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Abstract

Nonparametric regression models do not require the specification of the func-

tional form between the outcome and the covariates. Despite their popularity,

the amount of diagnostic statistics, in comparison to their parametric counter-

parts, is small. We propose a goodness-of-fit test for nonparametric regression

models with linear smoother form. In particular, we apply this testing frame-

work to smoothing spline ANOVA models. The test can consider two sources

of lack-of-fit: whether covariates that are not currently in the model need to

be included, and whether the current model fits the data well. The proposed

method derives estimated residuals from the model. Then, statistical depen-

dence is assessed between the estimated residuals and the covariates using the

HSIC. If dependence exists, the model does not capture all the variability in the

outcome associated with the covariates, otherwise the model fits the data well.

The bootstrap is used to obtain p-values. Application of the method is demon-

strated with a neonatal mental development data analysis. We demonstrate

correct type I error as well as power performance through simulations.
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Bootstrap; Test of independence.

1. Introduction

Nonparametric regression models can provide a better fit when parametric

assumptions are too restrictive (e.g., linearity of the mean). A popular non-

parametric model from the machine learning literature is kernel ridge regression

(KR) ([1, 2]). In KR regression, the input covariates are mapped to a high5

(possibly infinite) dimensional space through a kernel function, but which is

only represent through a kernel matrix of the sample points. Another popular

method is k-nearest neighbor (KNN) regression ([3]), in which for each observa-

tion, an average of the outcome is taken across all k-closest values with respect

to the covariates. The fitted values KNN regression look jagged and are hard10

to interpret. Smoothing spline ANOVA models (SS-ANOVA) are also a popu-

lar nonparametric regression methodology this time arising from the statistical

literature ([4, 5, 6, 7, 8]). SS-ANOVA models estimate the mean of an out-

come as a smooth function with an ANOVA decomposition which partitions

the variation of the outcome attributed to the covariates into main effects, two-15

way interactions, and all other higher-level interactions, but as a summation of

functions, not constants, as with classical ANOVA. The KR, KNN, SS-ANOVA

regressions as well as kernel smooth regression, local polynomial regression and

others are linear smoothers, meaning that the fitted values are a linear function

of the outcome.20

Several goodness-of-fit tests exist for nonparametric regression models. The

literature contains results on testing a parametric form under the null hypothesis

against a nonparametric (semiparametric) one under the alternative hypothesis.

Examples include tests of deviation from the parametric linear regression [9, 10].

Another method tests the goodness-of-fit of a linear model, which can potentially25

detect a nonparametric form under the alternative [11]. A test that allows

a nonparametric form under the null exists [12], but it is only defined for a

model with one covariate. A test that allows for multiple covariates in the
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Nadaraya–Watson (NW) regression model [13] exists in the literature. Although

similar to our method, the usage of the NW regression model is different from our30

current research for two fundamental reasons. First, the NW regression jointly

models the mean of the outcome conditional on the covariates. Therefore, it is

difficult to build examples where the conditional mean suffers from lack-of-fit

and the test is essentially for heteroscedasticity of the residuals. The simulation

scenarios are examples where the lack-of-fit comes only from the variance of35

the residuals being dependent on the covariates, and lack-of-fit coming from

modelling the mean is never explored. Second, nonparametric methods like

GAMs and SS-ANOVA models are not considered. Examples where the lack-

of-fit comes from modelling the mean incorrectly could be explored by using

these models. Given the popularity of these regression models, we believe it is40

important to develop a goodness-of-fit methodology for them.

Another article [14] generalizes a Tukey-type test of additivity proposed

in[15]. This test can only detect two-way interactions that are a product of the

main effects, which limits the type of departures of goodness-of-fit it can detect.

Also, using generalized additive models (GAMs) a test for specific interaction45

terms exists [16]. That means that under the null the GAM has some main

effects and interactions, and under the alternative the same model holds but

with the addition of one more interaction. This is not a goodness-of-fit test

since the user of this test has to specify the model under the alternative. A

methodology exists to test whether an extra set of variables should be included50

in a nonparametric regression model [17].

Our literature review shows that a general test for nonparametric regression

that detects lack-of-fit in modelling the mean does not exist. This paper resolves

these issues by proposing a goodness-of-fit test for nonparametric regressions

that are linear smoothers as defined in (2) (i.e., regression models that make55

use of a matrix to transform the outcome vector into a vector of fitted values).

Our method is an innovation with respect to previous methods in that:

• Our goodness-of-fit methodology tests a nonparametric model under the
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null against a general alternative, which can include parametric as well as

nonparametric forms. Other methods require the model under the null to60

be parametric [18, 9, 11, 10], the regression to be univariate [12], require

the form to be multiplicative, or have specific interactions[14], none of

which are limitations in the current research.

• Other methods exist for testing the independence between residuals and

covariates, as in the current research, but only in the context where the65

lack-of-fit comes from departures from the homoscedasticity assumption

[19, 13]. The case where the lack-of-fit comes from incorrectly modelling

the mean has not yet been analyzed. This is of importance given the fact

that models like GAMs and SS-ANOVA have become highly popular as

nonparametric models and they can suffer from lack-of-fit of the mean.70

• Our method can incorporate testing of external variables, as [17]. Thus, we

present a unified framework to test both for goodness-of-fit with respect

to variables used to build the model or a set of external variables, an

unification that was not attempted in the literature cited above.

• Our methodology provides a degree of freedom adjustment for the boot-75

strap null distribution, which was missing from the reviewed literature

[11, 13].

We will use SS-ANOVA models throughout in examples, theory and simula-

tions, but we emphasize that this methodology can be applied to any nonpara-

metric linear smoother. The assessment of goodness-of-fit will be accomplished80

by fitting the model of interest and obtaining estimated residuals. The resid-

uals contain the leftover information that remains unexplained by the model.

Statistical dependence is then assessed between the estimated residuals and

the covariates in the model, with the Hilbert-Schmidt independence criterion

(HSIC). If dependence exists, the model does not capture all the variability in85

the outcome associated with the covariates. If no dependence exists, the model

fits the data well. This process can also be used with covariates that are not
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in the model, in order to assess whether their absence contributes to lack-of-fit.

A test statistic is created from the HSIC between residuals and covariates to

test for lack-of-fit. The bootstrap is used to derive p-values. The degrees of90

freedom of the model are calculated as the trace of the hat matrix and are used

to adjusted the variance of the bootstrap distribution. The current article is an

extension of the goodness-of-fit test for linear models proposed by Sen and Sen

[11]. The major contributions we make to the literature include: identifying

the need for assessing goodness-of-fit in a nonparametric regression, develop-95

ing a test statistic, creating a variance adjustment to the bootstrap to improve

the finite sample performance of the method, providing theoretical justification

the use of the HSIC, and demonstrating correct type I error as well as power

performance through numerical simulations.

This paper is organized as follows. In section 2 the method for goodness-of-fit100

for linear smoothers is introduced. Section 2 includes an introduction to linear

smoothers, a formal definition of SS-ANOVA, a description of the evaluation

of goodness-of-fit using the HSIC, the bootstrap for deriving p-values for the

test statistic, and illustrative cases of lack-of-fit. In section 3, simulation results

are presented, in section 4 application of the method is demonstrated with105

a neonatal mental development data analysis, and section 5 is a concluding

discussion of the proposed method.

2. Goodness-Of-Fit Test For Nonparametric Regressions

This section describes linear smoothers, SS-ANOVA models, the HSIC, our

proposed goodness-of-fit test based on residuals, and the bootstrap approxima-110

tion to the null distribution. Then, theoretical results and illustrative cases are

discussed.

2.1. Linear Smoothers

The current article will develop a goodness-of-fit test for nonparametric re-

gression models which are linear smoothers. However, on the next section and115
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the rest of the paper the focus will be in one such type of linear smoothers:

SS-ANOVA models. The reasons for this is that the ANOVA decomposition

is very useful in creating examples where interactions and main effects are the

source of lack-of-fit.

We assume the observed data consists of (Y,X), where Y is a dependent

variable, X ∈ [0, 1]p is a vector of covariates, and

Y = f0(X) + η, (1)

for an unknown function f0 and random residual η, which is independent of X,

with E[η] = 0. An i.i.d. sample (Xn,Yn) = {(x1, y1),...,(xn, yn)} is drawn from

(1). In the current context, a linear smoother is a nonparametric regression that

estimates f0 in (1) such that

f̂ = AYn (2)

that means that the vector of fitted values Ŷn can be written as a linear function

of the outcome vector Yn. This is important because for a nonparametric

regression that estimates f̂ with the form of (2) the degrees of freedom of the

model can be defined as

df(Ŷn) = Tr(A), (3)

where Tr(A) is the trace of the hat matrix A. In the context of the current120

research, the degrees of freedom defined in (3) will be used to rescale the esti-

mated residuals such that they have the correct variance. This is an essential

step in generating the null distribution through the bootstrap for our proposed

goodness-of-fit test. When the degrees of freedom are not accounted for, the

variance of the null distribution is severely underestimated, something that was125

not address in the work by Sen and Sen [11].

