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Abstract

Support vector machine classification (SVM) is a statistical learning method which easily
accommodates large numbers of predictors and can discover both linear and non-linear
relationships between the predictors and outcomes. A common challenge is constructing an
SVM when the training set includes observations with missing predictor values. In this
paper, we identify when missing data can bias an SVM classifier. Because the missing data
mechanisms which bias SVMs differ from the traditional framework of missing-at-random
and missing-not-at-random, we argue for an SVM specific framework for understanding
missing data. Further, we compare a number of missing data strategies for SVMs in a
simulation study and real data example, and we make recommendations for SVM users
based on the simulation study.
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INTRODUCTION

Support vector machine classification (SVM) is a statistical method that offers modeling

flexibility by allowing for both linear and non-linear relationships between the predictors

and outcomes. SVMs have been used within a wide range of different applications, including

gene expression analysis8, fMRI analysis13, and other biomedical computer vision tasks.

SVMs represent a natural approach for building a decision rule because of the modeling

flexibility. Although SVMs are an attractive option when constructing a classifier, SVMs do

not easily accommodate missing covariate information.

Similar to other prediction and classification methods, in-attention to missing data when

constructing an SVM can impact the accuracy and utility of the resulting classifier. This is

particularly true when the likelihood that a covariate is missing is a function of the outcome

class or the covariate itself. Because missing data are ubiquitous, users of SVMs should

consider the impact of their chosen missing data strategy. This focus article is organized in

two parts. In the first part we address the question: In what settings does missing data bias

the SVM classifier? We suggest that the traditional framework for missing data commonly

used in regression settings does not apply to SVMs, and we provide an alternative framework

for missing data specific to SVMs.

In the second part, we provide an overview of a number of missing data strategies, some

of which are general purpose strategies and others which are specific to SVMs. Then, we

compare the performance of a number of the methods in a simulation study. We conclude

by providing concrete suggestions for missing data strategies when constructing an SVM

classifier.

SUPPORT VECTOR MACHINE BASICS

The SVM classifier3,6,20 is a supervised learner, which is a family of classifiers built from

a training set in which the outcome and covariates are known. For example, consider the

task of constructing a classifier to predict the presence or absence of disease from a large

array of blood chemistry measures. The training set (denoted Tn) is n observations for which
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the disease status (denoted yi ∈ {−1,+1}) and chemistry measures (denoted xi ∈ Rp) are

known. Specifically, let yi = −1 for absence and yi = +1 for presence of disease; p is the

number of covariate chemistry measures.

The SVM classifier is a basis expansion model, which means it is a linear combination of

scalar parameters and basis functions. Specifically, for xo, an input p-vector of covariates,

the SVM classifier is

fTn(xo) = α0 +
n∑

i=1

αiκi(xo) (1)

where the basis functions are kernel functions of the form κi(xo) = κ(xo, xi) and the scalar

parameters αi are estimated during the fitting process. To predict the outcome for covariates

xo, one calculates

ŷo = sign [fTn(xo)] =

 −1 fTn(xo) < 0

+1 fTn(xo) ≥ 0

The set of covariates where fTn(xo) = 0 is called the boundary because it separates regions

classified as +1 from those classified as -1. Different kernel functions lead to different flavors

of SVM classifiers, and common choices of kernel include the linear and Gaussian kernels.

The linear kernel generates decision rules with a linear boundary; the Gaussian kernel gen-

erates both linear and nonlinear boundaries. Other sources describe in greater detail the

mathematical underpinnings of the SVM and kernel functions16,19. For the purposes of this

article, let H be the set of all possible functions described in equation (1) for a specific choice

of kernel function.

The SVM classifier is constructed as the solution to a convex optimization problem

fTn = arg min
f∈H

1

2
||f ||2H +

C

n

n∑
i=1

max[0, 1− yif(xi)] (2)

which can be described heuristically as minimizing the combination of two-types of penalties:

||f ||2H is a model-complexity penalty and max[0, 1−yif(xi)] is a surrogate miss-classification

penalty. The parameter C controls the relative importance of the two types of penalties.

Relatively more complex models may have better in-sample miss-classification rates but may

have higher out-of-sample miss-classification rates; whereas, less complex models will have

similar in-sample and out-of-sample miss-classification rates. Often, the value of C is selected

by a grid search coupled with cross-validated in-sample model performance.
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The SVM classifier is a margin classifier, and the covariate region where |f(xo)| < 1

is called the SVM margin. It is the region surrounding the boundary where observations

contribute to the surrogate miss-classification penalty, even if the observations are accurately

classified. Observations not properly classified always contribute to the surrogate miss-

classification penalty. Note that observations that do not contribute to the surrogate miss-

classification penalty could be removed from the training set without impacting the resulting

SVM classifier, which is a primary feature of the method as it represents a potentially large

reduction in the classifier’s complexity. Observations in the training set that do impact the

solution are known as the support vectors.

The SVM classifier is constructed from the training set, Tn; the choice of kernel function

(including any kernel-specific tuning parameters); and a choice of tuning parameter C. Note

that constructing an SVM classifier requires estimation of n + 1 parameters, regardless of

the number of covariates p. Thus, an SVM classifier can be constructed even when p > n.

Routines are available in many commonly used statistical software packages (R, Matlab,

Python) and stand-alone programs (libsvm) to construct an SVM classifier.

A FRAMEWORK FOR MISSING DATA AND SVMS

To understand the predictive performance of the SVM and how missing data may affect

its performance, it is helpful to consider the infinite-population setting or when n is very

large. Returning to equation (2), note that the surrogate miss-classification component is

an empirical approximation of the infinite-population surrogate miss-classification rate,

1

n

n∑
i=1

max[0, 1− yif(xi)]→as EY×X{max[0, 1− Y f(X)]}.

Let ḟ denote the infinite-population SVM solution. As shown in Lin11, the SVM solution

that minimizes the infinite-population surrogate miss-classification rate also minimizes the

true infinite-population miss-classification rate, which is why the SVM is asymptotically an

optimal classifier, which is also called a Bayes classifier. To see how missing data may affect

classification, let ri = 1 denote observations with at least one missing covariate and let ri = 0
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if no covariates are missing. The above expression can be rewritten as

EY×X{max[0, 1− Y f(X)]} =EY×X|R=0{max[0, 1− Y f(X)]}︸ ︷︷ ︸
A

P (R = 0)+

EY×X|R=1{max[0, 1− Y f(X)]}︸ ︷︷ ︸
B

P (R = 1)
(3)

The finite-sample strategy of removing observations with ri = 1 from the training set, called

the complete case strategy, results in minimizing the slightly different infinite-population

expression labeled A in equation (3). If A and B in the same equation are relatively similar,

or if P (R = 1) is small, the complete case strategy is a reasonable missing data solution.

