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Abstract

To fully understand the role of microbiome in human health and

diseases, researchers are increasingly interested in assessing the rela-

tionship between microbiome composition and host genomic data. The

dimensionality of the data as well as complex relationships between mi-

crobiota and host genomics pose considerable challenges for analysis.

In this paper, we apply a kernel RV coe�cient (KRV) test to evaluate

the overall association between host gene expression and microbiome

composition. The KRV statistic can capture non-linear correlations

and complex relationships among the individual data types and be-

tween gene expression and microbiome composition through measuring

general dependency. Testing proceeds via a similar route as existing

tests of the generalized RV coe�cients and allows for rapid p-value

calculation. Strategies to allow adjustment for confounding e�ects,

which is crucial for avoiding misleading results, and to alleviate the

problem of selecting the most favorable kernel are considered. Simula-

tion studies show that KRV is useful in testing statistical independence

with �nite samples given the kernels are appropriately chosen, and can

powerfully identify existing associations between microbiome compo-

sition and host genomic data while protecting type I error. We apply
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the KRV to a microbiome study examining the relationship between

host transcriptome and microbiome composition within the context of

in�ammatory bowel disease and are able to derive new biological in-

sights and provide formal inference on prior qualitative observations.

Keywords: Kernel, Microbiome composition, Multivariate association

test, Omnibus test, RV coe�cient

1 Introduction

The human body is inhabited by many complex communities of microorgan-

isms and their composition (de�ned as the microbiome) have been increas-

ingly recognized to play an important role in many human disease conditions,

including obesity (Turnbaugh et al., 2009), type 2 diabetes (Qin et al., 2012),

and in�ammatory bowel disease (Morgan et al., 2015). Recent advances in

next-generation sequencing technologies now allow investigators to quantify

the composition of the microbiome using direct DNA sequencing of the 16S

ribosomal RNA gene (Lasken, 2012). Based on their sequence similarity,

the raw 16S sequence reads are often clustered into Operational Taxonomic

Units (OTUs), which is a commonly used microbial diversity unit and can be

considered as surrogate of a bacterial taxon when clustered at 97% similar-

ity level (Stackebrandt and Goebel, 1994). Many downstream analyses are

performed based on the OTU abundances, among which a powerful mode of

analysis is the community level analysis, wherein overall microbiome com-

position of multiple OTUs is assessed for identifying overall shifts among

di�erent conditions (Li, 2015). Community level analysis can be more pow-

erful than examination of individual taxa when there are systematic, mod-

est changes in abundance but individual taxa do not have a strong e�ect

(Plantinga et al., 2017, Zhao et al., 2015).

Recently, there is considerable interest in understanding the relationship

between overall microbiome composition and pro�les of other types of ge-

nomic data. For example, Morgan et al. (2015) was interested in determining

whether host gene expression pro�les, overall and within speci�c candidate

pathways, are globally related to microbiome composition in patients with

in�ammatory bowel disease. Unfortunately, how to systematically examine

the relationship between high-dimensional microbiome compositional pro-

�les and other high-dimensional gene expression data remains unclear. The
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authors resorted to associating individual gene expression and individual

OTUs by using the top principal components, as well as making qualitative

observations regarding relationships, in which no formal inference was con-

ducted. It would be of considerable practical interest to devise a means for

formal inference of hypothesis testing and for conducting more systematic

association analysis.

Assessing overall association relationships between two sets of variables

can be accomplished using a range of di�erent methods. For example, the

RV coe�cient (Escou�er, 1973) provides insight into the global correlation

between the two random vectors (e.g., a vector of microbiome pro�les and

a vector of gene expression values). However, as a generalization of the

Pearson correlation coe�cient, RV coe�cient can only measure linear de-

pendency. The high dimensionality of the data, the complexity of the re-

lationships between data types, and inherent structure (e.g., phylogenetic

relationships) among the taxa pose grand challenges for the RV coe�cient.

To accommodate general dependency patterns beyond linearity, one strategy

is to incorporate distance metrics as in the GRV statistic (Minas, Curry, and

Montana, 2013). Motivated by GRV, we map the original vector spaces to

reproducing kernel Hilbert spaces (RKHSs) and consider kernel RV (KRV)

coe�cient as the RV coe�cient between the RKHS-images of the two ran-

dom vectors. It turns out that this KRV statistic is closely related to existing

statistics that measure multivariate statistical independence, including the

Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2005, 2008)

and distance covariance (Székely, Rizzo, and Bakirov, 2007).

Despite the correspondences of KRV with many existing multivariate

dependency metrics, the testing design of these existing statistics do not

�t the current microbiome association analysis. This is because current

microbiome studies often have a relatively small sample size, while most

existing multivariate dependency tests depend on asymptotic results (e.g.,

the HSIC test). Thus, a more accurate �nite-sample null distribution is

desired for a microbiome association test (Chen et al., 2016, Plantinga et al.,

2017). To evaluate signi�cance based on the KRV statistic, we adopt the

GRV testing strategy (Minas et al., 2013), which approximates the empirical

null distribution of all KRV permutations to a Pearson type III distribution

by matching the �rst three moments. Since the empirical moments of the

null KRV permutation distribution are easy to calculate based on previous
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results on RV-type statistics (Josse, Pagè, and Husson, 2008, Kazi-Aoual et

al., 1995), parameters of the Pearson type III distribution can be explicitly

expressed in closed form. Finally, the p-value of a KRV test can be calculated

analytically using this approximated Pearson type III density. The new test

design is well-suited for small-sample microbiome studies without using any

asymptotic results.

Although we follow the GRV testing framework to examine the associa-

tion between two vectors, there are key di�erences. The most important dif-

ference is that the proposed KRV test has been applied to a di�erent domain.

GRV tests for association between SNPs and gene expressions, where speci�c

distance metrics for SNPs and gene expressions have been explored. In this

paper, our major focus is kernel metrics for microbiome composition data.

Beyond that, the KRV test also extends the GRV test in the following two

aspects. First, the KRV test allows adjustment of confounding e�ect. Envi-

ronmental exposures, clinical outcomes and treatment groups (all termed as

covariates) are important in assessing the association between microbiome

composition and host gene expression. It is possible that some covariates

a�ect both the microbiome composition and gene expression. Under such a

scenario, failure to account for these covariates can produce misleading bias

of association or a�ect the testing power. Second, we propose an omnibus

KRV test which can accommodate multiple candidate kernels, which is much

more e�cient than the permutation and meta analysis-based approach used

in GRV to accommodate multiple distances. The choice of kernels in KRV

is crucial for the success of the test. The optimal kernels with powerful

KRV tests depends on both the speci�c data structures and the underlying

association patterns, which however, are often unknown in practice. With-

out hacking p-values by selecting the most favorable kernels, we incorporate

an omnibus procedure in KRV to accommodate multiple candidate kernels.

The KRV test with this omnibus kernel is more robust in that it can always

have adequate power under di�erent scenarios. Finally, by approaching the

problem from the perspective of kernels rather the distances, we are able to

related the KRV to existing metrics of generalized statistical dependence to

better understand properties.

The rest of the paper is organized as follows. In Section 2, we �rst intro-

duce the KRV statistic and explore its connection with many existing statis-

tics for multivariate association analysis. Then, we utilize existing testing
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strategy in RV-type statistics to evaluate signi�cance based on KRV statistic.

Next, we carefully adapt the KRV test to microbiome association analysis

by enabling covariates adjustment as well as accommodating multiple OTU

kernels in Section 3. The �nite sample performance of the proposed KRV

test both in testing statistical independence and microbiome association is

assessed through numerical studies in Section 4. In Section 5, we apply

the KRV test to the dataset of Morgan et al. (2015) examining the relation

between host transcriptome and microbiome composition in samples taken

from in�ammatory bowel disease patients. Our analysis is able to provide

additional insights. The paper concludes with a brief discussion in Section

6.