2.2. SS-ANOVA

SS-ANOVA models are a special case of linear smoothers. In this section we

describe how they work. A sample of size n denoted by (x1, y1),...,(xn, yn) is

drawn from (1). We assumed throughout that the response has been centered.
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Estimation of f0 can be done through minimization of the following penalized

least squares with respect to f :

1

n

n∑
i=1

(yi − f(xi))
2 + λnJ(f). (4)

In the case where p = 1, then f(x) is just a univariate function and J(f) =∫ 1

0
f (k)(x)2dx, and f (k) is the k-th derivative of f . In the case where p > 1,

then f(X) =
∑p
j=1 fj(X(j)), where X(j) is the j-th element of X, and J(f) =∑p

j=1 θ
−1
j

∫ 1

0
f

(k)
j (x)2dx. This corresponds to a semiparamtric additive model.

In the general case

f(X) =
∑
j

fj(X(j)) +
∑
j<k

fj,k(X(j), X(k)) + · · · (5)

and J(f) =
∑
α

θ−1
α ||Pαf ||2Hα

+
∑
αβ

θ−1
αβ ||Pαβf ||

2
Hαβ

+ · · · ,

where λn and θ are tuning parameters which are selected through Generalized

Cross Validation (GCV). We define the averaging operator as

Eαf =

∫ 1

0

f(t1, . . . , tp)dtα. (6)

Then, the main effects are defined as fα = (I − Eα)
∏
β 6=α Eβf , two-way inter-

actions as fα,β = (I − Eα)(I − Eβ)
∏
γ 6=α,β Eγf , and so forth. Because of this

construction the terms of the decomposition satisfy side conditions of orthog-130

onality and Eαfα = 0. Also, Pαf is the projection of f into the main effect

space indexed by α after subtracting the first k-th polynomial terms depend-

ing on α, Pα,βf is the projection into the two-way interaction space indexed

by α and β after subtracting the first k-th polynomial terms and their mul-

tiplicative interactions depending on α and β, each space with corresponding135

norms ||g||Hα
=
∫ 1

0
(g(k)(tα))2dtα and ||g||Hαβ

=
∫ 1

0
(g(k)(tα,β))2dtα,β , respec-

tively. Higher order terms are defined similarly. For more details we refer the

reader to [20].

2.3. Solution to Penalized Least Squares

For simplicity, this section assumes that the functional form of f is ad-

ditive. Discussion of more complicated forms, i.e., which includes two-way
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and other higher level interactions, can be found in [6]. The form in (4)

will be minimized assuming that the data generating mechanism is (1) such

that f(x) =
∑
j fj(x(j)) or that f ∈ H = ⊕pβ=1Hβ . In this case, J(f) =

p∑
j=1

θ−1
j

∫ 1

0
f

(k)
j (x(j))2dxj .

RKHS ⊕pj=1Hj

To each fj ∈ Hj corresponds a reproducing kernel. This happens because fj

can be decomposed by Taylor expansion at 0 as

fj(x(j)) =

k−1∑
v=0

xv(j)

v!
f

(v)
j (0) +

∫ 1

0

(x(j)− u)k−1
+

(k − 1)!
f

(k)
j (u)du.

Then Hj can be decomposed into a tensor sum Hj = Hj,0 ⊕Hj,1, where Hj,1

is an RKHS with the following reproducing kernel

Rj,1(x(j), y(j)) =

∫ 1

0

(x(j)− u)k−1
+

(k − 1)!

(y(j)− u)k−1
+

(k − 1)!
du.

The space Hj,0 has a polynomial basis of degree k − 1 such that

φkj (x) = {1, x(j), x2(j), . . . , xk−1(j)}. Let φk be the polynomial basis of degree

k of the tensor sum ⊕pj=1Hj,0, such that φk(x) = {φk1(x), φk2(x), ..., φkp(x)} =

{1, x(1), x2(1), . . . , xk−1(1), . . . , x(p), x2(p), . . . , xk−1(p)}. Moreover, the repro-

ducing kernel of ⊕pj=1Hj,1 will be RJ(x, y) =
∑
j=1 θjRj,1(x(j), y(j)).

Solution as a Linear Smoother

With an i.i.d. sample (Xn,Yn) = {(x1, y1),...,(xn, yn)} and form of f(x) =∑p
j=1 fj(x), by the representer theorem ([8], [21]) the minimizer of (4) has the

form

f(x) =

p∑
j=1

djφ
k
j (x) +

n∑
i=1

ciRJ(xi, x),

where dj is a vector of coefficients of length k. Then the estimation reduces to

minimizing

(Yn − Sd−Qc)T (Yn − Sd−Qc) + nλnc
TQc.

with respect to the vectors c and d of length n and m, respectively, where m

is the length of the basis φk(x). Here, S is n × m matrix, with the ith row

8



corresponding to φk(xi), Q is n× n with the (i, j)th entry RJ(xi, xj). Then by

taking derivatives and setting equal to 0, we get that the solution of (4) with

additive function is of the form

Ŷn = A(λn,θ)Yn,

such that

A(λn,θ) = I− nλn(M−1 −M−1S(STM−1S)−1STM−1), (7)

where M = Q + nλnI. The fitted values Ŷ = A(λn,θ)Yn are in the form140

of linear smoothers as described in (2) and the degrees of freedom of the SS-

ANOVA model are Tr(A(λn,θ)).

The parameters λn and θ are chosen by generalized cross-validation (GCV).

The GCV statistic, as defined by [4], corresponds to

GCV(λn,θ) =
n−1||(I−A(λn,θ))y||2

(n−1Tr(I−A(λn,θ)))2
,

where Ŷn = A(λn,θ)Yn. λn and θ are chosen to minimize GCV(λn,θ). In

the current research, the model used throughout will be the Cubic SS-ANOVA.

This corresponds to the case where k = 2, or when the integral of the second145

derivative is being penalized, namely
∫ 1

0
f ′′j (xj)

2dxj .

After fitting a SS-ANOVA model (or any other nonparametric linear smoother),

it is important to do some model diagnostics. Model diagnostics are statistics

that check how well a model fits to the data. In the current research, the inde-

pendence of the estimated residuals with respect to a set of covariates will be150

assessed using an independence statistic. The independence statistic that we

will use is HSIC. A formal definition will be presented in the next subsection.

2.4. HSIC

Recent developments in tests of statistical independence are Brownian Dis-

tance Covariance ([22, 23, 24]) and HSIC ([25, 26]). Distance Covariance (DC)155

is defined as the weighted norm between the product of two random vectors’

individual characteristic function and the joint characteristic function of these
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two vectors. If this normed difference is 0 then these two vectors are statisti-

cally independent. The authors developed a sample version of DC that depends

only on the Euclidean distances between the points. The HSIC is the Cross-160

Covariance Operator between two reproducing kernel Hilbert spaces (RKHSs).

When this operator equals 0 for two vectors of random variables that are defined

on the domain of two different RKHSs with universal kernels, then these two

vectors are statistically independent. The sample version HSIC is exactly the

same as the one for DC except that Euclidean distances are replaced by kernel165

distances.

The HSIC allows us to evaluate the statistical dependence between two ran-

dom vectors of arbitrary dimensions. The goodness-of-fit statistic is based on

the HSIC, because it can evaluate the statistical dependence between the esti-

mated residuals and a set of covariates.170

Let X and Y be vectors of random variables on the domain X and Y ,

respectively, with X ⊂ Rp and Y ⊂ Rq, and with joint probability measure

Pxy. Let F and G be RKHSs on X and Y with reproducing universal ker-

nel functions k and l. Gaussian kernels fulfill this requirement ([27]). The

HSIC(Pxy, X, Y ) between X and Y is defined as

Ex,x′,y,y′ [k(X,Y ′)l(Y, Y ′)]] + Ex,x′ [k(X,X ′)]Ey,y′ [l(Y, Y
′)]

− 2Ex,y[Ex′ [k(X,X ′)]Ey′ [l(Y, Y
′)]],

where the subscript under the operator E denotes which random variables we

are taking the expectation with respect to. We will rely on the following theorem

([25]):

Theorem 1. HSIC(Pxy, X, Y ) = 0 if and only if X and Y are statistically

independent, i.e., Px,y = Px × Py.175

With an i.i.d. sample (Xn,Yn) = {(x1, y1),...,(xn, yn)} from Pxy, HSIC(Pxy, X, Y )

can be estimated consistently with

Tn(Xn,Yn) := n−2Tr(KHLH),
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where H,K,L ∈ Rn×n, Hi,j := δi,j − n−1, Ki,j := k(xi, xj), Li,j := l(yi, yj),

and δi,j is the kronecker delta. The statistic can be rewritten as

1

n2

n∑
i,j

KijLij +
1

n4

n∑
i,j,q,r

KijLqr − 2
1

n3

n∑
i,j,q

KijLiq.

The kernels k(xi, xj) = exp(−||xi − xj ||2/σ2) and l(yi, yj) = exp(−||yi −

yj ||2/σ2) are called Gaussian and satisfy the universal kernel conditions and

will be the ones used throughout this paper with σ2 held fix at 1 and || · || being

the Euclidean norm. In the next subsection it will be shown how the ability of180

HSIC to discover arbitrary statistical dependencies can be used in conjunction

with the estimated residuals from the SS-ANOVA model and a set of covariates

to form a goodness-of-fit statistic.

2.5. Goodness-Of-Fit Test Based on Residuals

This subsection introduces the proposed goodness-of-fit test. After fitting a185

nonparametric regression with linear smoother form as in (2), the goodness-of-

fit of the model can be evaluated by looking at the relationship between a set

of covariates and the estimated residuals. If dependence exists, the model does

not capture all the variability in the outcome associated with the covariates and

further terms are needed. If no dependence is detected, all information in the190

covariates that is present in the response has been explained through the model.