However, when the classifier that minimizes A and the classifier that minimizes A+B differ,

the missing data matters. To get a better handle on the specific setting where missingness

is an issue, note that

EY×X|R=0{max[0, 1− Y f(X)]}P (R = 0) =

EY×X{max[0, 1− Y f(X)]} − EY×X{max[0, 1− Y f(X)] · P (R = 1|Y,X)}

which indicates what conditions must exist for the complete case solution to differ from the

full data solution. If the covariate region where P (R = 1|Y,X) is appreciable falls outside

the margin of ḟ , then the complete case strategy will not be biased. Conversely, missing

data matters when it occurs differentially between classes within the margin or differentially

between classes in regions that violate the infinite-population solution.

Missing on the boundary vs traditional missing data mechanisms

This perspective in the infinite-population setting provides some guidance on missing data in

the finite-sample setting. The following general purpose ideas can be shown false in specific,

pathological missing data settings; however, the ideas will be applicable to a wide variety of

situations. First, because SVMs only rely on a subset of observations, they tend to be more

robust to missing data than methods that rely on all the data. One may allow for more

observations with missing data with an SVM than with a regression, for example. Second,

because observations have more local influence on the margin with non-linear kernels, missing

data is less problematic for linear SVMs than for non-linear SVMs. And third, a statement

5



that may be true for most methods, missing data is less problematic when the outcome class

can be predicted with greater accuracy.

Demonstration of SVMs in MAR and MNAR settings

As noted above, the SVM classifier is inherently more robust to missing data because it is

a margin classifier. Furthermore, the complete case strategy for missing data can generate

unbiased SVM classifiers in settings where other common methods like regression might not.

To illustrate this point, we performed a simulation study of the linear SVM classifier in which

we considered the number of predictor variables, the degree of separation between outcome

classes, the percent of observations with missing data, and the mechanism for generating

missing data. For a training set of 500 observations, we generated datasets with 2, 20, and

200 predictors with a mild, banded correlation structure. The degree of separation was

calibrated in terms of the optimal prediction error, also known as the Bayes risk. The degree

of separation was chosen so that the best classifier could predict the outcome class with .4,

.25, and .1 error. We considered four missing data mechanisms:

logit P(X1 missing |X1, X2, Y ) =



α + βX2 MAR X

α + βX2 ∗ Y MAR XY

α + βX1 MNAR X

α + βX1 ∗ Y MNAR XY.

Commonly used notation in the missing data literature and introduced by Rubin14, MAR

denotes missing at random which indicates that the probability a covariate is missing is a

function of the covariates or outcome class that is observed in the dataset. Here, MAR X

denotes a mechanism where missingness in X1 is only a function of the observed X2 covariate;

in contrast, MAR XY is a mechanism that depends on both X2 and Y . The acronym

MNAR denotes missing not at random which occurs when the likelihood that a covariate

is missing is a function of the covariate itself and/or the other observed covariates and

outcome classes. This might occur when a covariate is missing because the unobserved value

exceed a threshold. We labeled the last two mechanisms MNAR X and MNAR XY because

they are functions of X1 and X1 ∗ Y , respectively. Lastly, MCAR or missing completely
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at random is the setting when the missingness probability is not a function of either the

unobserved covariate, the observed covariates, or the outcome class. This might occur, for

example, when a random selection of blood chemistry measures are lost due to equipment

malfunction. Note that the four missing data mechanisms simplify to MCAR mechanisms

when β = 0. Thus, as β moves from zero, the missing data mechanisms transition from

MCAR to mild MAR/MNAR to extreme MAR/MNAR. In our simulation study, we set the

value of β to -5, -1, 0, 1, and 5. To put these values in context, note that β = 2 corresponds

to an odds ratio ≈ 2.7 and β = 5 corresponds to an odds ratio ≈ 148. The value of α controls

the overall proportion of observations with missing covariates. We selected α so that the

missing proportion was .1, .4, and .7.

In summary, the simulation considers 3 numbers of predictors, 3 degrees of separation, 4

missing data mechanisms, 3 proportions of overall missing data, and 5 values of β to provide

a spectrum of MCAR to MAR/MNAR missing data mechanisms. For each combination of

settings, we generated 250 observations from each class, generated probabilities of missingX1,

then sampled which observations to mark as missing based on the probability. Furthermore,

for each combination of settings, we generated an out-of-sample validation set (without

missing data). We constructed a linear SVM from the training set omitting observations

with missing values, then we constructed the oracle SVM, i.e., the SVM generated from the

training set with no missing data. The out-of-sample prediction error of both classifiers was

calculated using the validation set. We combined both measures of classifier performance

by calculating the difference between the two, a summary measure we call the above oracle

prediction error (AOPE) because it represents the increase in out-of-sample mis-classification

due to missing data. Values of AOPE near zero represent minimal impact of missing data

while large values represent a larger impact. The simulation for each combination of settings

was repeated 100 times, from which we calculate the median AOPE and inter-quartile range.

The cost parameter was selected by grid search and cross-validation.

The results from every setting are reported in the supplementary materials, and we

highlight a few results here. In table 1, we show the results with Bayes risk at 0.25 and

missing proportion at 0.4. The first noticeable feature is that MAR X and MNAR X had

little impact on the accuracy of the complete case SVM. However, the XY missing data
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Missing type

Bayes risk Missing prop beta Predictors MAR X MAR XY MNAR X MNAR XY

0 50 0 50 0 50 0 50

0.25 0.4 -5 2

20

200

-1 2

20

200

0 2

20

200

1 2

20

200

5 2

20

200

Table 1: Median [IQR] of out-of-sample above oracle prediction error (AOPE) on the

percentage-points scale

mechanisms did have some impact, particularly at the most extreme values of β. The XY

mechanisms were constructed to have differential, class-specific patterns of missing data in

the covariate space, which is related to the asymmetry between β = 5 and -5 in the MNAR

XY case. In the first, the complete case solution performs poorly. In the later, there is only

mild increase in prediction error. The asymmetry is a consequence of the distinct covariate

regions where the missing data occurs. In the first, the missingness falls in the margin, near

the boundary. In the later, the missingness falls away from the margin. Despite being an

MNAR data and despite the very strong missingness signal (β = 5), the missing data only

increased less than 5 percentage points for 2 and 20 predictors and less than 1 percentage

point for 200 predictors.

Table 1 also illustrates the consequence of increasing the number of predictive covariates

while holding the missing percentage constant. Heuristically, missingness in a covariate is

less impactful as the relative importance of the single covariate decreases. It is a pattern
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observed at the extremes of β. The opposite pattern is observed at the less extreme values of

β, even in table 1 where the MCAR setting shows an ever-so-small increase as the number of

predictors increases. The complete case strategy is unbiased in the MCAR setting, and the

small increase in miss-classification is due to the added variability of the smaller sample size.