2 A KRV-based Fast Small-sample Kernel Inde-

pendence Test

RV coe�cient (Escou�er, 1973) was developed as a measure of linear cor-

relation between sets of multivariate measurements collected on the same

individuals. In particular, let X be an n×p matrix (of variables X1, . . . , Xp)

and Y be an n×q matrix (of variables Y 1, . . . , Y q), corresponding to two sets

of variables, such as gene expression values and OTU counts observed from

the same n individuals. Then, RV coe�cient between X and Y is de�ned as

RV (X,Y ) :=
tr(SXY SY X)√
tr(S2

XX)tr(S2
Y Y )

, (1)

where SXX = X ′X/(n − 1), SY Y = Y ′Y/(n − 1), SXY = X ′Y/(n − 1),

SY X = Y ′X/(n − 1) are sample covariance matrices, given that X and Y

are centered by columns.

A notable feature of RV coe�cient is that it is only able to capture

the linear dependency between two random vectors and does not accommo-

date nonlinearity or other more general dependencies (Robert and Escou�er,

1976). In practice, complex data such as microbiome and host genome data,

often require general methods to detect more general dependencies that are

of interest. Motivated by this, we propose the KRV coe�cient to mea-

sure more general relationship between microbiome composition and host

genome expression. Speci�cally, we kernelize the RV coe�cient by embed-
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ding the original spaces X and Y to some functional spaces spanned by

kernels (Hofmann, Schölkopf, and Smola, 2008). Let k(·, ·) : X × X 7→ R

and l(·, ·) : Y × Y 7→ R. be two kernel functions. Then, the KRV coe�cient

is proposed as

KRV (X,Y ) :=
tr(K̃L̃)√

tr(K̃K̃)
√
tr(L̃L̃)

, (2)

where K̃ = HKH and L̃ = HLH. K and L are two n× n kernel matrices,

where Kij = k(Xi, Xj), Lij = l(Yi, Yj), i, j = 1, . . . , n, H = I − 11′/n is a

centering matrix, I is an identity matrix of order n, and 1 is a n× 1 vector

of all ones. A sketch of calculating the KRV coe�cient is included in Section

A.1 of Appendix A.

If the kernel matrices are selected as K = XX ′ and L = Y Y ′, then

the KRV coe�cient reduces to the RV coe�cient. If we replace the two

kernel matrices K and L by two distance matrices, then KRV reduces to a

GRV coe�cient. Beyond its close connection with RV-type statistics, KRV

is also similar to some other statistics. In particular, the numerator of KRV

is simply the HSIC statistic tr(K̃L̃) (Gretton et al., 2005, 2008), which has

been widely used to characterize statistical independence. Thus, given the

kernels being appropriately chosen (Gretton et al., 2005), the KRV statistic

can also be used to characterize independence. Such a property, however,

has never been studied for other RV-type statistics (Josse et al., 2008, Minas

et al., 2013). Similar to the HSIC statistic, distance covariance/correlation

(Székely et al., 2007) is also widely used for measuring and testing inde-

pendence between two groups of variables. It has been shown that distance

covariance is equivalent to HSIC (Sejdinovic et al., 2013). In this spirit, KRV

is equivalent to distance correlation.

Besides the HSIC statistic and distance covariance statistic, many other

statistics have been proposed to measure generalized dependency. Readers

are referred to Josse and Holmes (2013) and references therein for further

details. Finally, it turns out that our KRV statistic coincides with some

existing statistics including the RV for kernels (Purdom, 2006) and the cen-

tered kernel alignment statistic (Cortes, Mohri, and Rostamizadeh, 2012).

However, the RV for kernels is used for kernel principal component analysis

and kernel canonical correlation analysis, and the centered kernel alignment

statistic is used to develop algorithms for learning kernels for classi�cation
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and regression. Both RV for kernels and centered kernel alignment statistic

have not been used for hypothesis testing, which is the focus of the current

paper.

Despite the correspondences of KRV with HSIC and distance covariance,

the design of the HSIC test (based on asymptotic results) and the distance

covariance test (permutations) are often limited. In particular, asymptotic

null distribution-based HSIC test is not appropriate for studies with small

sample size, such as the micriobiome study considered in this paper. On the

other hand, a permutation test of distance covariance can be computationally

expensive when the nominal signi�cance level is stringent. Thus, a new fast

small-sample independence test based on the KRV statistic is necessary.

The distribution of the KRV statistic is generally unknown due to its

complex form. A reasonable strategy is to use permutations. Unlike the

permutation-based distance covariance test, we utilize permutations di�er-

ently. To avoid the computational burden of explicitly resampling and re-

calculating permuted KRV statistics, we follow testing strategy of existing

RV-type statistics (Josse et al., 2008, Minas et al., 2013), to approximate

the empirical null distribution of KRV permutations by moment-matching.

Speci�cally, let Qi, i = 1, . . . , n! denote the KRV statistics calculated from

all n! potential permutations by shu�ing rows and columns of one kernel

matrix simultaneously. The �rst three sample moments of {Q1, . . . , Qn!} are
calculated and a Pearson type III density with the same �rst three moments

is obtained. The �nal p-value is calculated from this approximated Pearson

type III density. More details of the Pearson type III approximation can be

found in Section A.2 and A.3 of Appendix A.

3 Adapting KRV for Microbiome Association Anal-

ysis

In this section, we tailor the KRV framework to facilitate the microbiome

association analysis with host gene expression data mainly considered in this

paper.
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3.1 Kernel Choice

To evaluate the association between microbiome composition and host gene

expressions via the KRV test, we �rst need to select kernels in KRV for both

microbiome composition data and gene expression data. In many kernel-

based genetic association tests, kernels are used as similarity measures, and

concordance between genotype similarity and phenotype similarity is sugges-

tive of association (Broadaway et al., 2016, Wu et al., 2011). Similarly, we

treat Kij and Lij in KRV as similarity measures of sample i and j in terms of

their microbiome composition pro�les and host genomic expression pro�les,

respectively. The KRV statistic tends to be large if one similarity matrix

resembles to the other. That is, concordance in microbiome similarity and

host genome similarity is suggestive of association.

More rigorously, kernel matrices K and L need to be positive semi-

de�nite so that the KRV statistic (6) is well-de�ned. Constructing positive

semi-de�nite kernels for association analysis is a common practice for many

di�erent omics data types (Wu et al., 2011, Zhan et al., 2015, 2016, Zhao et

al., 2015). For the microbiome composition data considered in this paper,

the UniFrac kernels are ecologically meaningful similarity metrics and can ac-

commodate important features of OTU data, e.g. the phylogenetic structure

(Chen et al., 2012, Lozupone and Knight, 2005, Lozupone et al., 2007). The

UniFrac-type kernels quantify the similarity of two OTU pro�les by incorpo-

rating both their abundance (or presence/absence) information and phyloge-

netic relationship. Besides the UniFrac kernels, the Bray-Curtis kernel is also

widely used, which quanti�es similarity of two microbial communities based

on the OTU counts and can be useful when the phylogenetic tree information

is unavailable and unreliable. For host gene expression data, some popular

choice are the Gaussian kernel (Kij = k(xi, xj) = exp(−||xi−xj ||2/σ2)) and
linear kernel (K = XX ′) (Liu, Lin, and Ghosh, 2007). To account for corre-

lation among gene expressions, the weighted linear kernel (K = XΣ−1XXX
′)

can also be used (Broadaway et al., 2016).