The test can consider two sources of lack-of-fit: whether the current model fits

the data well, (i.e, whether the model captures all the variation in the outcome

associated to the covariates,) and whether covariates that are not currently in

the model need to be included.195

The method will be developed in the context of SS-ANOVA models, mean-

ing that theory, examples and simulations will be developed using SS-ANOVA

models. This is so because SS-ANOVA models are particularly useful in illus-

trating lack-of-fit in a nonparametric setting (e.g., by non inclusion of ANOVA

terms that should be included in the model). However, the test we developed200

can be applied to any nonparametric regression model with solution of the form

(2).
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We assume that the true data generating mechanism is as in (1). We specify

a SS-ANOVA model between Y and X. Thus, our model is

Y = f(X) + ε, (8)

and f(X) has a ANOVA decomposition as in (5), but (most likely in applica-

tions) does not included all possible interactions. For example, a popular choice

of model would be the main effects only model

f(X) =
∑
j

fj(X(j)), (9)

or the model with all main effects and all two-way interactions

f(X) =
∑
j

fj(X(j)) +
∑
j<k

fj,k(X(j), X(k)). (10)

We denote η by the true error and ε by the model error.

2.5.1. Lack-of-fit

To assess the goodness-of-fit of the SS-ANOVA model in (8) we define

ε := Y − f(X),

and test the following hypotheses:

H0 : HSIC(Px,ε, X, ε) = 0

HA : HSIC(Px,ε, X, ε) > 0.
(11)

If the null holds, the model error equals the true error (ε = η), ε is independent205

of X and HSIC(Px,ε, X, ε) = 0. If the alternative holds, then ε = ε(X) 6= η,

ε is dependent on X and HSIC(Px,ε, X, ε) > 0. Dependence between ε and

X would indicate lack-of-fit because the nonparametric model does not capture

all the variation in the model with respect to X. It is important to emphasize

that the alternative where ε is dependent on X can be capture a large class of210

lack-of-fit scenarios.

For example, if the model in (9) is taken in consideration, the alternative

can hold because the assumption of main effects only model is incorrect, but for
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example because the true model is (10), and in reality we have

ε =
∑
j<k

fj,k(X(j), X(k)) + · · ·+ η,

which still depends on X and η is the true error term. Naturally, not all the

terms of the decomposition have to exist under the alternative.

Let (Yn,Xn) = {(y1, x1), ..., (yn, xn)} be a random sample from the data

generating mechanism described in (1), and we want to test the null and alter-

native hypotheses in (11). To accomplish this, we define

ε̂i := yi − f̂(xi),

for i = 1, . . . , n, where f̂ is the solution to (4), with f(X) having a ANOVA

structure as in (5), and let ε̂n = {ε̂1, . . . , ε̂n}. Then, the statistic

nTn(Xn, ε̂n), (12)

is used to test the hypotheses. This test procedure is intuitive, since Tn(Xn, ε̂n)

is an estimate of HSIC(Px,ε, X, ε), and later we show it is consistent both under215

the null and the alternative hypotheses.

2.5.2. Testing for Significance

We can also test whether covariates that are currently not in the model

should be included. We assume a model for the data as in (8), meaning that

f(X) has a ANOVA decomposition as in (5). There exists another set of co-

variates, which is denoted by Z. To assess whether Z should be included in the

model, in other words, if there is a lack-of-fit with respect to Z, we define

ε := Y − f(X),

and test the following hypotheses:

H0 : HSIC(Pz,ε, Z, ε) = 0

HA : HSIC(Pz,ε, Z, ε) > 0.
(13)

If the the null holds, the model error equals the true error (ε = η), ε is inde-

pendent of Z, and HSIC(Pz,ε, Z, ε) = 0. This means that Y , after taking into
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account the effect of X, is independent of Z. If the alternative holds, then Y de-220

pends on Z even after taking into account the effect of X, HSIC(Pz,ε, Z, ε) > 0,

and there is a lack-of-fit with respect to Z (i.e., Z should be included in the

model).

With an i.d.d. sample (Yn,Xn,Zn) = {(y1, x1, z1), ..., (yn, xn, zn)} from the

data generating mechanism described in (1), we can test the null and alternative

hypotheses in (11). To accomplish this, we define

ε̂i := yi − f̂(xi),

for i = 1, . . . , n, where f̂ is the solution to (4) and let ε̂n = {ε̂1, . . . , ε̂n}. Then,

the statistic

nTn(Zn, ε̂n). (14)

is used to test the hypotheses. This makes sense since Tn(Zn, ε̂n) is an estimate

of HSIC(Pz,ε, Z, ε), and later we show it is consistent both under the null and225

the alternative hypothesis.

The test statistic in (12) and (14) is the proposed statistic to test the

goodness-of-fit of the SS-ANOVA. The test statistic also works for any linear

smoother of form (2), but by calculating the residuals in (12) or in (14) with

their respective models (e.g., using the residuals of KNN, KR or any other linear230

smoother). The model fit can be easily assessed by first estimating the residuals

and then calculating the test statistic in (12) or (14) to check for a lack-of-fit,

with respect to the covariates used to create the model (denoted above by Xn)

or a set of external covariates not previously included in the model (denoted

previously as Zn), respectively.235

To perform the test, we need a valid distribution of (12) and (14) under the

null hypothesis. An approximation to the null distribution is used. Details are

shown in the next section.

14



2.6. Approximation to the Null Distribution of the Test Statistic with the Boot-

strap240

The difficulty in using (12) as a test statistic is that it is hard to derive

analytically a distribution under the null hypothesis that will provide the critical

values for a given significance level. One obvious first approach would be to

randomly permute the vector ε̂n to obtain ε̂π, calculate nTn(Xn, ε̂π) and repeat

this process many times to obtain a distribution under the null. This approach245

happens to be flawed. When the vector ε̂n is permuted with respect to Xn,

complete independence between the two is created. Under the null, ε and X

are independent. However, even under the null, ε̂n and Xn are not independent

because of the simple fact that ε̂n is a statistic based on Xn. Under the null, ε̂n

is just a good approximation of ε. Therefore, a different procedure is needed.250

A model based bootstrap, which needs to address the following issues: the

bootstrap generating process must account for the fact that under the null X

and ε are independent, and the bootstrap samples X∗n and ε∗n must be correlated

in a similar way that Xn and ε̂n are correlated. A bootstrap that fulfills these

requirements, and which will be used to derive a p-value for the test statistic,255

is described below.
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Bootstrap Algorithm

Step 1

Calculate the estimated residuals ε̂i = yi − f̂(xi) and create an empirical dis-

tribution Pn,eo of the residuals with mass 1/n at each eoi = σ̂
σ̂′ (ε̂i − ε̄), where

ε̄ =
∑n
i=1

ε̂i
n , σ̂′2 =

∑n
i=1(ε̂i−ε̄)2

n and σ̂2 = ||Y−AY||2
Tr(I−A) . Below it will be explained

why the term σ̂
σ̂′ is present in the empirical distribution Pn,eo .

Step 2

Draw a bootstrap sample η∗ from the empirical distribution Pn,eo and draw a

bootstrap sample X∗n from the empirical distribution Pn,X of the Xn’s indepen-

dently of η∗. Then set y∗i as

y∗i = f̂(x∗i ) + η∗i for i = 1, . . . , n.

Step 3

We estimate f̂∗ from Y∗n and from X∗n, and create new bootstrap residuals as

ε∗i = y∗i − f̂∗(x∗i ) for i = 1, . . . , n.

Step 4

Calculate the test statistic as nTn(X∗n, ε
∗
n).

Step 5

Repeat Step 1 through 4 B times, so as to create B bootstrapped test statistics

nTn(X∗n, ε
∗)b, for b = 1, . . . , B. This distribution approximates the distribution

of nTn(Xn, ε̂n) under the null. The p-value is then calculated as

p-value =
1

B

B∑
i=1

I(nTn(Xn, ε̂n) ≤ nTn(X∗n, ε
∗
n)b).

Remark 1: If hypotheses in (13) need to be tested using test statistic in (14) the

same bootstrap can be used with small changes. Details are shown in section260

A.1 of the appendix.
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Remark 2: In Step 1, the matrix A corresponds to the hat matrix for linear

smoothers as defined in (2). Thus, bootstrap procedure described above would

work for any nonparametric linear smoother model. In the current context of

SS-ANOVA models, it corresponds exactly to A(λn,θ) as defined in (7).265

The variance of a random draw from the empirical distribution of the es-

timated residuals ε̂i, i = 1, ..., n, in Step 1, is σ̂′2. Under the null-hypothesis

model, σ̂′2
p→ σ2, the true error variance. However, σ̂′2 underestimates σ2 when-

ever the degrees of freedom of the model Tr(A) increase relative to n, in finite

samples, as shown in figure 1. Hence, if we draw from the distribution of the270

estimated residuals, our sample will have lower variance than what we want.

One simple solution is to use an estimator of σ2 that takes into account p. The

estimator we use is σ̂2 whose denominator takes into account the degrees of

freedom of the model. Whenever we rescale the empirical distribution of the

estimated residuals by σ̂
σ̂′ then a random draw from this empirical distribution275

will have variance equal to σ̂2, which does not underestimate σ2. Asymptoti-

cally, there is no difference in rescaling or not because σ̂
σ̂′

p→ 1, but simulations

show that it makes an important difference for small and moderate sample sizes

in estimating the null-hypothesis appropriately even when Tr(A) is only mod-

erately big. This is an improvement over the bootstrap procedure in Sen and280

Sen [11], which was used in the goodness-of-fit setting too, but for linear models.