Thus, a missingness mechanism closer to the MCAR end of the spectrum will have small

but growing impact as the number of predictors increases. A mechanism closer the extreme

MAR/MCAR XY end of the spectrum can (but may not) be consequential, especially for

smaller numbers of predictors.

Missing type

Bayes risk Predictors beta Missing prop MAR X MAR XY MNAR X MNAR XY

0 50 0 50 0 50 0 50

0.1 2 -5 0.1

0.4

0.7

0 0.1

0.4

0.7

20 -5 0.1

0.4

0.7

0 0.1

0.4

0.7

200 -5 0.1

0.4

0.7

0 0.1

0.4

0.7

Table 2: Median [IQR] of out-of-sample above oracle prediction error (AOPE) on the

percentage-points scale

In table 2, we contrast the MCAR setting (β = 0) with the extreme case (β = −5) at

increasing levels of overall missing proportion and increasing number of predictors. As ex-
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pected, the AOPE is smaller for the MCAR settings, even less so as the number of predictors

gets smaller. The missing proportion has a noticeable impact at the extreme level, more so

in the MNAR settings. Perhaps what is most striking in table 2 is the rather small effect of

moderate levels of the missing proportion even at extreme levels of β.

It is worth repeating that the missing proportions of 0.7 or missing mechanisms where

the odds ratio of missing a covariate is greater than a 100 for a unit increase in the same

or another covariate is a purposely extreme scenario. It is striking to see that even in the

extreme settings, the complete case still performed well when the missing mechanism was

MAR X. With that mechanism, the small decrease in accuracy is comparable to the loss of

efficiency demonstrated when β = 0. Except for a few settings when the missing proportion

was 0.7, the same can be said of the complete case SVM in the MNAR X setting. In the

MNAR/MAR XY settings, the complete case strategy is not as robust.

This simulation study brings greater context to the issue of missing data and SVMs. It

illustrates that the framework for missing data commonly used in likelihood or regression

settings may not apply to SVM and other margin classifiers. As noted above, the framework

for missing data with SVMs centers on the empirical miss-classification penalty which is a

finite sample approximation of the infinite-population miss-classification rate. When won-

dering if a particular missingness mechanism might lead to a biased complete case SVM, the

question is not whether or not the mechanism is MCAR, MAR, or MNAR, but rather the

question is whether the mechanism biases the empirical miss-classification penalty.

In situations where maximum efficiency is important and an alternative missing data

strategy is needed, the results from this simulation study suggest that users should be con-

scientious about differential missing data mechanisms among outcome classes. If data pro-

cessing steps lead to outcome class-specific missing data issues, users should implement a

strategy that incorporates outcome class.

Lastly, we acknowledge that missing data mechanisms are not known and cannot be

known in practice. The user is faced with trade-offs of efficiency, unbiasedness, and ease-of-

implementation all while not knowing the degree of efficiency loss or potential bias imposed

by the missing data. In light of these challenges, it is still true, however glib, that the best

strategy for missing data is not to have any.
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A COMPARISON OF GENERAL PURPOSE AND SVM-

SPECIFIC MISSING DATA STRATEGIES

Because users of SVM will want to apply the method in settings with missing data, we

transition to a discussion of specific missing data strategies. Note that the different missing

data methods are strategies for incorporating information from the incomplete observations

in addition to the information already provided by the complete observations. Let xoi denote

the subset of covariates that are observed, and let xmi denote the subset of missing covariates

for subject i. If the missing data mechanism is such that the probability of missingness

is only a function of the observed covariates, P (R|Y,X) = P (R|Y,Xo), then incorporating

information from the observations with missing covariates can minimize the impact of the

missing data.

Imputation, single and multiple

A common strategy for missing data with SVMs and many analysis methods is imputation,

in which missing covariates are filled-in with reasonable values. In its simplest form, the

replacement value could be the covariate mean (mean imputation) or simply a random draw

from the set of observed covariate values. In more sophisticated settings, the replacement

value is drawn from different estimates of P (Xm|Y = yi, X
0 = xoi ). For example, one might

estimate the conditional distribution under the assumption that P (Xm|Y = yi, X
0 = xoi ) is

normally distributed and then draw a replacement value from it. A non-parametric approach

is K-nearest neighbor where the conditional distribution is approximated by the distribution

of Xm in K complete cases with similar values of xoi and yi. There are many algorithms

for selecting the replacement value for the missing covariate. Once the missing values are

replaced with reasonable surrogates, one constructs the SVM with the newly completed

training set.

A second level of sophistication is to repeat the imputation process multiple times15 with

an algorithm that replaces missing values with a draw from a conditional distribution instead

of its mean or median. Then, one constructs an SVM classifier with each filled-in training
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set, and then combines all the results into a single classifier. The advantage of repeating the

imputation process multiple times is that it provides an indication of the increased variation

due to the missing covariate data. If the set of SVM classifiers result in similar boundaries,

then the missing data had little impact. Disparate boundaries would indicate greater impact.

As a general purpose solution, imputation does not require specialized software. The

strategy implements a pre-processing step that allows all down-stream calculations to proceed

without alteration. Because it is a straight-forward solution for missing data, it has been

widely studied and widely implemented in practice. For example, Acuña and Rodriguez1

encouraged the use of KNN imputation and Garcia and Hruschka9 suggested Naive Bayes

type imputation. In Farhangfar et al.7, the authors consider the Gaussian SVM with hot

deck imputation, Naive Bayes, mean imputation, and regression-based imputation. Other

imputation methods, popular in parametric analyses, include Sequences of Regression Models

(SRM)12 and Multivariate Imputation by Chained Equations (MICE)4.

Pattern mixture models

In contrast to the imputation solution described above which generates a single solution

that makes predictions from a set of fully known covariates, some missing data strategies

anticipate that the classifier will be implemented with data that also has missing covariates.

Further, if the missing data pattern—the set of covariates that are missing—is informative

for predicting the outcome, then models which condition on the missing data pattern can

be effective, especially when prediction or classification is the primary objective instead of

statistical inference. This family of missing data strategies are known as pattern mixture

models because the infinite-population is conceptualized as a mixture of sub-populations

characterized by a unique pattern of missing covariates.

The optimal implementation of this approach is an area of current research. The primary

advantage of this strategy is its straight-forward application to future data with missing

covariates. It is especially useful in settings where data are extracted from distinct sources

and the missing data patterns are reflective of source-specific processing which are likely to

continue in the future. Furthermore, it does not require specialized software to implement.

The primary criticism of this strategy is the potentially large number of missing data patterns
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and the small number of observations within each pattern.