3.2 Accommodating Multiple Kernels

The choice of kernels in KRV is crucial for the success of the test. Di�erent

kernels measure di�erent aspects of data nature and assume di�erent asso-

ciation patterns. Unfortunately, selecting the most powerful OTU (or gene
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expression) kernel requires both knowledge of the microbiome community

structure and how the microbiome in�uences gene expression. Without such

prior knowledge, it is necessary to develop an omnibus test which incorpo-

rates multiple candidate kernels. In GRV (Minas et al., 2013), a similar

multiple candidate distances issue is solved by meta-analysis for di�erent

combinations of distances. P-values from all possible distance combinations

are used to calculate the Fisher summary statistic, and permutations are used

to establish the signi�cance based on the Fisher summary statistic. The ad-

justment of multiple distances in GRV is often computationally ine�cient

due to the need of extra datasets for meta-analysis and also permutations

for �nal p-value calculation.

To avoid potential limitations of GRV, we propose to combine the mul-

tiple candidates at the kernel level in KRV rather than the test p-value level

as in GRV. Without loss of generality, suppose ki, i = 1, . . . ,m are candi-

date OTU kernels, with corresponding kernel matrices Ki, i = 1, . . . ,m, and

we �x the gene expression kernel l or L. The same omnibus OTU kernel

strategy can be applied to accommodate multiple gene expression kernels.

Motivated by existing literature in multiple kernel learning (Cortes et al.,

2012) and genetic association studies (Wu et al., 2013), we propose to use

an omnibus OTU kernel of the form Kom =
∑m

i=1 ωiKi with ωi ≥ 0 and∑m
i=1 ωi = C. Since the KRV statistic is scale invariant, constant C in

the constraint
∑m

i=1 ωi = C does not make a real di�erence. There are

many methods to determine the weights ωi, i = 1, . . . ,m. The simplest

strategy is to use unsupervised weights such as Kom1 =
∑m

i=1Ki/m and

Kom2 =
∑m

i=1Ki/tr(Ki). An advantage of Kom1 and Kom2 is that a direct

KRV test between Kom and L can be used to establish the �nal signi�cance.

Another more complicated way to select the weights in a supervised way. For

example, Cortes et al. (2012) suggest to select the weights that maximize the

KRV statistic between the omnibus OTU kernel and gene expression kernel:

KRV (Kom, L) =

∑m
i=1 tr(ωiKiL)√∑m

i=1

∑m
j=1 tr(ωiKiωjKj)

√
tr(L2)

, (3)

subjected to ωi ≥ 0 and
∑m

i=1 ωi = 1. The optimal weights ω∗ = (ω∗1, . . . , ω
∗
m)′

can be calculated by a Quadratic Programming (QP) algorithm (Cortes et

al., 2012). As a consequence of supervised weights learning, p-value of the
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test KRV (Kom3, L), where Kom3 =
∑m

i=1 ω
∗
iKi, is no longer a genuine p-

value. Permutations are needed for establish the signi�cance of the test based

on Kom3. Finally, Wu et al. (2013) suggest to select the individual kernel

with the minimum p-value. That is, Kom4 = Ki, where Ki has the smallest

KRV p-value among K1, . . .Km. Like Kom3, a permutation-based procedure

is needed to establish the signi�cance between Kom4 and L. More details on

Kom3 and Kom4 including the permutation-based p-value calculation proce-

dures along with comprehensive numerical studies comparing Kom1, Kom2,

Kom3 and Kom4 are presented in Section B.1 of Appendix B. Based on our

numerical studies, it turns out that the omnibus kernel Kom2 with unsu-

pervised weights ωi = 1/tr(Ki) tends to have the best overall performance

under most scenarios, and thus is used as the omnibus kernel in the rest of

this paper.

3.3 Adjusting for Confounders

It is important to adjust for the e�ect of confounding variables when testing

association. Let Y and Z denote host gene expression and microbiome com-

position respectively, X denote some covariates, such as age, gender, smok-

ing status and other clinical or environmental variables, which may in�uence

both host gene expression and microbial community diversity. Without ad-

justing for covariate e�ects, the association testing results between Y and

Z can be misleading, sometimes leads to excessive false positive discoveries.

To adjust for the potential confounding e�ects of X in KRV framework, we

utilize the residual-based strategy as widely used in many kernel machine

association tests (Broadaway et al., 2016, Hua and Ghosh, 2015, Liu et al.,

2007). Let PX = X(X ′X)−1X ′ denote the projection matrix of the column

space of X, and denote the residuals Ỹ = (I − PX)Y . Then we can calcu-

late the residual kernel as L̃r
ij = l(Ỹi, Ỹj). Finally, we replace L̃ in equation

(6) by L̃r to calculate the statistic and conduct the test after adjusting for

X. In the univariate scenario (dim(Y)=1) of kernel machine regression, the

above procedure is equivalent to testing the association using a restricted

maximum likelihood (REML)-based score test (Liu et al., 2007).
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4 Simulation Studies

4.1 Statistical Independence Simulation

We �rst conducted simulations to evaluate the performance of the proposed

KRV test in testing statistical independence. We compared our KRV test to

the HSIC test and distance covariance (dcov) test, both of which have been

widely used for testing statistical independence between two random vec-

tors. As a benchmark, we also compared the GRV test, which has the same

test design as the KRV test but uses distance metrics rather than kernels.

The setup of this simulation was exactly the same as that in the dcov test

paper (Székely et al., 2007). Two continuous random vectors X and Y were

simulated, where p = dim(X) = dim(Y ) = 5, and the marginal distribution

of each dimension of X and Y was standard normal. The following four

scenarios (A) � (D) were used to simulate the data:

(A) Cov(Xi, Yj) = 0, for i, j = 1, . . . , p, and Cov(Xi, Xj) = 0, Cov(Yi, Yj) =

0 for any i 6= j.

(B) Cov(Xi, Yj) = 0.1, for i, j = 1, . . . , p, and Cov(Xi, Xj) = 0.1, Cov(Yi, Yj) =

0.1 for any i 6= j.

(C) Yij = Xijεij , i = 1, . . . n; j = 1, . . . p, where εij are independent standard

normal random variables independent of X.

(D) Yij = log(X2
ij), i = 1, . . . n; j = 1, . . . p.

The empirical type I error rates were evaluated when generating data under

scenario (A), and the empirical powers were assessed under scenarios (B), (C)

and (D). Under each scenario, N = 10000 datasets were simulated with var-

ied sample sizes n = {20, 40, 60, 80, 100}. For the KRV test and HSIC test,

we applied the Gaussian kernel to both X and Y to test independence (Gret-

ton et al., 2008). That is, k(X1, X2) = l(X1, X2) = exp{−||X1 −X2||2/σ2},
where ||X1 −X2||2 is the Euclidean distance between X1 and X2, σ

2 is the

shape parameter which was selected as the median of the Euclidean distance

between each sample pair. The design of the HSIC test is di�erent from the

KRV test. The asymptotic null distribution of HSIC statistic is character-

ized as
∑n

i=1

∑n
j=1 λiµjχ

2
1, where λi, µj are eigenvalues of kernel matrices

K and L respectively. More details can be found in Sejdinovic et al. (2013).

For the GRV test, Euclidean, Manhattan and Mahalanobis distance have

been proposed for continuous variables (Minas et al., 2013). For simplicity,

we selected both Euclidean distances for X and Y in GRV test (GRV re-
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sults with Manhattan and Mahalanobis distance are qualitatively similar).

Finally, B = 10000 permutations were used in the dcov test (Székely et al.,

2007). The nominal signi�cance level was set at α = 0.05 and the testing

results are reported in Figure 1.
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Figure 1: Empirical type I error/power of KRV, GRV, HSIC and dcov test.
Scenario (A) is for type I error and Scenario (B)�(D) are for powers under
di�erent alternative models. Symbols ◦, 4, + and × represent KRV, GRV,
HSIC and dcov respectively.

Under scenario (A), KRV, GRV and dcov test have correct type I error.

