or carbohydrate binding 

Figure 12.2  Structurally-characterized NK receptor/ligand complexes are shown in schematic representations to highlight interaction surfaces. 
Each row shows two views of a receptor–ligand complex, first showing the organization of domains in the complex (receptor domains in black, labeled 
where a distinction between domains is significant; MHC class I ligand heavy chains in white and 2-m in vertical stripes. The arrangement of domains 
in the ligands is detailed in the inset; the approximate solvent-accessible surface area of the bound peptide, if present, is shown as a cross-hatched area. 
The right-most columns show approximate footprints of receptors and co-receptors on the ligands as black patches, labeled by receptor component, sub-
site or domain as appropriate.
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sites conserved in true C-type lectins. While the simplest 
binding mode for a symmetric homodimer is to interact 
with two monomeric ligands through two identical binding 
sites, each Ly49A interaction with Dd is with a single mon-
omer because binding of ligand at one site sterically blocks 
binding at the second, homodimer-related site. Interestingly, 
the interactions of Ly49C with MHC class I proteins [58] 
are quite distinct from Ly49A (Figure 12.1). Ly49C makes 
symmetric interactions with two MHC proteins across the 
receptor dyad axis of symmetry, not directly contacting the 
peptide. A crystal structure of isolated Ly49I is also avail-
able [59], revealing a distinct dimerization interface from 
other Ly49 structures. m157 is an MHC class I-like, CMV-
encoded decoy ligand that interacts with both Ly49H and I, 
with much tighter affinities than their true MHC class I lig-
ands (Table 12.1); the structure of m157 shows a compact, 
minimal MHC molecule which dispenses with peptide and 
2-m association [60].

C-type lectin-like NK receptors: 
NKG2D

NKG2D is an activating, symmetric, homodimeric, CTLD-
type NKR. While highly conserved between primates and 
rodents, its ligands include very different molecules, both 
in humans and inrodents. Multiple crystal structures of 
the receptor alone [61,62] and three complexes (human 
NKG2D/MICA [63], NKG2D/ULBP3 [64] and murine 
NKG2D/RAE-1 [65]) show that NKG2D interacts with its 
MHC class I homologous ligands in a manner very similar 
to how TCRs interact with classical MHC class I proteins 
(Figures 12.1, 12.2), even though NKG2D contains CTLDs 
while TCRs contain Ig domains. NKG2D retains the C-type 
lectin-like fold seen in Ly49A, with few variations–though 
the binding surface of NKG2D is much more curved than 
in Ly49A, matching the more curved surface of its lig-
ands (which do not bind peptides), where the Ly49A and 
NKG2D binding surfaces encompass overlapping surfaces 
on the receptors. The interaction surfaces bury consider-
able solvent-accessible surface area, and are highly shape-
complementary, but the human NKG2D/MICA interaction 
markedly more so than the murine NKG2D/RAE-1 inter-
action. The reason that the human complex does not bind 
considerably more tightly than the murine complex (Table 
12.1) is likely due to the necessity of ordering a large loop 
on the surface of MICA concurrent with complex forma-
tion, reflected in the unusually slow on-rate for the human 
complex. Unlike KIR and Ly49A site #1 interactions, the 
NKG2D binding sites are much less dominated by charge–
charge interactions. The stoichiometries of the NKG2D 
complexes are one homodimer binding to one monomeric 
ligand. However, unlike Ly49, both homodimer-related 
binding sites on NKG2D contribute approximately equally 
to the interactions in both complexes, reflecting a binding 

site that has evolved to bind multiple target sites without 
the degree of side-change rearrangements seen in the KIR 
interactions. The considerable recognition degeneracy of 
NKG2D, accommodating structurally divergent, polymor-
phic families of ligands (Table 12.1), is enabled not by a 
conformationally-plastic binding site (induced-fit recogni-
tion), but rather by a “rigid-adaptation” mechanism [7, 66]. 
The CD94/NKG2A/HLA-E complex structure [68] is quite 
similar in overall arrangement to NKG2D/ligand and TCR/
ligand complexes (Figure 12.1), though peptide sequence 
differences, which strongly affect receptor affinities, are 
read out by CD94 and not the NKG2x moiety [67].
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