SVM-specific strategies

There are a number of SVM-specific strategies for missing data that take advantage of

computational details (purposely omitted from this manuscript) or the fact that the SVM

is a margin classifier or other properties of the SVM. See the review by Garćıa-Laencina et

al.10 for a review of several strategies. Some of the solutions are computationally intensive,

constrained by sample size, restricted to specific kernel functions, or require specialized

computational routines. These barriers to implementation likely contribute to the relatively

fewer examples of these methods in practice compared to imputation.

The probability constraint techniques of Shivaswamy et al.17 take advantage of the con-

strained, convex optimization problem that defines the SVM. They note that the covariates

only enter into the problem through the constraint involving the surrogate miss-classification.

The method replaces the constraint with one which limits the conditional probability of (sur-

rogate) miss-classification. While an intuitive solution for missing data, the strategy suffers

from the barriers listed earlier.

Chechik et al5 proposed a missing data method built on the geometric perspective of

SVMs; the basic idea is to define the margin in terms of non-missing covariates. The geo-

metric max margin method redefines the margin uniquely for each observation. This geo-

metric solution performs reasonably well when the missingness is unrelated to the covariates

or the outcome. In that setting, there may be some advantages in computation time over

imputation. However, computation requires non-convex optimization when the two groups

are not separable, which is a very common setting.

Smola et al.18 provides a principled missing data method based on a connection between

SVM and exponential family distributions. The authors note a connection between the

sufficient statistics of P (Y |X) and the SVM solution with a specific kernel. The fitted SVM

is also the solution which maximizes the likelihood ratio. The method proposes that for

missing data, one replace the loss function with one constructed with sufficient statistics

from the distribution P (Y |Xo). The solution requires a number of ”thorny” computational

issues, and it is limited in workable size.
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One SVM-specific strategy with strong connections to multiple imputation was proposed

by Anderson and Gupta2. Because covariate data enters the SVM objective function via the

kernel matrix, the n×n matrix of κ(xi, xj), the authors propose replacing the kernel matrix

with its expectation under user specified assumptions of the covariate distribution. Note that

the multiple imputation estimate of the kernel matrix generates an expected kernel under

a set of reasonable assumptions and is easily calculated. Rather than using the multiple

imputation expected kernel, the authors instead opt for closed form solutions under the

assumption that the covariate data is normally distributed.

Simulation study of missing data strategies

In this section, we compare the performance of some of the SVM strategies described above:

Complete Case (CC), Mean Imputation (Imp), Multiple Imputation (MI), K-Nearest Neigh-

bor Imputation (KNN), and Probability constraint (PC). As before, we also built the oracle

classifier, the SVM classifier built with no missing data. Because so many imputation meth-

ods exist, we selected the method most likely to succeed with the data generated in the

simulation. Specifically, we chose imputation based on the assumption that the data are

normally distributed. (Specifics of the data generation are described below.) Thus, we ad-

dress the question of imputation models by attempting to select one that should work as

well as any other.

The PC method17, as noted earlier, takes advantage of the constrained optimization

problem which characterizes computation of the SVM solution. Without missing data, the

constrained optimization problem recasts equation (2) as

fsvm = arg min
f∈H

||f ||2H +
C

n

n∑
i

ξi

Such that 1− yif(xi) ≤ ξi and ξi ≥ 0 for i = 1, . . . , n

The PC method replaces the constraints involving missing covariates with

P (1− yif(xi) ≤ ξi|xoi , yi) ≥ 1− vi vi ∈ (0, 1]; i = 1, . . . , n.

The authors show that Chebyshev inequalities applied to the constraint allow the optimiza-

tion problem to be recast as a second order cone programming problem. We construct linear
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classification rules with this method.

Our simulation study is organized as a factorial experiment in which we consider (a)

linear and non-linear boundaries, (b) two missing data models, and (c) linear and Gaussian

kernel classifiers. For each combination, we generated 100 datasets with p = 20 covariates

drawn from the normal distribution with mean centered at 10.

In scenarios with a linear boundary, the outcome was generated from the linear log odds

model

logit P (Y = +1|X) = γ1t
p(X − 10 · 1p). (4)

In scenarios with a non-linear boundary, the outcome was generated from the model

logit P (Y = +1|X) = γ

[
δ +Xp −

p−1∑
i=1

(Xi − 10)2

]
. (5)

In both the linear and non-linear boundary models, the parameter γ calibrates signal strength,

and is set so that the oracle classifier achieves a 15% classification error rate. The parameter

δ is set to achieve balanced group proportions.

We generate missing values according to two missing data models, MAR X and MAR

XY, constructed similar to the previous simulation. In contrast to the earlier simulation in

which missing data only occur in the first predictor, in this simulation, missing values are

allowed in all but the last predictor. Further, missingness in Xk is a function of the value

Xk+1. In both missing data scenarios, we consider a wide range of values for β in order to

judge classification performance in varying degrees of missing data model signal strength.

Specifically, β = -6, -2, 0, 2, and 6. Note that negative and positive values of β represent

considerably different missing data patterns, and methods for missing data can have non-

symmetric performance along the range of βs. The parameter α is calibrated so that the

percentage of observations with missing covariates is 70% because we want a scenario where

complete case shows degraded performance. As before, the specific value of α depends of

the value of β.

As in the previous simulation, AOPE represents the loss in accuracy due to missing data

in the covariates. Table 3 reports the AOPE for each competing method in each scenario

and is based on a validation data set of 100,000 observations.
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β

Boundary Miss type -6 -2 0 2 6

Linear MAR X CC 6.1 [4.7, 7.8] 5.6 [4.7, 7.2] 4.7 [3.4, 6.5] 5.9 [3.9, 7.5] 6.5 [5.0, 8.1]
Imp 0.3 [-0.1, 0.8] 0.3 [-0.2, 0.7] 0.2 [-0.1, 0.7] 0.2 [-0.2, 0.7] 0.2 [-0.2, 0.8]
KNN 0.5 [-0.0, 0.9] 0.4 [-0.1, 0.9] 0.5 [-0.1, 1.0] 0.4 [-0.1, 0.8] 0.5 [-0.2, 0.9]
MI 0.2 [-0.1, 0.7] 0.3 [-0.2, 0.6] 0.1 [-0.4, 0.5] 0.2 [-0.2, 0.7] 0.2 [-0.2, 0.5]
PC 0.3 [-0.2, 0.9] 0.4 [-0.2, 0.8] 0.3 [-0.1, 0.8] 0.3 [-0.1, 1.0] 0.5 [-0.0, 0.9]