This finite sample variance adjustment is a key contribution of our approach.

2.7. Large Sample Approximation of the Test Statistic and the Bootstrap Pro-

cedure

The rationale of using Tn(Xn, ε̂n) is that it approximates HSIC(X, ε). The285

following theorem helps to justify this choice. Assume the true data generating

mechanism is as in (1). A function f is assumed for the relationship between

Y and X. Estimated residuals are obtained by finding a solution to (4) and

setting ε̂i = yi − f̂(xi) for i = 1, . . . , n. Below we assume A.1-A.3, found in

the appendix, hold.290
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Theorem 2. Under H0,

Tn(Xn, ε̂n)
p→ HSIC(X, η) = 0.

Under HA,

Tn(Xn, ε̂n)
p→ HSIC(X, ε(X)) > 0.

Under both H0 and HA,

Tn(X∗n, ε
∗
n)

p→ 0.

The notation ε(X) emphasizes the fact that under the alternative ε is dependent

on X. The proof of this result can be found in section A.1 . Under the null

ε = η, in its turn η is independent of X, and hence HSIC(X, η) = 0. Thus

under the null, Tn(Xn, ε̂n) approximates 0. Under the alternative, ε depends295

on X, and HSIC(X, ε) > 0. Thus under the alternative, Tn(Xn, ε̂n) will be

greater than 0. This is the behavior needed for the test statistic in (12) to work.

Moreover, the bootstrapped version of the test statistic Tn(X∗n, ε
∗
n) converges

to 0 in probability under both the null and the alternative. This is what the

behavior of the bootstrap needs to be, since it must reflect the situation where300

the correct model is being specified and there is no leftover information in the

residuals.

Remark: The theorem also holds when (X∗n,Xn, X) is replaced by (Z∗n,Zn, Z),

where (Z∗n,Zn, Z) is defined in the section on the bootstrap.

2.8. Illustrative Cases305

The framework presented in the current article is a test for the Goodness-

of-fit for nonparametric regression. SS-ANOVA models are particularly useful

for creating examples of lack-of-fit in a nonparametric context because we can

specify a model were one of the ANOVA components is missing that does exist

in the true data generating mechanism. This subsection presents three examples310

of lack-of-fit in SS-ANOVA models. In all three cases, the null-hypothesis will

correspond to the situation where the specified model equals the true model,

and under the alternative hypothesis, the model is misspecificed by not con-

taining one or more terms from the ANOVA decomposition that are present in
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the true model. Constructing examples of lack-of-fit like these would have been315

difficult through KR or KNN regression models.

Case I: Missing Interactions Beyond the Main Effects

After fitting a main effects only model with p covariates, a goodness-of-fit test

is run. The SS-ANOVA model specified is

Y =

p∑
j=1

fj(X(j)) + ε,

which, under the null, equals the true model, but under the alternative hypoth-

esis in (11) the true model is:

Y =

p∑
j=1

fj(X(j)) + f1,...,p(X(1), ..., X(p)) + η,

where f1,...,p(X1, ..., Xp) is an unspecified function that could be in any func-

tional space except for the main effects only space from the SS-ANOVA decom-

position. Under the alternative assumption, the test will pick up any possible

interactions that exist beyond the main effects. This case is relevant because

in most situations it is hard to know which interactions to include among the

combinations of main effects, but it is very possible that interactions exist even

when they are hard to conceptualize.

Case II: Missing Interactions Beyond the Within Group Interactions

Two groups of variables indexed by the sets A and B exist. The sets A and B

are disjoint and their union is equal to {1, ..., p}. An SS-ANOVA model is fit

which includes all p main effects and all possible interactions between variables

with indexes in set A and B, separately. The SS-ANOVA model specified is

Y = fA(X(A)) + fB(X(B)) + ε,

which, under the null, equals the true model, but under the alternative hypoth-

esis in (11) the true model is:

Y = fA(X(A)) + fB(X(B)) + fA,B(X(A ∪B)) + η.
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Here, fA(X(A)) includes main effects and all possible interactions among the

variables indexed by the set A. The same holds for fB(X(B)) but over the

set B. The form fA,B(X(A ∪ B)) remains unspecified and includes any pos-

sible interactions between variables in group A and B. Under the alternative

assumption, the test should detect any possible interactions between covariates

in group A and covariates in group B not included in the model described in

H0. This case is relevant because it is possible to know two groups of covariates

that are known to be interacting and hence all the interactions are included.

However, some cross interactions could also happen.

Case III: Testing for Significance

We can test whether a model that includes covariates X needs also to include

covariates Z. The SS-ANOVA model specified is

Y = f(X) + ε,

which, under the null, equals the true model, but under the alternative hypothe-

ses in (13) is:

Y = f(X,Z) + η.

Here, f(X) includes main effects and could also include interactions, among

the elements of X, if they are believed to exist. The same definition holds for

f(X,Z), but over the set both X and Z. However, the form of f(X,Z) remains320

unspecified, but covariates Z are specified. Under the alternative assumption,

the test will detect any covariate Z that is present in f(X,Z). This case is

relevant because many situations arise where the interest comes in detecting a

set of covariates which affect the outcome beyond a previously defined set of

variables.325

In all three cases shown above, in order to perform the test, the model under

H0 is fitted and a vector of estimated residuals ε̂ is obtained. For the first two

cases, nTn(Xn, ε̂) is calculated as the test statistic. For the third case the test

statistic is nTn(Xn(B), ε̂). These three cases represent possible departures of
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fitness, but they do not exhaust all possibilities. However, no matter what the330

departure is, the goodness-of-fit can always be assessed with respect to an Xn

(either the matrix used to fit the model or a completely new set of covariates),

by checking its independence from the estimated residuals.

Figure 1: Variance Adjustment of the Distribution of the Estimated Residuals

Variance of the estimated residuals over 500 simulations. The variance is shown as the number

of variables p in the model increases. The left panel shows the variance without adjustment,

the right panel shows the variance with adjustment. The true variance is 1, which corresponds

to the horizontal line.

3. Simulation Studies

This section will present simulation results comparing the variance of the335

empirical measure of the estimated residuals before and after the degrees of

freedom of the model adjustment described in Step 1 of the bootstrap algo-

rithm. Also, it will present type I error and power results of the goodness-of-fit

test under the three illustrative cases described above. It is important to reit-

erate that, for all three cases, a specific lack-of-fit has been specified under the340

alternative hypothesis, but that this is not known nor specified previously by
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the researcher. The only objective of the test is to know if the current model

under the null is sufficient. All simulations use SS-ANOVA models.

Variance Adjustment to the Bootstrap by the Degrees of Freedom of the Model345

The left panel of figure 1 shows the box plots of σ̂′2 for 500 simulations of the

null hypothesis for varying p and with a fixed sample size of 100. The right

panel shows the same simulation scenarios but for σ̂2. The true variance for all

the simulations is σ2 = 1 denoted by the horizontal line. It can be seen that

for moderate increments in dimension σ̂′2 underestimates the actual variance,350

whereas σ̂2 on average estimates σ2 correctly. Thus, if the degrees of freedom of

the model, as defined in (3), are not accounted for, the bootstrap procedure will

not work properly for finite samples and will underestimate the actual variance

of the residuals. Hence, our proposed adjustment is essential for the correct

performance of the method.355

In all cases shown below we simulated ε as N(0, 1) and all X(j) as Uni-

form(0,1) independent of ε. Specific details of all simulations can be found in

Appendix A of the supplementary materials.

Case I: Missing Interactions Beyond the Main Effects

Simulations were created where the null hypothesis only includes main effects.

Therefore, we have f(X) =
∑p
j=1 fj(X(j)), and under the alternative

f1,...,p(X(1), ..., X(p)) is an interaction between covariates. The SS-ANOVA

model specified is

Y = f(X) + ε,

whereas the models simulated under the null and alternative hypotheses of (11)

are

under H0, Y = f(X) + η, and

under HA, Y = f(X) + f1,...,p(X(1), ..., X(p)) + η.

When p = 2, the null model is f(X) = 5sin(πX(1))+2X(2)2 and the interaction

added under the alternative is f1,2(X(1), X(2)) = 0.75cos(π(X(1) − X(2))).
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Type I Error

Var. Sig. n=100 n=300 n=500

2 0.01 0.008 0.009 0.009

2 0.05 0.045 0.049 0.046

4 0.01 0.008 0.008 0.009

4 0.05 0.049 0.046 0.048

6 0.01 0.006 0.007 0.009

6 0.05 0.047 0.047 0.049

Power

Var. Sig. n=100 n=300 n=500

2 0.01 0.019 0.152 0.512

2 0.05 0.106 0.493 0.886

4 0.01 0.008 0.0724 0.21

4 0.05 0.051 0.264 0.568

6 0.01 0.066 0.015 0.034

6 0.05 0.054 0.085 0.17

Var. corresponds to the number of variables

used in the null model and Sig. corresponds

to the significance level used in the test.

Table 1: Missing Interactions Beyond the Main Effects

When p = 4, 6 similar models were used.