The 95% CI of type I error is 0.05±1.96
√

0.05 · 0.95/10000 = [0.0457, 0.0543],

which are represented as dash lines in the top-left panel of Figure 1. Clearly,

the HSIC test is outside this CI and is extremely conservative especially

when sample size is small. This small-sample conservativeness has been ob-

served for other kernel-based association test statistics (Chen et al., 2016).

Under scenario (B), GRV and dcov are more powerful than KRV and HSIC.

The dependence between X and Y under Scenario (B) is fully described by

the Pearson correlation (Cov(Xi, Yj) = 0.1, i, j = 1, . . . 5), and the Gaussian
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kernels as applied in KRV and HSIC are less sensitive to such a linear de-

pendency pattern than the Euclidean distances implemented in GRV. The

dependency between X and Y under scenario (C) is linear but with random

coe�cient. KRV and HSIC are more powerful than GRV under this scenario.

Finally, there is a nonlinear dependency between X and Y under scenario

(D). Since the dependency is purely deterministic, KRV, HSIC and docv

is extremely powerful under this scenario. On the other hand, GRV with

Euclidean distances fails to detect such a nonlinear dependency in the sense

that it has a power close to the nominal type I error rate. GRV tests with

other distances (such as Manhattan and Mahalanobis distance) can have

improved power, which however, is still less powerful than KRV (data not

shown).

To summarize, KRV test is powerful in detecting any kind of depar-

ture from statistical independence under each scenario given the kernels are

appropriately chosen, such as Gaussian kernels (Gretton et al., 2008). De-

pending on the distances being used, GRV test can be powerful in detecting

certain kind of dependency patterns. However, it is not clear, under what

conditions/distances, GRV is able to capture any general dependency pat-

terns among two random vectors. HSIC seems to be as powerful as KRV

when the sample size is large. However, it is clear that HSIC is conservative

when sample size is relatively small. The permutation-based dcov test tends

to be slightly less powerful than KRV (except for Scenario (B)) and always

has adequate power to detect any dependencies. However, the computational

cost of dcov can be expensive if required number of permutations is large

(e.g., for stringent signi�cance levels).

4.2 Microbiome Association Simulation

We also conducted simulation studies to evaluate the performance of KRV in

testing microbiome association. We �rst generated the microbiome composi-

tion data which was re�ective of real OTU counts in a upper-respiratory-tract

microbiome dataset (Charlson et al., 2010). A total of 856 OTUs were sim-

ulated and were further partitioned into 20 clusters using the partitioning

around medoids algorithm. Finally, we selected a relatively abundant clus-

ter (denoted by A) as the one which a�ected the outcomes. After the OTU

counts Zij , i = 1, . . . n, j = 1, . . . 856 were generated, we simulated q host
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gene expressions from

yit = 0.5Xi1 +0.5Xi2 +βt ·scale(
∑
j∈A

Zij)+εit, i = 1, . . . n, t = 1, . . . , q, (4)

where Xi1, Xi2 are covariates such as age, gender and smoking status, which

may also be related to the microbiome composition. In particular, two

di�erent ways of simulating covariates were considered. In the �rst sce-

nario, the covariates were independent of OTUs, and simulated as Xi1 ∼
Bernoulli(0.5), Xi2 ∼ N(0, 1). In the second scenario, we simulated Xi2 as

N(0, 1)+0.4 ·scale(
∑

j∈A Zij), which was related to the microbiome compo-

sition. The scale(·) function standardized the sum of OTU counts in cluster

A. The error terms εik are independent and identically distributed as nor-

mal with mean zero and covariance matrix Σ(ρ), where Σ(ρ) is compound

symmetry covariance matrix with ρ = 0.2, 0.8 representing low and high cor-

relation among gene expressions respectively. We simulated n = 200 samples

and p = 30 gene expressions to mimic a mid-size pathway as analyzed in a

real data example later in this paper. Under the null model, all βt = 0

and 10000 datasets were simulated to evaluate type I error. Two di�erent

alternative models were considered. One was the sparse-association model,

where only 20% of the gene expressions are related to OTUs. In particular,

we set βt = 0.5 for t = 1, . . . q∗(= 0.2q), and zero elsewhere. The other is

the dense-association model, where βt = 0.5 for t = 1, . . . q∗(= 0.5q), and

zero elsewhere. Under both alternative models, we generated 1000 datasets

to assess the power.

To test the association between the simulated microbiome composition

and gene expressions data, six di�erent methods were applied including

KRV test, GRV test, Gene Association with Multiple Traits (GAMuT)

test (Broadaway et al., 2016), Multi-trait Sequence Kernel Association Test

(MSKAT) (Wu and Pankow, 2016), Multivariate MiRKAT (MMiRKAT)

(Zhan et al., 2017) and the marginal MiRKAT (Zhao et al., 2015). GAMuT

uses the same design of HSIC test in previous simulation (Broadaway et al.,

2016). MSKAT combine multiple marginal score test statistic through the

covariance matrix of all scores and also calculates its p-value asymptotically

(Wu and Pankow, 2016). MMiRKAT incorporates a small-sample adjust-

ment to a MSKAT-type test so that the test has a better �nite-sample behav-

ior (Zhan et al., 2017). Finally, the marginal MiRKAT tests the association
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between one gene expression and OTUs each time followed by Bonferroni

correction to the minimum p-value, and we term it as minP for simplicity in

the rest of this paper.

We �rst selected the OTU kernels as used in all six tests. For a little abuse

of notation, in this section, we simply use the term kernels for distances when

the test is GRV. The weighted UniFrac kernel, unweighted UniFrac kernel,

generalized UniFrac kernel with parameter θ = 0.5 and the Bray-Curtis

kernel were considered (Zhao et al., 2015). We denote these kernels as Kw,

Ku, K0.5 and KBC respectively. Then, the omnibus OTU kernel Kom =

Kw/tr(Kw)+Ku/tr(Ku)+K0.5/tr(K0.5)+KBC/tr(KBC) was also calculated

and applied in all six tests. For the gene expression data, the Gaussian

kernel-based KRV/GAMuT is shown to be robust in the previous continuous

variables simulation in Section 4.1. To capture the correlation among gene

expression, the weighted linear kernel L = Y Σ̂−1Y Y Y
′ is often shown to be

useful (Broadaway et al., 2016). Based on the results of Section B.1 in

Appendix B, we selected the gene expression kernel in KRV and GAMuT as

G/tr(G) +L/tr(L). On the other hand, the Euclidean distance, Manhattan

distance and Mahalanobis distance are recommended in the GRV test (Minas

et al., 2013). The Mahalanobis distance tends to be powerful when outcome

correlation is high while the other two distances are more powerful with

weakly correlated outcomes. An omnibus distance to accommodate three

distances was used. Since the trace of a distance matrix is zero, we simply

used an average distance matrix of the three in the GRV test.

The empirical type I errors are reported in Table 1. Based on the table,

KRV and GRV always have correct type I error under each scenario. GAMuT

and MSKAT tend to be very conservative under each scenario, which is also

observed in Section 4.1 and other studies (Zhan et al., 2017). This is because

the asymptotic p-value calculation in GAMuT and MSKAT work for large-

sample genetic association studies, and tends to be conservative with small

samples due to estimation error in variance terms (Chen et al., 2016). The

small-sample adjustment incorporated in MMiRKAT usually works well with

low-dimensional outcomes (Zhan et al., 2017). However, MMiRKAT seems

to be a little conservative in this simulation with p = 30 outcomes. Finally,

minP has correct type I error when outcomes are weakly correlated (ρ = 0.2)

and is very conservative when outcomes are highly correlated (ρ = 0.8). This

is due to the conservativeness of the Bonferroni correction when individual
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tests are highly correlated. The type I errors of all tests with dependent (X,Z)

scenario are similar and reported in Table S2 in Section B.2 of Appendix B.