MAR XY CC 6.3 [5.3, 7.9] 5.8 [4.0, 7.1] 4.7 [3.4, 6.5] 8.1 [6.4, 11.6] 11.3 [9.5, 13.5]
Imp 0.3 [-0.1, 0.7] 0.2 [-0.2, 0.7] 0.2 [-0.1, 0.7] 0.3 [-0.2, 0.7] 0.2 [-0.2, 0.6]
KNN 0.5 [-0.1, 0.9] 0.5 [0.0, 1.1] 0.5 [-0.1, 1.0] 0.2 [-0.1, 0.7] 0.3 [-0.1, 0.8]
MI 0.3 [-0.2, 0.6] 0.3 [-0.1, 0.7] 0.1 [-0.4, 0.5] 0.1 [-0.3, 0.5] 0.2 [-0.2, 0.7]
PC 0.5 [0.1, 1.3] 0.5 [-0.2, 1.1] 0.3 [-0.1, 0.8] 0.2 [-0.3, 0.6] 0.3 [-0.3, 0.7]

Nonlinear MAR X CC 8.2 [2.6, 17.3] 5.3 [2.3, 16.8] 2.6 [1.6, 4.1] 4.0 [2.3, 9.9] 5.3 [2.6, 12.0]
Imp 0.6 [0.0, 1.2] 0.6 [-0.0, 1.1] 0.4 [-0.0, 0.9] 0.7 [-0.0, 1.3] 0.7 [0.1, 1.3]
KNN 0.2 [-0.3, 0.6] 0.3 [-0.2, 0.7] 0.2 [-0.2, 0.6] 0.3 [-0.1, 0.9] 0.3 [-0.2, 0.7]
MI 0.3 [-0.1, 1.1] 0.3 [-0.1, 0.7] 0.3 [-0.2, 0.9] 0.2 [-0.2, 0.8] 0.5 [0.0, 1.1]

MAR XY CC 22.2 [17.8, 25.0] 17.3 [12.6, 22.4] 2.6 [1.6, 4.1] 16.5 [12.7, 19.8] 20.0 [16.8, 21.5]
Imp 0.7 [0.1, 1.2] 0.6 [-0.0, 1.2] 0.4 [-0.0, 0.9] 0.6 [-0.2, 1.1] 1.0 [0.4, 1.7]
KNN 0.5 [-0.0, 1.1] 0.4 [-0.1, 1.1] 0.2 [-0.2, 0.6] 0.3 [-0.3, 0.8] 0.4 [0.0, 1.2]
MI 0.4 [-0.0, 1.1] 0.3 [-0.4, 0.9] 0.3 [-0.2, 0.9] 0.4 [-0.1, 1.0] 0.4 [-0.4, 0.9]

Table 3: Median [IQR] of out-of-sample above oracle prediction error (AOPE) when the

number of predictors is 20 (percentage-points scale)

The most striking result of this simulation is that all the missing data strategies performed

relatively well except for complete case. The setting was selected so that complete case would

perform poorly. Reported in the percentage-point scale, the largest AOPE was single, mean

imputation in the non-linear setting with the rather extreme β = 6. The median added error

was 1.0 percentage points. Despite the large number of observations with missing data and

the MAR missing data mechanisms, none of the imputation or PC missing data strategies

showed consistently better performance. These results suggest that when large numbers

of observations have missing data, implementing imputation or PC can improve the SVM

performance over complete case.

Application to HCV-TARGET data

We apply the missing data strategies to a subset of patients from the HCV-TARGET

database. HCV-TARGET is a consortium of North American academic and community

medical centers performing a longitudinal observational study of patients undergoing treat-
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ment for hepatitis C. Specifically, we consider previously treated, non-cirrhotic, female pa-

tients treated with Telaprevir. One reason for choosing this subset is that its cure rate is

lower than some of its counterparts.

Cure, the outcome of interest, is defined as undetected hepatitis C virus 12 weeks after

ending treatment. The training set (N=112) are those patients treated prior to 1 January

2012. The validation set (N=38) are those treated after. The predictors of interest include

age and five blood assays at baseline: total bilirubin (BILI), creatinine (CRE), hemoglobin

(HGB), hepatitis C viral load (LOGHCV), and absolute neutrophil count (ANC). We selected

these predictors from the set of baseline measures in consultation with members of the HCV-

TARGET team. In the training set, 37% of patients have incomplete data. Of those with

incomplete data, 71% are missing one predictor, 20% are missing two predictors, and the

remaining 9% are missing three predictors.

We applied complete case, mean imputation, multiple imputation, k-nearest neighbor,

and probability constraint methods to the construction of decision rules with linear and

Gaussian kernels. The out-of-sample prediction error for each classification rule is reported

in Table 4. The most striking feature of this example is the dominance of the non-linear

kernel within each strategy, which suggests non-linear associations between the predictors

and the outcome. Each kernel method performed better with the Gaussian kernel than the

linear kernel. The multiple imputation method was best (23.7%).

While SVM decision rules are difficult to interpret in terms of a single predictor or even

two predictors, inspection of partial-effect plots did demonstrate potentially important non-

linear boundaries between outcome groups in the predictor variables. We observed, for

example, that a number of relationships indicate one group near the mean and the other

group near both tails. AGE is one such predictor with this trend. Others like BILI tend to

have a more linear-type relationship, where higher values of BILI do not favor cure.

CONCLUSIONS

As a margin classifier, the SVM has a natural robustness to missing data when compared to

other prediction and classification methods. Only missingness among the support vectors and

17



Method Linear Kernel Gaussian Kernel

Complete Case 44.74 31.58
KNN 44.74 31.58
Mean Imputation 47.37 28.95
Multiple Imputation 39.47 23.68
Probability Constraint 31.58

Table 4: Prediction error of various missing data strategies when applied to HCV-TARGET

Data

observations that would be miss-classified have the potential to impact the SVM solution. If

the missingness is differential between outcome classes, then a complete case solution may be

biased. Unfortunately, the missing data mechanism is not discoverable from the data, so we

recommend implementing a missing data strategy when the percentage of observations with

missing covariates is large. The exact cut-off between large and small percentages, of course,

is ambiguous, but the simulations that report increasing levels of missingness show little

advantage of a missing data strategy over the complete case solution when the percentage is

less than 15% and even 30%.