A model of this nature would be hard to fit with a linear model given that the

response depends sinusoidally onX1 and depends quadratically onX2, hence the360

handiness of SS-ANOVA. This simulation setting demonstrate how the ANOVA

decomposition can be useful in picking up signals from interactions. After fit-

ting a main effects only model, if the goodness-of-fit test is significant, then this

would mean that main effects are insufficient and possibly some interactions

exist. When the alternative is f1,2(X(1), X(2)) = 0.75cos(π(X(1)−X(2))), the365

user of the test does not know between which covariates the interaction is hap-

pening. However, when the test is rejected, it is known that the main effects
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only model is not sufficient and extra interactions might be needed. Thus, the

test can be useful in finding interactions. From the simulation results in table

(1) it can be seen that the method preserves the correct type I error both at the370

0.01 and 0.05 significance levels. The size of the test gets sharper with increas-

ing sample size. This happens because the bootstrap is a large sample method

and will work best for larger sample size. For a given number of covariates, it

can be seen that the power increases with larger sample size. Moreover, when

more covariates are present in the main effects only model, the power decreases.375

This is due to the fact that the more main effects are included, the greater the

number of possible interactions, and hence the alternative space becomes larger.

Case I: Departures from linearity through interactions

We created another set of simulations of Case I in order to compare our method380

to competitors. Under the null, the model is linear in the covariates, but under

the alternative the covariates also have quadratic interactions. Our method

tests the goodness-of-fit of a SS-ANOVA model with main effects only. Under

the alternative the test statistic nTn will detect the quadratic interactions. The

test statistics T ∗AN,1 and Sn, described in [9] and [10] respectively, fit a linear385

model and detect departures from linearity. Although they are not testing the

same null and alternative hypothesis, all three tests should have power to detect

the alternative and should, in theory, approach the specified type I error under

the null. In table 2 we show the results of the three tests, but below we only

provide details of the hypotheses formulation for our method.390

Simulations were created where the null hypothesis only includes linear main

effects. Therefore, we have f(X) =
∑p
j=1X(j)βj , and under the alternative

f1,...,p(X(1), ..., X(p)) =
∑p
j<kX

2(j)X2(k)αj,k contains quadratic interactions

between covariates. The SS-ANOVA model specified is

Y = f(X) + ε,

whereas the models simulated under the null and alternative hypotheses of (11)
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Type I Error

nTn T ∗
AN,1 Sn

Var. Sig. n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

2 0.01 0.01 0.01 0.008 0.009 0.01 0.009 0.011 0.010 0.009

2 0.05 0.051 0.048 0.047 0.044 0.0.45 0.048 0.053 0.060 0.054

3 0.01 0.010 0.010 0.009 0.014 0.014 0.012 0.012 0.016 0.011

3 0.05 0.053 0.049 0.048 0.070 0.068 0.045 0.063 0.062 0.053

Power

nTn T ∗
AN,1 Sn

Var. Sig. n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

2 0.01 0.024 0.13 0.398 0.022 0.028 0.050 0.019 0.020 0.034

2 0.05 0.123 0.40 0.758 0.111 0.158 0.302 0.075 0.078 0.104

3 0.01 0.037 0.305 0.762 0.203 0.487 0.782 0.026 0.031 0.044

3 0.05 0.159 0.653 0.951 0.582 0.925 0.99 0.098 0.113 0.136

Var. corresponds to the number of variables used in the null model and Sig. corresponds to

the significance level used in the test. Bolding describes which method performed better in

terms of power and error.

Table 2: Departures from Linearity through Interactions

are

under H0, Y = f(X) + η, and

under HA, Y = f(X) + f1,...,p(X(1), ..., X(p)) + η.

When p = 2, the null model is f(X) = 2X(1)+2X(2) and the interaction added

under the alternative is f1,2(X(1), X(2)) = 4X2(1)X2(2). When p = 3 similar

models were used.

Our method fits a main effects only SS-ANOVA model and tests its goodness-

of-fit. The two competing tests fit a linear model and then test if the form is

non-linear. The simulation results in table (2) show that our methodology has

correct type I error and good power performance. The type I error is sharp

and power increases significantly with increased sample size. Across different n

and p, our method has sharper type I error than the other two methods. For
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p = 2, our method outperforms the competitors in terms of power. However,

for p = 4 it underperforms with respect to T ∗AN,1. This makes sense since this

latter test is specific to detecting deviations from linearity whereas our method

is trying to detect any departures from the main effects only model, which is

succeptible to the curse of dimensionality. Nevertheless, we have shown that our

method performs similarly in this scenario when compared to other methods in

the literature.

Case II: Missing Interactions Beyond the Within Group Interactions

Simulations were created where the null hypothesis includes two distinct groups

of variables which contain all the main effects and all the interactions within each

group, and the alternative adds interactions across the groups. Therefore, we

have f(X) = fA(X(A))+fB(X(B)) and fA,B(X(A∪B)), where fA,B(X(A∪B))

contains interactions between variables in group A and B. The SS-ANOVA

model specified is

Y = f(X) + ε,

whereas the models simulated under the null and alternative hypotheses of (11)

are:

under H0, Y = f(X) + η, and

under HA, Y = f(X) + fA,B(X(A), X(B)) + η.

The first simulation has as null model fA(X(A)) = 5sin(πX(1)) + 2X(2)2 and

fB(X(B)) = 2sin(πX(3)) + X(4)2, and the interaction between group A and395

B added under the alternative is fA,B(X(A ∪ B)) = 0.75cos(π(X(1) −X(3))).

Under the alternative, there exists an interaction across group A and B between

variables X(1) and X(3). In the second simulation setting, similar models were

used. This setting is similar to Case I, but here under the null model, inter-

actions have been included as well as main effects. The simulation results in400

table (3) show that the methodology has correct type I error and good power

performance. In the first scenario, a model with 4 covariates with two sets of

variables of size 2 each was fitted to the data. The two-way interaction between

the 2 covariates in each group was included. The second scenario, denoted by
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Type I Error

Var. Sig. n=100 n=300 n=500

4 0.01 0.010 0.0120 0.0120

4 0.05 0.050 0.048 0.052

4∗ 0.01 0.011 0.011 0.010

4∗ 0.05 0.052 0.0531 0.051

Power

Var. Sig. n=100 n=300 n=500

4 0.01 0.033 0.138 0.366

4 0.05 0.088 0.302 0.601

4∗ 0.01 0.035 0.144 0.375

4∗ 0.05 0.098 0.305 0.622

Var. corresponds to the number of variables

used in the null model and Sig. corresponds

to the significance level used in the test.

Table 3: Missing Interactions Beyond the Within Group Interactions

a 4∗ on the table (3), corresponds to the same set-up defined previously of a405

model with 4 covariates and two groups of variables, but now in the first group

there is only one covariate and in the second one there are 3 covariates. The

model includes all the 3 two-way interactions and the 1 three-way interaction

which corresponds to all the possible interactions between the 3 covariates in the

second group. We see that power performance is comparable in either scenario.410

Moreover, comparing this to Case I we see that including extra interactions

under the null-hypothesis increases power of the test. This is because it reduces

the number of possible interactions under the alternative.

Case III: Testing for Significance

We compare our method with the test in [17] used to select variables for non-

parametric regression. We denote this test statistic as Dn, which requires fitting
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a nonparametric kernel regression under the null. The null and alternative hy-

potheses are the same for both Dn and our test. In the simulations the null

hypothesis includes only main effects and the alternative adds covariates to the

model. Therefore, we have f(X) =
∑p
j=1 fj(X(j)) and fp+1,...,p+q(Z(1), ..., Z(q)),

where fp+1,...,p+q(Z(1), ..., Z(q)) are variables leftover not included in f(X). The

SS-ANOVA model specified is

Y = f(X) + ε,

whereas the models simulated under the null and alternative hypotheses of (13)

are:

under H0, Y = f(X) + η, and

under HA, Y = f(X) + fp+1,...,p+q(Z(1), ..., Z(q)) + η.

When p = 2, the null model is f(X) = 5sin(πX(1)) + 2X(2)2 and the covariate415

added under the alternative is f3(Z(1)) = sin(π(Z(1))). When p = 4 similar

models were used.

Under the alternative, the model fitted under the null is insufficient because

f3(X(3)) = sin(π(X(3))) also belongs in the model. However, this might not

be known to the researcher or he/she might want to investigate this question420

precisely, i.e., through testing. This simulation setting shows that this can

de done and that the goodness-of-fit test can be used as an omnibus test of

the likes of [1], [28] and [17] where a set of covariates is tested to see if it is

related to the outcome after a set of covariates have already being included

in the model. From the simulation results in table 4, it can be seen that the425

proposed test has the appropriate size and power increases with sample size. In

this simulation scenario, the setting with 4 covariates included in the model had

more power compared to the setting with only 2 variables included in the model.

This happened because under the former, 2 covariates were missing under the

alternative whereas under the latter only 1 is missing. However, unlike Case I, in430

this scenario the number of variables included in the model under the null does

not affect the power of the test, only the covariates added under the alternative

affect the power. On the other hand, table 4 shows that the test statistic Dn
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Type I Error

nTn Dn

Var. Sig. n=100 n=300 n=500 n=100 n=300 n=500

2 0.01 0.008 0.011 0.010 0.005 0.036 0.013

2 0.05 0.054 0.057 0.057 0.084 0.093 0.063

4 0.01 0.014 0.010 0.011 0.03 0.096 0.096

4 0.05 0.063 0.053 0.050 0.16 0.256 0.27

Power

nTn Dn

Var. Sig. n=100 n=300 n=500 n=100 n=300 n=500

2 0.01 0.014 0.034 0.072 0.08 0.293 0.636

2 0.05 0.077 0.154 0.321 0.245 0.566 0.863

4 0.01 0.240 0.828 1 0.07 0.14 0.236

4 0.05 0.464 0.944 1 0.213 0.37 0.46

Var. corresponds to the number of variables used in the null model

and Sig. corresponds to the significance level used in the test. Bolding

describes which method performed better in terms of power and error.