The empirical powers are reported in Table 2. We �rst compare the

performance of each test with di�erent OTU kernels. Data generated in this

simulation have two features. First, the simulated OTUs are phylogenetically

related, and re�ect a real upper-respiratory-tract microbiome data. Second,

based on simulation model (4), the outcomes are a�ected by the abundance of

OTUs (i.e. Zij), rather than the presence/absence of OTU (i.e. I[Zij > 0]).

Given these facts, Kw and K0.5 consider both phylogeny and abundance

information, and hence are more powerful. On the other hand, Ku ignores

the abundance information and KBC ignores the phylogeny information,

hence are less powerful. Finally, one can see that tests based on omnibus

OTU kernel are quite robust. Under each scenario, the omnibus tests are

slightly less powerful than the best test but much more powerful than the

worst one.

Next, we compare the power of di�erent tests. We �rst compare four

kernel-based multivariate association tests: KRV, GAMuT, MSKAT and

MMiRKAT. Both KRV and GAMuT gain additional power by utilizing an

additional kernel to model the structures in gene expression data. Also, as

observed in Table 1, GAMuT, MSKAT and MMiRKAT are more or less

conservative under small sample size. These two facts explain that KRV is

consistently more powerful than GAMuT, MSKAT and MMiRKAT in Table

2. Next, we compare KRV and GRV. Under ρ = 0.2, GRV is slightly more

powerful than KRV. However, KRV is much more powerful than GRV under

ρ = 0.8 especially when q∗ = 6, where the power of KRV and GRV are

0.856 and 0.166 respectively. We also tried other GRV tests. For example,

Mahalanobis distance-based GRV has improved power under ρ = 0.8 but has

much lower power than KRV under ρ = 0.2. Similar to previous simulations

in Section 4.1, the Gaussian kernel in KRV is often robust to capture general

relationship while it is not clear which distance in GRV can achieve such

goals. Finally, the comparison between KRV and minP is simple. Under

low correlation and sparse signal, minP is slightly more powerful. However,

under other scenarios, the association signal can be largely ampli�ed by

collectively analyzing multiple outcomes and thus KRV can be much more

powerful than minP. The powers of all tests with dependent (X,Z) scenario

are similar and reported in Table S3 in Section B.2 of Appendix B.
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To conclude, there is no uniform most powerful multivariate association

test in our simulations. Unlike other methods, which su�er from huge power

loss under certain scenarios, the proposed KRV test is always one of the

most powerful method in testing the association between OTUs and gene

expressions, and always has an adequate power under each scenario.

5 Analysis of host transcriptome and microbiome

data

We further applied the KRV test to a dataset from an in�ammatory bowel

disease (IBD) study (Morgan et al., 2015), which examines how host tran-

scriptome interacts with microbiome in the pathogenesis of IBD. Paired host

transcriptome and microbial metagenome data were collected from 255 sam-

ples, among which 196 were pre-pouch ileum (PPI) samples and 59 were

pouch samples. For each sample, 19908 host transcript expressions and

7000 OTU counts were measured by microarray and 16S rRNA analysis

respectively (Morgan et al., 2015). Besides host gene expression and micro-

biome composition, three additional covariates are available: antibiotic use

(yes/no), in�ammation score (0-13), and disease outcome (familial adeno-

matous polyposis or not). Due to heterogeneity reasons, only the 196 PPI

samples were used to test the association between host transcriptome and

microbiome (Morgan et al., 2015). In particular, a linear model was applied

to test the association between each individual transcript and each individual

OTU after accounting for the covariates. To reduce multiple testing burden

and improve statistical power, principal component analysis (PCA) was ap-

plied to the 19908 host transcripts and 7000 OTUs for dimension reduction.

The top 9 host PCs (which explain 50% variance in host transcripts) and

the top 9 clade PCs (which explain 50% variance in OTUs) were included

in individual association analysis, where one host PC and one clade PC is

tested for association each time. Finally, after multiple testing adjustment,

signi�cant associations between host PCs and clade PCs can be detected at

a false discovery rate (FDR) of 0.25. The authors also noted enrichment

of microbiome-associated host transcript patterns within the interleukin-12

(IL12) pathway, but no formal statistical testing results were reported (Mor-

gan et al., 2015).

Alternatively to the individual PC based association analysis implemented
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in the original study, we jointly tested the association between host gene ex-

pressions (either the whole transcriptome or within a certain pathway as

IL12) and all 7000 OTUs using all six methods as illustrated in simulation

studies. Besides the whole transcriptome and IL12 pathway, we also ana-

lyzed two additional pathways. One is In�ammatory mediator regulation of

TRP channels pathway (KEGG: hsa04750), and the other is IBD pathway

(KEGG:hsa05321). These two pathways are either related to the underlying

biological process or related to the disease itself, hence can be of interest. To

be consistent with the original studies (Morgan et al., 2015), only the 196

PPI samples were used in our analysis.

For the OTU data, the Bray-Curtis kernel can be directly calculated

from the counts, and the phylogenetic tree needs to be �rst trained for cal-

culating UniFrac-type kernels. Speci�cally, PyNAST (Caporaso et al., 2010)

was used to generate a multiple sequence alignment from the representa-

tive OTU sequences identi�ed in the original study. Of the 7000 available

OTU sequences, 1646 could not be aligned and were excluded from the phy-

logenetic tree. A phylogenetic tree relating the remaining 5354 OTUs was

produced using FastTree (Price, Dehal, and DehalArkin, 2009). The un-

weighted, weighted, and generalized UniFrac distances/kernels were calcu-

lated using this tree. The same kernel/distance for gene expression data as in

Section 4.2 were used in this real data application. For the whole transcrip-

tome, which contains too many genes (p = 19908 > n = 196) such that Σ̂ is

not invertible. Thus we simply used the Gaussian kernel in KRV, GRV and

GAMuT, and Σ̂−1-based MSKAT and MMiRKAT are not evaluated under

this scenario.

The testing results are reported in Table 3. For the overall association

between microbiome composition and all 19908 genes in the whole transcrip-

tome, KRV, GRV and GAMuT are all highly signi�cant while minP is not,

probably due to the heavy multiple testing correction burden. Compared

with the claimed signi�cance at FDR=0.25 of the original individual analy-

sis, our KRV test is much more powerful detecting associations since it can

amplify the marginal association signal by analyzing both OTUs and gene

expressions collectively.

For the IL12 pathway, KRV, GRV, GAMuT and minP (except for Kw)

are signi�cant at α = 0.05 level, which are consistent with �ndings of the

original study stating that microbiome-associated host genome PCs were
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Table 3: P-values of di�erent tests examining the host-microbiome associa-
tion in the real data. The whole transcriptome (whole) contains all 19908
genes, IL12 pathway contains 21 genes, In�ammatory pathway (IF) contains
96 genes, and IBD pathway has 62 genes.