While there are SVM-specific missing data strategies, barriers to implementation have

likely hindered their wide spread use, whereas; general purpose solutions like imputation are

popular because they require a simple pre-processing step and tend to be effective. In light of

this, implementation continues be a key consideration for future SVM-specific missing data

methods, which is why our recommendation to developers of new SVM missing data strate-

gies is to provide ready-to-implement software. For users of SVM, we recommend imputation

because it is easy to implement and many statistical programming languages already have

developed routines and packages that will provide single and multiple imputation algorithms.
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Missing type

Bayes risk Missing prop β MAR X MAR XY MNAR X MNAR XY

0.1 0.1 -5 0.0 [-0.1, 0.1] 1.0 [0.7, 1.5] 0.0 [-0.1, 0.0] 0.0 [-0.1, 0.0]
-1 0.0 [-0.0, 0.1] 0.1 [-0.0, 0.3] 0.0 [-0.1, 0.1] 0.0 [-0.0, 0.1]
0 0.0 [-0.1, 0.1] 0.0 [-0.0, 0.1] 0.0 [-0.0, 0.1] 0.0 [-0.0, 0.1]
1 -0.0 [-0.1, 0.0] 0.0 [-0.0, 0.1] 0.0 [-0.1, 0.0] 0.2 [0.0, 0.4]
5 0.0 [-0.1, 0.1] 0.0 [-0.0, 0.1] -0.0 [-0.1, 0.1] 1.2 [0.8, 1.6]

0.4 -5 0.1 [0.0, 0.4] 10.2 [8.6, 12.0] 0.1 [-0.0, 0.3] 3.3 [1.8, 4.4]
-1 0.1 [-0.0, 0.2] 1.4 [1.0, 2.0] 0.1 [-0.0, 0.2] 0.8 [0.4, 1.3]
0 0.1 [-0.0, 0.1] 0.0 [-0.1, 0.2] 0.0 [-0.0, 0.2] 0.1 [-0.0, 0.2]
1 0.0 [-0.1, 0.2] 1.1 [0.6, 1.6] 0.1 [0.0, 0.2] 2.0 [1.5, 2.9]
5 0.1 [-0.0, 0.4] 6.5 [5.3, 8.3] 0.1 [0.0, 0.4] 9.9 [9.2, 10.7]

0.7 -5 0.6 [0.2, 1.3] 13.6 [11.6, 14.8] 39.7 [39.3, 39.9] 39.9 [39.7, 40.2]
-1 0.3 [-0.0, 0.7] 3.4 [2.4, 4.6] 0.6 [0.1, 1.3] 7.8 [4.7, 11.1]
0 0.2 [-0.0, 0.4] 0.2 [-0.0, 0.5] 0.2 [0.0, 0.4] 0.1 [-0.0, 0.3]
1 0.3 [0.1, 0.6] 4.5 [2.8, 6.4] 0.3 [0.1, 0.7] 4.5 [2.7, 6.1]
5 0.7 [0.2, 2.3] 37.0 [34.4, 40.2] 39.7 [8.2, 40.0] 19.7 [18.3, 22.1]

0.25 0.1 -5 0.0 [-0.0, 0.1] 1.3 [0.9, 1.8] 0.0 [-0.0, 0.1] 0.1 [-0.0, 0.2]
-1 0.0 [-0.1, 0.1] 0.3 [0.1, 0.6] 0.0 [-0.1, 0.1] 0.0 [-0.0, 0.2]
0 0.0 [-0.1, 0.1] 0.0 [-0.1, 0.1] 0.0 [-0.0, 0.1] 0.0 [-0.0, 0.1]
1 0.0 [-0.0, 0.1] 0.2 [-0.0, 0.4] 0.0 [-0.1, 0.1] 0.2 [0.0, 0.4]
5 0.0 [-0.1, 0.2] 0.6 [0.2, 1.0] 0.0 [-0.1, 0.1] 1.0 [0.6, 1.2]

0.4 -5 0.1 [-0.0, 0.4] 8.8 [7.7, 9.7] 0.2 [-0.0, 0.8] 23.9 [19.4, 24.8]
-1 0.1 [-0.0, 0.2] 2.3 [1.7, 2.8] 0.1 [-0.0, 0.4] 2.9 [2.0, 5.0]
0 0.1 [-0.0, 0.2] 0.0 [-0.0, 0.2] 0.1 [-0.1, 0.2] 0.1 [-0.0, 0.2]
1 0.1 [-0.1, 0.4] 3.6 [2.5, 4.9] 0.1 [-0.0, 0.3] 1.5 [1.1, 1.9]
5 0.2 [0.0, 0.4] 17.2 [15.6, 18.9] 0.3 [0.0, 0.9] 4.7 [4.3, 5.2]

0.7 -5 1.0 [0.3, 2.4] 10.9 [10.1, 11.9] 24.7 [24.1, 25.0] 38.6 [37.2, 39.7]
-1 0.4 [0.1, 1.0] 4.7 [3.5, 6.0] 0.4 [0.1, 0.9] 21.2 [16.1, 24.8]
0 0.4 [0.1, 0.8] 0.3 [0.1, 0.7] 0.2 [-0.0, 0.5] 0.3 [0.0, 0.8]
1 0.4 [0.1, 0.9] 11.3 [9.2, 13.9] 0.5 [0.2, 1.1] 2.8 [2.2, 3.6]
5 0.8 [0.1, 2.1] 29.3 [27.6, 30.7] 24.6 [24.2, 25.0] 7.6 [6.8, 8.7]

0.4 0.1 -5 0.0 [-0.0, 0.2] 1.6 [1.0, 2.1] 0.1 [-0.0, 0.3] 4.0 [1.7, 7.6]
-1 0.0 [-0.1, 0.1] 0.5 [0.1, 0.9] 0.1 [-0.1, 0.2] 0.5 [-0.0, 1.0]
0 0.1 [-0.1, 0.2] 0.0 [-0.1, 0.1] 0.1 [-0.1, 0.2] 0.0 [-0.1, 0.2]
1 0.1 [-0.1, 0.2] 0.7 [0.1, 1.5] 0.0 [-0.1, 0.1] 0.2 [-0.0, 0.4]
5 0.0 [-0.1, 0.3] 3.2 [2.4, 4.4] 0.1 [-0.1, 0.2] 0.5 [0.2, 0.7]

0.4 -5 0.4 [0.0, 1.1] 4.2 [3.8, 4.8] 1.8 [0.2, 9.2] 15.8 [15.0, 16.5]
-1 0.3 [0.0, 0.7] 2.5 [1.8, 3.0] 0.3 [-0.0, 0.9] 10.7 [9.3, 12.6]
0 0.2 [-0.0, 0.4] 0.2 [-0.0, 0.5] 0.3 [-0.1, 0.6] 0.2 [-0.1, 0.6]
1 0.3 [-0.1, 0.7] 6.7 [5.8, 7.8] 0.2 [-0.0, 0.8] 0.8 [0.4, 1.2]
5 0.4 [0.0, 1.0] 11.1 [10.5, 12.0] 2.5 [0.3, 9.6] 1.4 [1.0, 1.8]

0.7 -5 2.9 [0.5, 9.1] 5.2 [4.8, 5.8] 9.4 [8.9, 9.8] 16.5 [15.9, 17.3]
-1 1.0 [0.3, 2.7] 3.3 [2.8, 4.2] 2.2 [0.6, 9.4] 14.5 [13.8, 15.9]
0 0.8 [0.2, 2.2] 0.6 [0.0, 1.9] 0.6 [0.1, 1.5] 0.7 [0.1, 1.5]
1 1.0 [0.3, 8.5] 9.9 [8.6, 10.9] 1.9 [0.4, 9.1] 1.3 [0.7, 1.6]
5 3.6 [0.8, 9.0] 12.5 [11.7, 13.1] 9.3 [8.5, 9.7] 1.8 [1.5, 2.3]