Table 4: Testing for Significance

has some problems. For the case p = 2, the type I error is moderatly larger

than the specified level. However, as the sample size increases the actual type435

I error gets closer to its specified level, but never as close as our method. In

terms of power, Dn outperforms our method, but this is expected given that

it has larger type I error than our test. When p = 4, the test Dn performs

quite badly. The type I error rate is wrong and the power does not increase

with sample size as rapidly as our method does. It seems Dn does not perform440

properly when the dimension of p increases even moderatly. Thus, it seems our

methodology is a better suited for larger p situations. We note that although

Dn performed badly, there exist improved versions of this test adapted to high-

dimensional situations [29]. We do not use those modifications as comparisons

in our simulations since our focus is not in high-dimensional scenarios.445
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4. Application to Neonatal Psychomotor Development Data

The Mount Sinai Children’s Environmental Health Cohort samples a prospec-

tive multiethnic cohort of primiparous women who presented for prenatal care

with singleton pregnancies at the Mount Sinai prenatal clinic or two private

practices ([30]). The target population was first-born infants with no under-

lying health conditions that might independently result in serious neurodevel-

opmental impairment. The continuous outcome of interest is the Psychomotor

Development Index at age 2 (PDI), obtained by administration of the Bayley

scales of infant development version 2. It is believed that PDI is affected by

chemical exposures that can be assessed through urine and blood samples. Po-

tentially, PDI could be affected by the mother’s age (AGE), and certain chemical

exposures, such as the amount of Bisphenol A (BPA), uM/L of di-2-ethylhexyl

phthalate (DEHP) phthalate metabolites, and the amount of dialkylphosphate

metabolites (DAP). Maternal exposure biomarkers were collected to asses the

magnitude of exposure to the compounds. The data set consists of a sample

of 237 maternal-child dyads. An SS-ANOVA model is built with PDI as the

outcome and the four predictors variables as follows:

PDI = f1(BPA) + f2(DEHP ) + f3(DAP ) + f4(AGE) + ε. (15)

The following paragraph provides an investigation into whether the model in

(15) fits the data. A series of tests are conducted to evaluate the goodness-of-fit

of this model, as well as possible alternative models. All p-values are shown

in table (5). The first column of table (5) shows the null hypotheses that are450

tested, the second column shows the interaction terms that have been added to

the basic model in (15), and the third column shows the p-value for each null

hypothesis. Any p-value less than 0.05 is deemed as evidence of lack-of-fit.

Initially, we test the null hypothesis H0, which corresponds to testing if the

model in (15) fits the data well. The p-value of H0 is 0.044, hence we detect a

lack-of-fit. Since the model in (15) is not sufficient, it is possible that interactions

need to be considered. Three models are possible extensions, and they only differ
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Null Added Interactions p-value

H0 0.044

H1,2 f1,2 0.158

H1,3 f1,3 0.077

H2,3 f2,3 0.029

H1,2+1,3 f1,2 + f1,2 0.114

P-values less than 0.05 are thought

as evidence of lack-of-fit.

Table 5: Testing of Goodness-of-fit

from (15) with the addition of one of the following two-way interactions, respec-

tively: f1,2(BPA,DEHP ), f1,3(BPA,DAP ), and f2,3(DEHP,DAP ). These

additions to each model correspond to interactions between the chemical expo-

sures. It is theoretically unlikely that interactions exist between the exposures

and the mother’s age, or that there is a three-way interaction among the expo-

sures; hence models that include such interactions are not considered. Testing

null hypotheses H1,2, H1,3 and H2,3 corresponds to testing the goodness-of-fit of

these three models, which include three different two-way interactions between

exposures. We detected lack-of-fit in the model with the interaction f2,3, but

we did not detect lack-of-fit for the models with the other two interactions: f1,2

and f1,3. We want to include all interactions that could potentially explain the

outcome, so we include f1,2 and f1,3 in the model, since both models with those

interactions do not show a lack-of-fit. As a last step, we check the goodness-

of-fit of the model that includes the two relevant two-way interactions among

exposures, and this corresponds to the null hypothesis H1,2+1,3. The p-value of

this hypothesis is 0.114. Thus, we do not have enough evidence for lack-of-fit of

the model that includes both two-way interactions. The final form of our model
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is:

PDI =f1(BPA) + f2(DEHP ) + f3(DAP ) + f4(AGE)

+f1,2(BPA,DEHP ) + f1,3(BPA,DAP ) + ε.

5. Discussion

In this article we have developed a general Goodness-of-fit statistic and test455

for nonparametric regression models which are linear smoothers. Particularly,

examples, simulations, theory and the application were done in the context of

the SS-ANOVA model with continuous outcome, one type of linear smoother.

The method developed works by fitting a model currently of interest and tests

for independence between the estimated residuals and the covariates used to460

fit the model, or covariates not yet in the model. A model based bootstrap is

used to get critical values that preserve the correct type I error. In comparisons

with competing methods, our tests performs favorably. The bootstrap method

incorporates the degrees of freedom of the linear smoother. The test developed

can deal with a useful variety of lack-of-fit settings. The major contributions we465

make to the literature include: identifying the need for assessing goodness-of-

fit in nonparametric regression, developing a test statistic, creating a variance

adjustment to the bootstrap to improve the finite sample performance of the

method, providing theoretical justification of the use of the HSIC, and demon-

strating correct type I error as well as power performance through numerical470

simulations. We note that our method can easily be extended to detect depar-

tures from homoscedasticity of variance, but we choose not to analyze it in the

current research as we believe this was already done extensively in [13, 19].

Some caveats of the method are that when dimension increases and not many

interactions have already been included in the model, the power decreases. This475

method might only be suitable for small models when the need is to detect any

possible interactions among main effects. Once extra interactions are included,

power increases and the problem becomes more manageable. On the other hand,

when testing if extra variables not yet included in the model need to be included,
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there is no such problem with the power. This is of importance because the test480

can be used as an omnibus or global test for testing significance of variables. One

possible criticism of the method is that it rests on the assumption of homogeneity

of variance. If this assumption is violated, then the test will pick up the lack-

of-fit corresponding to the heterogeneous variance, and it will be more difficult

to identify where the lack-of-fit is coming from. Another problem could arise485

if there exists a missing confounder correlated with a covariate in the current

model. If the goodness-of-fit test were performed in this setting, with sufficient

power it would reject the null, but it would be difficult to assess where the

lack-of-fit is coming from, since the confounder is not available.

One of the possible extensions of this test would be to allow for heterogeneity490

of variance in the SS-ANOVA model, where the variance could be dependent on

the covariates. In this way, whenever the homogeneity of variance is violated, the

test would still have correct type I error and would be more powerful. Another

aspect left unaddressed in the current research is how to choose the degree

of the derivative being integrated in to the penalty term. We have used the495

second derivative in our examples. Other choices are possible too. Further

research could extend this method to deal with dichotomous outcomes. Also,

the Gaussian kernel in the HSIC has a parameter that has been fixed to 1 in the

current report. However, further research could elucidate how to best choose

this parameter following a suitable optimality criterion.500
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Appendix

A.1. Details on the Bootstrap Algorithm

If hypotheses in (13) need to be tested using the test statistic in (14), the

following bootstrap variation can be used:

Bootstrap Algorithm

Step 1

Calculate the estimated residuals ε̂i = Yi − f̂(Xi) and create an empirical dis-

tribution Pn,eo of the residuals with mass 1/n at each eoi = σ̂
σ̂′ (ε̂i − ε̄), where

ε̄ =
∑n
i=1

ε̂i
n , σ̂′2 =

∑n
i=1(ε̂i−ε̄)2

n and σ̂2 = ||Y−AY||2
Tr(I−A) .

Step 2

Draw a bootstrap sample η∗ from the empirical distribution Pn,eo and draw

a bootstrap sample (X∗n,Z
∗
n) from the empirical distribution Pn,X,Z of the

(Xn,Zn)’s independently of η∗. Then set Y ∗i as

Y ∗i = f̂(X∗i ) + η∗i for i = 1, . . . , n.

Step 3

We estimate f̂∗ from Y∗n and from X∗n, and create new bootstrap residuals as

ε∗i = Y ∗i − f̂∗(X∗i ) for i = 1, . . . , n.

Step 4

Calculate the test statistic as nTn(Z∗n, ε
∗
n).510

Step 5

Repeat Step 1 through 4 B times, so as to create B bootstrapped test statistics

nTn(Z∗n, ε
∗)b, for b = 1, . . . , B. This distribution approximates the distribution

of nTn(Zn, ε̂n) under the null. The p-value is then calculated as

p-value =
1

B

B∑
i=1

I(nTn(Zn, ε̂n) ≤ nTn(Z∗n, ε
∗
n)b).
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A.2. Details on Simulation Studies

In this section, specific details on each simulation study of section 3 provided.