Pathway Test Kw Ku K0.5 KBC Kom

Whole KRV 0.0011 0.0002 0.0003 0.0014 0.0002
GRV 0.0055 0.0003 0.0015 0.0024 0.0012

GAMuT 0.0015 0.0006 0.0026 0.0029 0.0005
minP 1.0000 1.0000 1.0000 1.0000 1.0000

IL12 KRV 0.0010 0.0004 0.0004 0.0014 0.0003
GRV 0.0040 0.0003 0.0011 0.0021 0.0009

GAMuT 0.0017 0.0011 0.0009 0.0029 0.0007
MSKAT 0.1931 0.5000 0.3024 0.1739 0.2105

MMiRKAT 0.1744 0.4376 0.3295 0.1674 0.2184
minP 0.0759 0.0060 0.0237 0.0448 0.0164

IF KRV 0.0013 0.0003 0.0003 0.0015 0.0003
GRV 0.0042 0.0002 0.0011 0.0020 0.0009

GAMuT 0.0018 0.0008 0.0007 0.0029 0.0007
MSKAT 0.6772 0.5859 0.8096 0.3337 0.6921

MMiRKAT 0.6288 0.7016 0.7127 0.4383 0.6475
minP 0.3236 0.0189 0.0974 0.1207 0.0602

IBD KRV 0.0015 0.0002 0.0004 0.0016 0.0003
GRV 0.0041 0.0002 0.0011 0.0021 0.0009

GAMuT 0.0022 0.0007 0.0008 0.0032 0.0007
MSKAT 0.8046 0.3658 0.6958 0.4789 0.6711

MMiRKAT 0.7286 0.4402 0.6199 0.4788 0.6248
minP 0.2090 0.0079 0.0502 0.0698 0.0357
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enriched in IL12 pathway (Morgan et al., 2015). Thus, formal statistical

inference by KRV and other methods provides support for previous scienti�c

observations. Compared with MSKAT and MMiRKAT, the additional gene

expression kernel in KRV boosts its power of detecting associations. For the

other two pathways (In�ammatory and IBD), KRV, GRV, and GAMuT are

signi�cant while MSKAT, MMiRKAT and minP mostly fail to detect any

signi�cance at α = 0.05 level except for Ku-based minP. Among all tests,

KRV seems to be most powerful in that it always has the smallest p-value

under each scenario.

To summarize, the association between individual host transcript and

microbiome seems to be weak and complicated. KRV can amplify the asso-

ciation signal by collectively analyzing multiple OTUs and multiple genes,

which is more powerful than the original PC-based individual association

analysis. The usage of an additional kernel modeling structures and captur-

ing general relationship, along with the fast and robust p-value calculation

make KRV more powerful than other methods.

6 Discussion

In this paper, we consider the problem of associating overall microbiome

composition with host genomics and propose the KRV test, which can both

adjust for confounder e�ect and accommodate multiple candidate kernels

re�ecting di�erent data structures or association patterns. As shown in the

simulation studies, the proposed KRV test has correct size and can have

substantially higher power than existing similar tests in many scenarios.

Moreover, KRV testing results on the host-microbiome data not only pro-

vides formal statistical inference to support original conclusion (Morgan et

al., 2015), but also is able to facilitate microbiome community level analysis

and provide additional insights on some other related pathways.

One major contribution of this paper is that we largely adapted the ex-

isting GRV test in the microbiome association analysis framework, making it

better suited to the host genome-microbiome association problem considered

in this paper. KRV extends GRV in the following aspects. First, by applying

kernels, KRV is able to capture both more complicated data structure (i.e.,

the phylogenetic structure inherent to microbiome data) and more general

dependencies between two sets of variables. Second, we further extend the
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GRV test in a comprehensive association testing framework. KRV can ad-

just for confounder e�ect, which is important yet has never been discussed

in the GRV test. Furthermore, we propose an omnibus KRV test based on a

linear combinations of multiple candidate kernels, which is computationally

much more e�cient than the way GRV accommodates multiple distances.

The omnibus KRV test is robust against the underlying data structures and

association patterns. Due to these di�erences, we think that KRV not only

can coexist with the existing GRV test but also can provide bene�cial com-

plements to GRV. Another contribution of this paper is that the KRV test

provides an important complement to existing statistical independence tests

(Gretton et al., 2008, Székely et al., 2007) by providing an e�cient test de-

sign which neither relies on large samples nor requires permutations. The

approximated Pearson type III distribution of the KRV statistic may also

shed light on the �nite-sample distribution of other statistics such as HSIC

and distance covariance.

The proposed KRV in this paper is mainly aimed at microbiome associ-

ation analysis, however, application of KRV can be beyond this aim. The

proposed KRV test can also be useful in other domains due to the follow-

ing reasons. First, KRV is extremely �exible. X or Y considered in KRV

can be either a single variable or a high-dimensional vector. Moreover, its

good �nite-sample performance makes it an ideal tool for those studies with

relatively small sample size, such as metabolomics and proteomics (Zhan et

al., 2015). Second, the application of kernels enables KRV to capture struc-

tured data types, such as networks, shapes and images as long as appropriate

kernels are designed. We leave these to future investigations.

7 Appendices

Appendix A: KRV coe�cient and its approximated

Pearson type III distribution

A.1 Kernel trick and KRV coe�cient

RV coe�cient is only able to capture the linear dependency between two

random vectors and does not accommodate nonlinearity or other more gen-

eral dependencies. In practice, complex data such as microbiome and host
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genome data, often require general methods to detect more general depen-

dencies that are of interest (Hofmann et al., 2008). Motivated by this, we

propose the KRV coe�cient to measure more general relationship between

microbiome composition and host genome expression.

A symmetric bivariate function k(·, ·) : X × X 7→ R is a kernel if∫
x

∫
y
k(x, y)f(x)f(y)dxdy ≥ 0,

for all functions f ∈ L2(X ). We always assume that X is a compact subset

of Rp in this paper. A nice property of kernel is the so called �kernel trick",

which states that

k(x, y) =< φ(x), φ(y) >K, (5)

for some φ : X 7→ K, where K is some (possibly high or even in�nite dimen-

sional) space with inner-product < ·, · >K. K is called the feature space, and

φ is called kernel (feature) map associated with k(·, ·). If we complete K in

the norm induced by the inner-product, then K is called reproducing kernel

Hilbert space (RKHS) (Hofmann et al., 2008).

In the spirit of the kernel trick, we develop the KRV coe�cient by cal-

culating RV coe�cient in RKHSs. Let φ : X 7→ K and ψ : Y 7→ L de-

note two kernel maps associated with kernels k(·, ·) and l(·, ·) respectively.

Then, we can de�ne the RV coe�cient between the RKHS-images φ(X) and

ψ(Y ) as the KRV coe�cient between X and Y , that is, KRV (X,Y ) :=

RV (φ(X), ψ(Y )). To calculate the KRV coe�cient, we replace the orig-

inal inner product < Xi, Xj >X= X ′iXj in the input space X with the

inner-product in RKHS K, that is < φ(Xi), φ(Xj) >K= k(Xi, Xj). In other

words, matrix XX ′ in the original RV coe�cient should be replaced by ker-

nel matrix K with Kij = k(Xi, Xj) in the KRV coe�cient. Correspondingly,

matrix Y Y ′ should be replaced by kernel matrix L, where Lij = l(Yi, Yj).

Considering X and Y are centered by columns, we correspondingly use the

centralized kernel matrix K̃ = HKH and L̃ = HLH, where H = I − 11′/n

is a centering matrix, I is an identity matrix of order n, and 1 is a n × 1

vector of all ones. After plugging all the these results into expression of the

RV coe�cient in the main text, some simple calculations give

KRV (X,Y ) := RV (φ(X), ψ(Y )) =
tr(K̃L̃)√

tr(K̃K̃)
√
tr(L̃L̃)

. (6)
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A.2 Derivation of Pearson type III distribution approximation

Let Q denote the observed KRV statistic and {Q1, . . . , Qn!} denote all n!

possible permutations of the KRV statistic. To derive the Pearson type

III approximation of the KRV permutation distribution, we �rst calculate

EH0(Q), V arH0(Q) and EH0(Q3) (or skewness γH0(Q)), where the expecta-

tion is with respect to the empirical distribution of {Q1, . . . , Qn!} under the
null model. By applying the kernel trick to existing results on moments of

the RV-type statistics (Josse et al., 2008, Kazi-Aoual et al., 1995, Minas et

al., 2013), we obtain moments for the KRV statistic. In particular,

EH0(Q) =

√
βXβY
n− 1

, where βX = [tr(K̃)]2/tr(K̃2), βY = [tr(L̃)]2/tr(L̃2)

V arH0(Q) =
2(n− 1− βX)(n− 1− βY )