Table 5: Median [IQR] of out-of-sample above oracle prediction error (AOPE) when the

number of predictors is 2 (percentage-points scale)
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Missing type

Bayes risk Missing prop β MAR X MAR XY MNAR X MNAR XY

0.1 0.1 -5 0.1 [-0.2, 0.3] 0.9 [0.4, 1.2] 0.1 [-0.1, 0.3] 0.1 [-0.1, 0.2]
-1 0.1 [-0.0, 0.3] 0.2 [-0.0, 0.5] 0.0 [-0.1, 0.2] 0.1 [-0.1, 0.2]
0 0.1 [-0.1, 0.3] 0.1 [-0.1, 0.2] 0.1 [-0.1, 0.3] 0.1 [-0.1, 0.3]
1 0.1 [-0.2, 0.3] 0.1 [-0.1, 0.3] 0.1 [-0.1, 0.3] 0.3 [0.0, 0.6]
5 0.1 [-0.1, 0.3] 0.2 [0.0, 0.5] 0.0 [-0.1, 0.2] 1.1 [0.7, 1.6]

0.4 -5 0.8 [0.3, 1.5] 8.6 [7.1, 10.5] 0.8 [0.5, 1.4] 4.2 [2.8, 6.0]
-1 0.6 [0.2, 1.0] 1.6 [1.1, 2.2] 0.8 [0.4, 1.1] 1.4 [1.1, 2.0]
0 0.6 [0.3, 1.0] 0.6 [0.3, 1.1] 0.7 [0.3, 1.0] 0.5 [0.3, 1.1]
1 0.8 [0.3, 1.1] 1.6 [1.1, 2.1] 0.7 [0.4, 1.1] 2.2 [1.5, 3.0]
5 0.7 [0.3, 1.2] 7.9 [6.3, 9.2] 0.9 [0.5, 1.5] 8.6 [7.2, 9.7]

0.7 -5 3.3 [2.2, 4.8] 12.4 [11.0, 14.3] 10.3 [4.7, 38.1] 39.7 [38.5, 41.2]
-1 2.2 [1.4, 3.0] 4.3 [3.4, 6.0] 3.2 [2.0, 4.8] 9.4 [6.8, 12.7]
0 2.0 [1.6, 3.1] 1.9 [1.3, 2.8] 2.2 [1.4, 2.8] 2.2 [1.4, 3.2]
1 2.1 [1.3, 3.0] 6.9 [5.3, 8.7] 2.8 [1.8, 4.1] 6.2 [4.3, 7.8]
5 3.6 [2.1, 5.2] 32.5 [30.5, 34.8] 11.0 [4.9, 37.4] 18.2 [15.9, 19.8]

0.25 0.1 -5 0.1 [-0.1, 0.3] 1.1 [0.7, 1.8] 0.1 [-0.1, 0.3] 0.4 [0.1, 0.7]
-1 0.2 [-0.1, 0.4] 0.1 [-0.1, 0.5] 0.1 [-0.1, 0.4] 0.4 [0.1, 0.8]
0 0.1 [-0.1, 0.3] 0.1 [-0.1, 0.3] 0.2 [0.0, 0.4] 0.1 [-0.1, 0.3]
1 0.2 [-0.1, 0.4] 0.3 [0.1, 0.6] 0.1 [-0.0, 0.4] 0.1 [-0.2, 0.4]
5 0.2 [-0.0, 0.4] 0.8 [0.5, 1.2] 0.1 [-0.1, 0.3] 0.5 [0.3, 0.9]

0.4 -5 1.0 [0.5, 1.5] 7.8 [6.7, 8.9] 1.0 [0.5, 2.0] 18.4 [16.6, 19.9]
-1 1.0 [0.5, 1.4] 2.2 [1.7, 2.9] 0.9 [0.5, 1.4] 4.9 [4.0, 6.3]
0 0.8 [0.3, 1.3] 1.0 [0.5, 1.4] 0.9 [0.5, 1.6] 0.9 [0.5, 1.4]
1 0.9 [0.3, 1.4] 4.7 [4.0, 5.6] 0.8 [0.3, 1.4] 1.7 [1.3, 2.2]
5 1.2 [0.6, 1.9] 15.8 [14.7, 17.3] 1.3 [0.7, 2.1] 4.6 [4.1, 5.2]

0.7 -5 3.9 [2.2, 5.7] 10.8 [9.7, 12.0] 6.5 [3.8, 18.9] 34.3 [32.7, 35.2]
-1 3.2 [2.1, 4.6] 5.4 [4.2, 6.7] 3.1 [2.2, 4.5] 17.0 [13.5, 18.6]
0 2.9 [1.8, 4.3] 3.0 [2.1, 3.9] 3.0 [2.2, 4.0] 2.8 [2.0, 3.8]
1 3.1 [2.0, 4.3] 12.1 [9.8, 13.5] 3.1 [2.0, 4.6] 3.6 [2.9, 5.1]
5 3.9 [2.7, 5.3] 25.4 [23.8, 27.0] 6.3 [2.8, 20.7] 6.7 [6.0, 7.6]

0.4 0.1 -5 0.3 [-0.0, 0.6] 0.4 [-0.0, 1.0] 0.2 [-0.0, 0.5] 3.6 [2.5, 4.6]
-1 0.2 [-0.1, 0.5] -0.0 [-0.4, 0.4] 0.2 [-0.1, 0.5] 1.2 [0.6, 1.8]
0 0.1 [-0.1, 0.5] 0.3 [-0.0, 0.5] 0.1 [-0.2, 0.4] 0.2 [-0.1, 0.6]
1 0.1 [-0.2, 0.4] 0.8 [0.5, 1.2] 0.2 [-0.2, 0.5] -0.4 [-0.6, 0.0]
5 0.2 [-0.1, 0.6] 2.2 [1.8, 2.9] 0.2 [-0.1, 0.5] -0.4 [-0.9, 0.0]

0.4 -5 1.2 [0.4, 1.7] 3.2 [2.4, 3.8] 1.2 [0.3, 2.1] 12.4 [11.7, 13.1]
-1 0.8 [0.2, 1.6] 1.5 [0.7, 2.1] 1.1 [0.3, 1.8] 7.6 [6.4, 8.6]
0 1.1 [0.4, 1.5] 1.1 [0.5, 1.7] 0.8 [0.4, 1.6] 1.0 [0.4, 1.5]
1 1.1 [0.3, 2.0] 4.8 [4.0, 5.6] 1.1 [0.5, 1.9] 0.0 [-0.6, 0.6]
5 1.0 [0.5, 1.7] 8.6 [7.8, 9.2] 1.2 [0.5, 2.2] 0.3 [-0.3, 1.0]