We simulated η as N(0, 1), and all X(j) and Z(i) as Uniform(0,1) independent515

of each other. Three simulation cases are described. First, the general case is

described, and then, for each subcase, the corresponding true model used under

the null and under the alternative are shown. The form shown under the null is

the model that was used both under the null and under the alternative. Hence,

the alternative simulates lack-of-fit in the model.520

Case I: Missing Interactions Beyond the Main Effects

This case corresponds to the simulation results shown in table 1. Simulations

were created where the null hypothesis only includes main effects. We have

f(X) =
∑p
j fj(X(j)) and f1,...,p(X(1), ..., X(p)) is any interaction between co-

variates. The hypotheses then become525

H0 : Y = f(X) + η,

HA : Y = f(X) + f1,...,p(X(1), ..., X(p)) + η.

Below are shown all the instances of Case I.

Case I.1, p=2

f(X) = 5sin(πX(1)) + 2X(2)2,

f1,2(X(1), X(2)) = 0.75cos(π(X(1)−X(2))).

Case I.2, p=4

f(X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) +X(4)2,

f1,...,4(X(1), ..., X(4)) = 0.5cos(π(X(1)−X(2))) + 0.5cos(π(X(3)−X(4))).

Case I.3, p=6

f(X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) +X(4)2 + 2sin(πX(5)) + 3X(6)3,
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f1,...,6(X(1), ..., X(6)) =0.75cos(0.5π(X(1)−X(2))) + 0.5X(2)X(3)

+0.5cos(π(X(4)−X(5) + 2X(6))).

Case I: Departures from linearity through interactions

This case corresponds to the simulation results shown in table 2. Simulations

were created where the null hypothesis only includes linear main effects.

Therefore, we have f(X) =
∑p
j=1X(j)βj , and under the alternative

f1,...,p(X(1), ..., X(p)) =
∑p
j<kX

2(j)X2(k)αj,k contains quadratic interactions530

between covariates. The hypotheses then become

H0 : Y = f(X) + η,

HA : Y = f(X) + f1,...,p(X(1), ..., X(p)) + η.

Below are shown all the instances of table 2.

Case I.4, p=2

f(X) = 2X(1) + 2X(2),

f1,2(X(1), X(2)) = 4X2(1)X2(2).

Case I.5, p=3

f(X) = 2X(1) + 2X(2) + 2X(3),

f1,2,3(X(1), X(2), X(3)) = 4X2(1)X2(2) + 4X2(2)X2(3).

Case II: Missing Interactions Beyond the Within Group Interactions

This case corresponds to the simulation results shown in table 3. Simulations

were created where two distinct groups of covariates, A and B, exist. Under

the null hypothesis the model contains all main effects, and all the interactions

within each group. Under the alternative, interactions across both groups also

exist. Define f(X) = fA(X(A)) + fB(X(B)) and fA,B(X(A ∪X(B)), where

f(X) = fA(X(A)) + fB(X(B)) contains all main effects and all possible

interactions within A and B, but not between A and B, and fA,B(X(A ∪B))
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are any interactions between covariates in group A and B. Our hypotheses

then become

H0 : Y = f(X) + η,

HA : Y = f(X) + fA,B(X(A ∪B) + η.

Below are shown all the instances of Case II.

Case II.1, p=4

f(X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) +X(4)2,

fA,B(X(A ∪B)) = 0.75cos(π(X(1)−X(3))),

with A = {X1, X2} and B = {X3, X4}.535

Case II.2, p=4

f(X) = 5sin(πX(1))+2X(2)2+2sin(πX(3))+X(4)2+0.75cos(π(X(2)−X(3))),

fA,B(X(A ∪B)) = 0.75cos(π(X(1)−X(4))),

with A = {X1} and B = {X2, X3, X4}.

Case III: Testing for Significance

This case corresponds to the simulation results shown in table 4. Simulation

were created where under the null hypothesis the model only includes main

effects, and under the alternative, covariates are added to the model.

Therefore, we have f(X) =
∑p
j fj(X(j)) and fp+1,...,p+q(Z(1), . . . , Z(q)),

where fp+1,...,p+q(Z(1), . . . , Z(q)) are covariates not yet included in f(X). The

hypotheses then become

H0 : Y = f(X) + η,

HA : Y = f(X) + fp+1,...,p+q(Z(1), . . . , Z(q)) + η.

Below are shown all the instances of Case III.

Case III.1, p=2

f(X) = 5sin(πX(1)) + 2X(2)2,

37



f3(Z(1)) = sin(πZ(1)).

Case III.2, p=4

f(X) = 5sin(πX(1)) + 2X(2)2 + 2sin(πX(3)) +X(4)2,

f5,6(Z(1), Z(2)) = 0.5Z(1) + sin(πZ(2)).

A.3. Theoretical Results

The main purpose of this section is to provide a justification for Theorem 2.540

This theorem shows that under the null and alternative Tn(Xn, ε̂n) and

Tn(Zn, ε̂n) converge to the population HSIC, and that the bootstrap version

Tn(X∗n, ε̂
∗
n) and Tn(Z∗n, ε̂

∗
n) converge to 0 under both the null and the

alternative. To simplify the theoretical results, it is assumed that the

alternative corresponds to the case were covariates are missing from the545

model, and goodness-of-fit is assessed with respect to Zn. Other cases where

interactions are missing from the model, and where the goodness-of-fit is

assessed with respect to Xn follow a similar proof and are omitted. Next, we

present the setting and Lemmas needed for the proof of Theorem 2.

Set-Up550

The theoretical results presented here are for the estimation of f0 in (1)

through the solution of the penalized least squares in (4). For simplicity, it will

be assumed throughout that f0 is additive. Let the metric || · ||n be defined by

||f ||2n =
1

n

n∑
i=1

|f(Xi)|2.

Let Fj = {fj : [0, 1]→ R,
∫
|f (m)
j |2 < Mj}, Mj ≥ 1, and F =

p
⊕
j=1

Fj . Let

(y1, x1), ..., (yn, xn) ∈ R× [0, 1]p be a sample from

Yi =

p∑
j=1

f0,j(X(j)) + ηi, i = 1, ..., n,
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where
p∑
j=1

f0,j(X(j)) ∈ F . Moreover, we have

Zj,n =


1 x1(j) ... x1(j)m−1

...
... ...

...

1 xn(j) ... xn(j)m−1

 .
Let Σj = lim

n→∞
1
nZ

T
j,nZj,n, where we assume this limit exists in probability, and

let φ2
j,1 be the smallest eigenvalue of Σj .

Assumptions555

A.1 We assume φ2
j,1 > 0 for all j.

A.2 Uniform subgaussianity of the residuals: there exist β > 0 and Γ > 0 such

that

sup
n

max
1≤k≤n

E[exp|βηk|2] ≤ Γ <∞.

A.3 The tuning parameter is chosen such that λ−1
n = Op(n

2m/(2m+1)) and

λn → 0.

Lemma 3. If we solve the penalized least squares model defined in (4) over

the RKHS F , and A.1-3 hold, then we have that

||f0 − f̂ ||2n = Op(n
−2m/(2m+1)).

Proof:

Fix δ > 0. We know that Nn( δp ;σ,Fj) ≤ exp
(
A(

Mj

δ/p )(1/m)
)

, where

Nn( δp ;σ,Fj) is the smallest number of δ balls needed to cover the open ball

B(f0,j , σ) = {fj ∈ Fj : ||f0,j − fj || ≤ σ} with respect to the || · ||n norm, as

defined in Lemma 2.1 in [31]. Let f0 = f0,1 + · · ·+ f0,p ∈ F and let fj be the

function in the δ/p-covering such that ||f0,j − fj ||n < δ/p. Then,

||f0 − (f1 + ...+ fp)||n

≤||f0,1 − f1||n + · · ·+ ||f0,p − fp||n

≤δ/p+ · · ·+ δ/p = δ.
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Hence, we have that

Nn(δ;σ,F ) ≤ Nn(δ/p;σ,F1) · · ·Nn(δ/p;σ,Fp)

≤exp

(
pA(

Mp

δ
)(1/m)

)
with M = max{M1, ...,Mp}.

From here the proof of Theorem 6.2 in [31] follows for the additive model,560

hence proving the result. �

As stated before the proof shown here corresponds to the alternative where

covariates are missing from the model.

Lemma 4. We fit the following model using penalized least squares in (4):

yi = f(xi) + εi, i = 1, ..., n,

where f(xi) =
p∑
j=1

fj(xi(j)). Under the alternative, the model is misspecified by

several additive terms, in other words εi =
p+q∑
j=p+1

fj(zi(j − p)) + ηi. Under this

situation, we still have convergence of the properly specified terms

fj , j = 1, .., p, namely

||
p∑
j=1

f0,j −
p∑
j=1

f̂j ||2n = Op(n
−2m/(2m+1)),

provided that ε follows subgaussianity in A.2 and that

(X(1), ..., X(p)) ⊥ (Z(1), ..., Z(q)).565

Proof:

If the εi are uniform subgaussian and (X(1), ..., X(p)) ⊥ (Z(1), ..., Z(q)) then

Lemma 3 holds in this situation. �

Lemma 5. We fit an additive model by minimizing the penalized least squares

in (4). Under the assumptions A.1-3 we have that

sup
x∈[0,1]p

|f̂(x)− f0(x)| = Op(n
−m(2m−2)/(2m+1)(2m−1)).

Proof:
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By [32], we know that ||f̂ − f0||22 = Op(n
−2m/(2m+1)) where || · ||2 is the L2

norm. By applying Lemma 6 we conclude that

||f̂ − f0||∞ = Op(n
−m(2m−2)/(2m+1)(2m−1)).

570

Lemma 6. Let {fn} be a sequence of functions such that fn : [0, 1]→ R,

||fn||2 → 0, and limn→∞
∫ 1

0
(f

(k)
n (u))2du <∞, then

||fn||∞ = O(||fn||(2k−2)/(2k−1)
2 ).