(n+ 1)(n− 1)2(n− 2)

(
1 +

n− 3

2n(n− 1)
τXτY

)
,

where τX =
n− 1

(n− 3)(n− 1− βX)

(
n(n+ 1)

∑
i(K̃ii)

2

tr[K̃2]
− (n− 1)(βX + 2)

)
,

and τY is de�ned correspondingly. For the third moment, we have
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n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)EH0(Q3)

= n2(n+ 1)(n2 + 15n− 4)SK
3 S

L
3 + 4(n4 − 8n3 + 19n2 − 4n− 16)UKUL

+ 24(n2 − n− 4)(UKBL + ULBK) + 6(n4 − 8n3 + 21n2 − 6n− 24)BKBL

+ 12(n4 − n3 − 8n2 + 36n− 48)RKRL + 12(n3 − 2n2 + 9n− 12)(TKSK
2 R

L + TLSL
2 R

K)

+ 3(n4 − 4n3 − 2n2 + 9n− 12)TKTLSK
2 S

L
2 + 24(n3 − 3n2 − 2n+ 8)(RKUL +RLUK)

+ 24(n3 − 2n2 − 3n+ 12)(RKBL +BKRL) + 12(n2 − n+ 4)(TKSK
2 U

L + TLSL
2 U

K)

+ 6(2n3 − 7n2 − 3n+ 12)(TKSK
2 B

L + TLSL
2 B

K)

− 2n(n− 1)(n2 − n+ 4){(2UK + 3BK)SL
3 + (2UL + 3BL)SK

3 }

− 3n(n− 1)2(n+ 4){(TKSK
2 + 4RK)SL

3 + (TLSL
2 + 4RL)SK

3 }

+ 2n(n− 1)(n− 2){[(TK)3 + 6TKTK
2 + 8TK

3 ]SL
3 + [(TL)3 + 6TLTL

2 + 8TL
3 ]SK

3 }

+ (TK)3[(n3 − 9n2 + 23n− 14)(TL)3 + 6(n− 4)TLTL
2 + 8TL

3 ]

+ 6TKTK
2 [(n− 4)(TL)3 + (n3 − 9n2 + 24n− 14)TLTL

2 + 4(n− 3)TL
3 ]

+ 8TK
3 [(TL)3 + 3(n− 3)TLTL

2 + (n3 − 9n2 + 26n− 22)TL
3 ]− 16[(TK)3UL + UK(TL)3]

− 6(2n2 − 10n+ 16)(TKTK
2 U

L + UKTLTL
2 )− 8(3n2 − 15n+ 16)(TK

3 U
L + UKTL

3 )

− (6n2 − 30n+ 24)[(TK)3BL +BK(TL)3]− 6(4n2 − 20n+ 24)(TKTK
2 B

L +BKTLTL
2 )

− 8(3n2 − 15n+ 24)(TK
3 B

L +BKTL
3 )− 24(n− 2)[(TK)3RL +RK(TL)3]

+ 6(n− 2)(2n2 − 10n+ 24)(TKTK
2 R

L +RKTLTL
2 ) + 8(n− 2)(3n2 − 15n+ 24)(TK

3 R
L +RKTL

3 )

+ (n− 2)(3n2 − 15n+ 6)[(TK)3TLSL
2 + (TL)3TKSK

2 ] + 48(n− 2)(TK
3 T

LSL
2 + TL

3 T
KSK

2 )

+ 6(n− 2)(n2 − 5n+ 6)(TKTK
2 T

LSL
2 + TKSK

2 T
LTL

2 ),

where TK = tr(K̃), TK
2 = tr(K̃2), TK

3 = tr(K̃3), SK
2 =

∑
i(K̃ii)

2, SK
3 =∑

i(K̃ii)
3, UK =

∑
i

∑
j(K̃ij)

3, BK = [diag(K̃)′]′K̃diag(K̃), RK = [diag(K̃)]′diag(K̃2)

are all scalars. Correspondingly, TL, TL
2 , T

L
3 , S

L
2 , S

L
3 , U

L, BL, RL are the val-

ues calculated from kernel matrix L̃. Using results of �rst three moments,

the skewness is calculated as

γH0(Q) =
EH0(Q3)− 3EH0(Q)V arH0(Q)− E3

H0
(Q)

V ar
3/2
H0

(Q)
.

For simplicity, we use µ, σ2 and γ to represent EH0(Q), V arH0(Q) and

γH0(Q) respectively. Then the Pearson type III density with exact the same
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three moments are given by

f(x) =
1

|s|aΓ(a)
|x− λ|a−1 exp

{
−x− λ

s

}
,

where a = 4/γ2, s = σγ/2 and λ = µ − 2σ/γ. Finally, the p-value of the

KRV test can be analytically computed based on this approximated Pearson

type III probability density.

The approach we present in this section closely follows the testing strat-

egy used in existing RV-type statistics (Josse et al., 2008, Minas et al., 2013).

However, since two kernel matrices are used (rather than two outer product

matrices in RV (Josse et al., 2008) and distances matrices in GRV (Minas

et al., 2013)), like RV and GRV, we also conduct our numerical studies to

evaluate the approximation performance of the Pearson type III probability

to the empirical null distribution of KRV permutations. Results of these

numerical studies are presented in the next section.

A.3 Evaluation of Pearson type III approximation

In this section, we evaluate the approximation of Pearson type III density

to the empirical null distribution of KRV permutations. A subset of the

host transcriptome and microbiome data was used. In particular, the ex-

pressions of 21 genes in the IL12 pathway were taken as host genomic data,

where both the Gaussian kernel and the linear kernel were calculated. All

7000 OTU counts were used to calculate the Bray-Curtis kernel. Then, KRV

statistic were calculated separately using samples from each tissue location

(n = 196 samples from PPI and n = 59 samples from pouch). Four dif-

ferent KRV statistic were evaluated: Gaussian and Bray-Curtis kernel with

196 PPI samples, Gaussian and Bray-Curtis kernel with 59 pouch samples,

linear and Bray-Curtis kernel with 196 PPI samples, linear and Bray-Curtis

kernel with 59 pouch samples. For each KRV statistic, we �rst calculated

the approximated Pearson type III density based on description in the pre-

vious section. Then, we permuted the Bray-Curtis kernel one million times

and calculated the corresponding KRV statistic using the permuted kernel.

Finally, the Pearson type III density was compared to the sampling distri-

bution of KRV permutations. The results are reported in Figure S1, where

one can see that the Pearson type III density provides a good approxima-

tion to the sampling distribution of KRV permutation under each of the four
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scenarios.
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Figure S1: Sampling distribution of KRV statistic based on one million per-
mutations (histogram) and the approximated Pearson type III distribution
(curve).

Appendix B: Additional Simulations Studies

B.1 Comparison of di�erent omnibus KRV tests

In this section, we compared di�erent omnibus KRV tests as mentioned in

the main text. Without loss of generality, we �x kernel gene expression

kernel l and discuss the scenario of accommodating multiple candidate OTU

kernels k1, . . . km, such as di�erent UniFrac-type kernels and the Bray-Curtis

kernel used in the main text. We denote the corresponding kernel matrices

as L, K1, . . . ,Km respectively.

Four di�erent omnibus kernels have been proposed in the maintext to
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accommodate multiple candidate kernels:

Kom1 =

m∑
i=1

Ki

m
; Kom2 =

m∑
i=1

Ki

tr(Ki)
; Kom3 =

m∑
i=1

ω∗iKi;

Kom4 = Ki with the minimum p-value.

Among those omnibus kernels, Kom1 and Kom2 are trained unsupervised

and a KRV test between the omnibus kernel and L can be directly used

to calculate its p-value. On the other hand, Kom3 and Kom4 are trained

supervised. Thus resampling procedures are needed to establish the �nal

signi�cance, which are introduced in the following.