Proof:

Let f : [0, 1]→ R and J2
k (f) =

∫ 1

0
(f (k)(u))2du <∞ for some integer

1 ≤ k <∞. Let ∆ = 1/m for some integer 1 ≤ m <∞. Let f̃ be an

approximation to f such that

f̃(x) =

m∑
j=1

f̃j(x− (j − 1)∆)1{(j − 1)∆ ≤ x < j∆}

with f̃j(x) = f((j − 1)∆) + f (1)((j − 1)∆)x+ · · ·+ f(k−1)((k−1)∆)xk−1

(k−1)! for

x ∈ [0,∆].

For x ∈ [0,∆] we have that,

|f̃j(x)− f(x+ (j − 1)∆)| ≤ |
∫ (j−1)∆+x

(j−1)∆

∫ (j−1)∆+uk−1

(j−1)∆

· · ·
∫ (j−1)∆+u1

(j−1)∆

f (k)(w)dwdu1 · · · duk−1|

=
Γ(3/2)

Γ(k + 1/2)
xk−1/2Jk(f).

We also have that

||f ||∞ ≤ ||f̃ ||∞ + ||f − f̃ ||∞

≤ ||f̃ ||∞ +
Γ(3/2)

Γ(k + 1/2)
∆k−1/2Jk(f).

For x ∈ [0,∆],

||f̃j ||∆,∞ = sup
x∈[0,∆]

|f̃j(x)| ≤ sup
x∈[0,∆]

|
k−1∑
l=0

aj,lx
l|,
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where aj,l = f(l)((j−1)∆)
l! . Now,

sup
x∈[0,∆]

|
k−1∑
l=0

aj,lx
l| = sup

u∈[0,1]

|
k−1∑
l=0

aj,l∆
lul|

≤ (

k−1∑
l=0

(aj,l)
2∆2l)1/2

where the last inequality follows from Cauchy-Schwarz inequality and setting

u = 1. Now let,

Mk(u) =


1 u u2 ... uk−1

u u2 u3 ... uk

...
...

...
. . .

...

uk−1 uk uk+1 ... u2k−2

 ,

where u is a uniform [0, 1] random variable. Now let Ck be the smallest

eigenvalue of E[Mk(u)] and if Ck > 0 then we have, by change of variables,

||f̃j ||2∆,2 =

∫ ∆

0

(f̃j(x))2dx = ∆

∫ 1

0

(f̃j(∆u))2du

= ∆E


aj,0

aj,1∆
...

aj,k−1∆k−1



T

Mk(u)


aj,0

aj,1∆
...

aj,k−1∆k−1


≥ Ck∆

k−1∑
l=0

a2
j,l∆

2l.

With this we can see that

||f̃j ||∆,∞ ≤ C−1/2
k ∆−1/2||f̃j ||∆,2,

and ||f̃j ||∞ ≤ C−1/2
k ∆−1/2(max

j
||f̃j ||∆,2)1/2

≤ C−1/2
k ∆−1/2||f̃ ||2

≤ C−1/2
k ∆−1/2(||f ||2 +

Γ(3/2)

Γ(k + 1/2)
∆k−1/2Jk(f)).

This implies that,

||f ||∞ ≤ C−1/2
k ∆−1/2||f ||2+

Γ(3/2)

Γ(k + 1/2)
C
−1/2
k ∆k−1Jk(f)+

Γ(3/2)

Γ(k + 1/2)
∆k−1/2Jk(f).
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If we let a = C
−1/2
k ||f ||2 and b = Γ(3/2)

Γ(k+1/2)C
−1/2
k Jk(f) and we choose

∆ = ( a
(2k−1)b )

2/(2k−1) ∧ 1, then we have for some 0 < C∗ <∞ that only

depends on k that

||f ||∞ ≤ C∗(||f ||2∨(||f ||
2k−2
2k−1

2 J
2

2k−1

k (f))+Jk(f)∧(||f ||
2k−2
2k−1

2 J
1

2k−1

k (f))+Jk(f)∧||f ||2).

Hence, for a sequence of functions{fn} as defined in the assumptions of the

Lemma we get

||fn||∞ = O(||fn||
2k−2
2k−1

2 ).

Lemma 7. Under the same assumptions as Lemma 4 and using the notation

from Theorem 2 we have that

ε∗1 − η∗1
p→ 0 and ε̂1 − ε1

p→ 0.

Proof:575

Since, f̂∗ is an estimator of f̂ , and f̂ has the same properties as f0, with

probability going to 1 as n increases, we can apply Lemma 5 and conclude

that ||f̂ − f̂∗||∞
p→ 0. Thus we have

sup
x∈[0,1]q

|f̂∗(x)− f̂(x)| ≥ max
X∗i ∈X∗n

|f̂∗(X∗i )− f̂(X∗i )| = max
X∗i ∈X∗n

|Y ∗i + f̂∗(X∗i )− Y ∗i − f̂(X∗i )|

= max
i∈Nn
|ε∗i − η∗i |,

where max
X∗i ∈X∗n

denotes that we are taking the maximum over a finite bootstrap

sample X∗n. Hence, sup
i∈Nn
|ε∗i − η∗i |

p→ 0 and we can also say that ε∗1 − η∗1
p→ 0.

The same argument follows for ε̂1 − ε1
p→ 0 by replacing f̂∗ with f̂ and f̂ with

f0. �

Proof of Theorem 2:580

We write Tn(Zn, ε̂n) = 1
n2

∑n
i,j KijL̂ij + 1

n4

∑n
i,j,q,rKijL̂qr − 2 1

n3

∑n
i,j,qKijL̂iq,

where L̂ij = exp(−(ε̂i − ε̂j)2), Li,j = exp(−(εi − εj)2) and
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Kij = exp(−||zi − zj ||2). Let

HSIC(X, η) =A1 +A2 −A3

and

Tn(Zn, ε̂n) =Â1 + Â2 − Â3 +O(n−1),

where

Â1 =
1

n2

∑
i 6=j

KijL̂ij ,

Â2 =
1

n4

∑
i 6=j,q 6=r

KijL̂qr

Â3 =
2

n4

∑
i 6=j 6=q

KijL̂iq,

A1 = Ez1,ε1,z2,ε2 [K1,2L1,2],

A2 = Ez1,z2 [K1,2]Eε1,ε2 [L1,2],

A3 = 2Ez1,ε1 [Ez2 [K1,2]Eε2 [L1,2]].

First, it will be shown that

Â1 −A1 =
1

n2

∑
i 6=j

Ki,jL̂i,j − E[K1,2L̂1,2]
p→ 0.

By Markov’s inequality we have that

Pr(| 1

n2

∑
i 6=j

Ki,jL̂i,j − E[K1,2L̂1,2]| > ε)

≤ 1

n2ε2
Var(K1,2L̂1,2 − E[K1,2L̂1,2])+

1

n4ε2

∑
i 6=j

∑
p 6=q

Cov(Ki,jL̂i,j − E[Ki,jL̂i,j ],Kp,qL̂p,q − E[Kp,qL̂p,q])

=
1

n2ε2
O(1) +O(1)E[(K1,2L̂1,2 − E[K1,2L̂1,2])(K3,4L̂3,4 − E[K3,4L̂3,4])].

The first O(1) term comes from the fact that the variance is bounded because

|Ki,jL̂i,j | is bounded by 1. The second O(1) term comes from the fact that the

number of elements in the double summation compared to n4 is of magnitude

44



O(1). Under H0, it holds that
p+q∑
j=p+1

f0,j(zi(j)) = 0 for all i. Then, it holds

that εi = ηi for all i. Now, by applying Lemma 7 we know that

(ε̂1, ε̂2, ε̂3, ε̂4)− (η1, η2, η3, η4)
p→ 0,

and by the continuous mapping theorem we have that

K1,2L̂1,2 −K1,2L1,2
p→ 0.

Since K1,2L̂1,2 is bounded it is also uniformly integrable, thus

E[K1,2L̂1,2]→ E[K1,2L1,2].

Moreover,

E[K1,2L̂1,2K3,4L̂3,4]→ E[K1,2L1,2K3,4L3,4] = E[K1,2L1,2]E[K3,4L3,4].

Hence, the covariance will go to 0 as n→∞. Then, we can conclude that

1
n2

∑
i 6=j

Ki,jL̂i,j − E[K1,2L̂1,2]
p→ 0.

Above we have already shown that E[K1,2L̂1,2]→ E[K1,2L1,2] so we can585

conclude that

1
n2

∑
i 6=j

Ki,jL̂i,j − E[K1,2L1,2]
p→ 0.

Similar arguments follow for A2 − Â2 and A3 − Â3. Hence, we have that

Tn(Zn, ε̂n)
p→ HSIC(Z, η) = 0.

Under HA the same result holds by Lemma 4 and Lemma 7 except that η is590

replaced by ε and HSIC(Z, ε) > 0, since ε depends on Z. Hence, we have that

Tn(Zn, ε̂n)
p→ HSIC(Z, ε) > 0.

Under H0 and HA, HSIC(Z∗n,η
∗
n) = 0 since X∗n and η∗n were sampled

independently. From Lemma 7 we have that ε∗1 − η∗1
p→ 0 and hence from the

same arguments as above we have that595

Tn(Z∗n, ε
∗
n)−HSIC(Z∗n,η

∗
n)

p→ 0.

�
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