Recall that the optimal weights ω∗ = (ω∗1, . . . , ω
∗
m)′ in Kom3 were trained

by maximizing the following target function:

KRV (Kom, L) =

∑m
i=1 tr(ωiKiL)√∑m

i=1

∑m
j=1 tr(ωiKiωjKj)

√
tr(L2)

, (7)

subjected to ωi ≥ 0 and
∑m

i=1 ωi = 1 (Cortes et al., 2012). Since the

weights ω∗i depend on L, it is no longer valid to use a KRV test between∑m
i=1 ω

∗
iKi and L to calculate the p-value. Alternatively, denote the p-value

of KRV (
∑m

i=1 ω
∗
iKi, L) as the observed p-value po and let Lb, b = 1, . . . , B

be a permutation of the kernel matrix L. For each permutation, one recalcu-

lates the weights ω∗ib using L
b and the p-value pb of KRV (

∑m
i=1 ω

∗
ibKi, L

b).

The �nal p-value is calculated as
∑B

b=1 I(po ≥ pb)/B.
ForKom4, let pi, i = 1, . . . ,m denote the p-value of the KRV test between

Ki and L, and po = mini pi, which is no longer a genuine p-value. Permu-

tations are used to obtain a �nal p-value. In particular, let Lb, b = 1, . . . B

be a permuted kernel matrix and pbi , i = 1, . . . ,m denote the KRV p-value

between Ki and L
b. Let the �nal p-value can be obtained by comparing po

to pb = mini p
b
i , b = 1, . . . , B and calculated as

∑B
b=1 I(po ≥ pb)/B.

Comprehensive simulation studies have been conducted to evaluate the

performance of Kom1, Kom2, Kom3 and Kom4-based KRV tests. The setup

of the simulation was the same as the one used in Section 4.2 of the main

text. B = 1000 permutations were used to establish signi�cance of Kom3

and Kom4. For ease of presenting, we only report the KRV test results

with unrelated OTU and covariates in Table S1. Simulation results with

other tests and under related OTU and covariates scenario are qualitatively
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similar and hence not reported.

Table S1: Comparison of di�erent omnibus OTU-kernels. The �rst two rows
(q∗ = 0) are type I error, the next four rows (q∗ = 6, 15) are power, and the
last row is average computing time (in seconds) over 10,000 runs.

ρ q∗ Kw Ku K0.5 KBC Kom1 Kom2 Kom3 Kom4

0.2 0 0.049 0.051 0.047 0.051 0.052 0.051 0.051 0.049

0.8 0 0.050 0.049 0.046 0.052 0.052 0.051 0.050 0.052

0.2 6 0.790 0.079 0.695 0.342 0.478 0.668 0.384 0.677
15 0.984 0.081 0.957 0.625 0.801 0.939 0.734 0.958

0.8 6 0.859 0.096 0.789 0.409 0.573 0.753 0.473 0.742
15 0.973 0.089 0.942 0.567 0.760 0.929 0.693 0.939

T 0.079 0.079 0.078 0.078 0.083 0.087 551.2 310.1

Based on Table S1, all tests have correct type I errors. For omnibus

kernels, it seems that Kom2 and Kom4 are the most powerful tests in this

simulation, followed by Kom1 and then Kom3. Both Kom2 and Kom4 are

slightly less powerful than the best individual KRV test (Kw) but much more

powerful than the worst individual KRV test (Ku) under each scenario. Kom1

is less powerful than Kom2 and Kom4, which is reasonable in this simulation

because the data simulating scheme favors Kw and K0.5 (as analyzed in the

main text). Thus, Kom1 su�ers from power loss by treating four candidates

equally. Finally, Kom3 is the least powerful test, which is not surprising

under the current conditional-type test design: the underlying Pearson type

III distribution depends on the kernels being used and the maximization of

test statistic as in Kom3 does not guarantee an optimal power due to the

uncertainty in null distribution.

On the other hand, the computing time of Kom1 and Kom2 are basically

the same as that of each individual kernel test. Kom3 needs to solve a QP for

each permutation and thus is much more computational expensive. Finally,

the computational cost of a Kom4-based test is aboutmB (m = 4, B = 1000)

times that of a individual kernel-based test. Considering both the power

performance and computational e�ciency, kernelKom2 is overall the best and

is used as the default omnibus KRV test in the paper. For the GRV test, since

the trace of a distance matrix is always zero, we simply use the computational
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e�cient simple averaging Kom1 test as a fast way to incorporate multiple

distances.

B.2 Simulation results with dependent covariates

In this section, we present the results of simulation data with dependent

covariates as mentioned in Section 4.2 of the main text. In particular, we

simulated Xi2 as N(0, 1) + 0.4 · scale(
∑

j∈A Zij) to introduce dependence

between OTU and covariates. The type I errors and powers under this

scenario are reported in Table S2 and Table S3 respectively.

Table S2: Empirical type I error of KRV, GRV, GAMuT, MSKAT,
MMiRKAT and minP at nominal level α = 0.05 with dependent OTUs
and covariates.

ρ Test Kw Ku K0.5 KBC Kom

KRV 0.0425 0.0521 0.0433 0.0457 0.0420
GRV 0.0441 0.0479 0.0452 0.0471 0.0464

0.2 GAMuT 0.0237 0.0166 0.0151 0.0189 0.0136
MSKAT 0.0279 0.0227 0.0214 0.0248 0.0230

MMiRKAT 0.0317 0.0376 0.0346 0.0343 0.0332
minP 0.0483 0.0456 0.0464 0.0461 0.0469

KRV 0.0437 0.0502 0.0451 0.0473 0.0456
GRV 0.0456 0.0494 0.0473 0.0500 0.0483

0.8 GAMuT 0.0282 0.0201 0.0154 0.0222 0.0133
MSKAT 0.0327 0.0255 0.0219 0.0243 0.0223

MMiRKAT 0.0320 0.0370 0.0330 0.0354 0.0319
minP 0.0166 0.0208 0.0202 0.0198 0.0195
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Table S3: Empirical power of KRV, GRV, GAMuT, MSKAT, MMiRKAT
and minP at nominal level α = 0.05 with dependent OTUs and covariates.

ρ q∗ Test Kw Ku K0.5 KBC Kom

KRV 0.582 0.072 0.501 0.251 0.474
GRV 0.590 0.075 0.529 0.289 0.446

6 GAMuT 0.488 0.028 0.313 0.157 0.275
MSKAT 0.190 0.028 0.251 0.087 0.200

MMiRKAT 0.367 0.043 0.294 0.152 0.276
minP 0.588 0.062 0.684 0.240 0.605

0.2
KRV 0.898 0.099 0.831 0.457 0.788
GRV 0.987 0.125 0.975 0.728 0.932

15 GAMuT 0.839 0.039 0.670 0.301 0.621
MSKAT 0.236 0.044 0.377 0.117 0.258

MMiRKAT 0.489 0.060 0.426 0.184 0.388
minP 0.816 0.088 0.902 0.414 0.835

KRV 0.703 0.071 0.609 0.252 0.563
GRV 0.118 0.049 0.115 0.067 0.092

6 GAMuT 0.611 0.019 0.416 0.161 0.356
MSKAT 0.336 0.030 0.510 0.122 0.359

MMiRKAT 0.646 0.045 0.533 0.223 0.480
minP 0.379 0.020 0.457 0.117 0.371

0.8
KRV 0.883 0.081 0.817 0.415 0.777
GRV 0.410 0.066 0.386 0.185 0.297

15 GAMuT 0.831 0.028 0.670 0.298 0.590
MSKAT 0.386 0.034 0.563 0.158 0.417

MMiRKAT 0.711 0.058 0.604 0.266 0.559
minP 0.477 0.035 0.576 0.173 0.480
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