0.7 -5 2.9 [2.1, 4.0] 3.6 [2.9, 4.4] 4.4 [2.1, 6.4] 13.4 [12.6, 14.5]
-1 2.3 [1.4, 3.6] 2.6 [1.9, 3.3] 2.9 [1.6, 4.0] 10.5 [9.4, 11.6]
0 2.7 [1.3, 3.9] 2.4 [1.3, 3.5] 2.4 [1.5, 3.4] 2.5 [1.6, 3.8]
1 2.5 [1.5, 3.6] 7.1 [6.4, 8.3] 2.2 [1.3, 3.3] 0.7 [-0.0, 1.4]
5 3.0 [2.1, 4.0] 9.6 [8.7, 10.3] 3.1 [2.0, 5.4] 0.8 [0.3, 1.4]

Table 6: Median [IQR] of out-of-sample above oracle prediction error (AOPE) when the

number of predictors is 20 (percentage-points scale)
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Missing type

Bayes risk Missing prop β MAR X MAR XY MNAR X MNAR XY

0.1 0.1 -5 0.4 [-0.3, 1.0] 0.6 [0.0, 1.6] 0.2 [-0.3, 0.8] 0.3 [-0.2, 0.8]
-1 0.6 [0.3, 1.3] 0.7 [-0.1, 1.3] 0.4 [-0.1, 1.1] 0.5 [-0.0, 1.0]
0 0.5 [-0.1, 1.2] 0.7 [-0.1, 1.1] 0.8 [0.1, 1.4] 0.6 [-0.0, 1.1]
1 0.8 [0.1, 1.6] 0.6 [0.1, 1.3] 0.5 [0.0, 1.1] 0.5 [-0.2, 1.1]
5 0.6 [-0.1, 1.1] 1.0 [0.3, 1.4] 0.4 [-0.2, 1.0] 0.0 [-0.7, 0.8]

0.4 -5 3.9 [2.7, 4.9] 4.9 [4.0, 6.1] 4.1 [2.9, 5.2] 8.3 [6.8, 9.6]
-1 3.5 [2.3, 4.4] 3.4 [2.3, 4.5] 3.4 [2.5, 4.5] 4.8 [3.8, 6.0]
0 3.5 [2.8, 4.3] 3.6 [2.3, 4.4] 3.1 [2.2, 4.2] 3.9 [2.6, 4.9]
1 3.6 [2.4, 4.6] 5.3 [4.2, 6.1] 3.8 [2.5, 4.6] 3.7 [2.4, 4.6]
5 3.7 [2.5, 4.8] 10.4 [8.8, 11.4] 4.1 [3.0, 5.4] 6.0 [4.8, 7.0]

0.7 -5 10.3 [8.2, 12.4] 12.4 [10.8, 13.5] 20.2 [17.8, 25.3] 32.0 [31.4, 32.9]
-1 8.4 [7.4, 9.4] 8.5 [7.2, 9.8] 10.0 [8.3, 11.5] 15.3 [13.7, 17.4]
0 8.2 [6.8, 9.7] 8.6 [7.4, 9.6] 7.8 [6.7, 9.6] 8.2 [7.1, 9.4]
1 8.6 [7.2, 10.1] 14.1 [12.5, 15.3] 10.1 [8.0, 12.7] 11.3 [9.5, 13.2]
5 10.2 [7.9, 12.3] 24.9 [23.8, 26.0] 21.4 [17.6, 24.9] 23.4 [21.6, 25.8]

0.25 0.1 -5 0.3 [-0.2, 1.1] -0.0 [-0.9, 0.6] 0.6 [-0.1, 1.2] 1.3 [0.4, 2.0]
-1 0.7 [-0.2, 1.5] -0.0 [-0.7, 0.8] 0.6 [-0.1, 1.4] 1.0 [0.3, 1.7]
0 0.8 [-0.0, 1.5] 0.4 [-0.2, 1.2] 0.6 [-0.2, 1.3] 0.7 [-0.1, 1.5]
1 0.4 [-0.3, 1.2] 0.8 [0.3, 1.6] 0.5 [-0.1, 1.2] -0.0 [-1.0, 0.6]
5 0.5 [-0.2, 1.2] 1.3 [0.6, 2.0] 0.6 [-0.3, 1.6] -1.3 [-2.1, -0.5]

0.4 -5 2.7 [1.7, 3.8] 2.3 [1.6, 3.3] 3.0 [1.7, 4.2] 12.4 [11.3, 13.6]
-1 2.6 [1.4, 3.7] 2.1 [1.2, 2.8] 2.6 [1.8, 3.6] 6.1 [5.0, 7.1]
0 2.9 [1.8, 3.6] 2.8 [2.0, 3.7] 2.5 [1.7, 3.6] 2.9 [2.1, 3.6]
1 3.0 [1.6, 3.7] 4.6 [3.6, 5.6] 3.1 [2.4, 4.4] 0.9 [-0.1, 1.9]
5 3.0 [1.8, 3.9] 9.5 [8.8, 11.3] 2.8 [1.9, 4.2] -0.1 [-1.2, 0.8]

0.7 -5 5.4 [3.9, 7.1] 6.1 [4.9, 7.1] 6.7 [4.9, 8.3] 19.8 [18.7, 20.9]
-1 6.0 [4.4, 7.0] 4.9 [3.9, 6.1] 5.7 [4.6, 6.8] 11.2 [10.2, 12.6]
0 5.8 [4.7, 7.0] 5.7 [4.4, 6.7] 5.7 [4.7, 6.9] 5.9 [4.9, 7.1]
1 5.4 [4.4, 6.9] 9.4 [7.8, 10.5] 6.3 [5.0, 7.7] 4.2 [3.1, 5.2]
5 5.9 [4.9, 7.1] 12.9 [12.2, 14.0] 6.9 [5.4, 8.1] 5.0 [3.8, 6.0]

0.4 0.1 -5 0.2 [-0.2, 0.5] -0.5 [-0.9, 0.0] 0.2 [-0.2, 0.7] 1.4 [1.0, 1.8]
-1 0.3 [-0.1, 0.5] -0.1 [-0.6, 0.2] 0.2 [-0.2, 0.7] 0.8 [0.2, 1.3]
0 0.1 [-0.3, 0.6] 0.2 [-0.3, 0.6] 0.0 [-0.2, 0.5] 0.1 [-0.2, 0.5]
1 0.2 [-0.3, 0.6] 0.6 [0.3, 1.0] 0.1 [-0.2, 0.6] -0.4 [-0.8, 0.0]
5 0.3 [-0.2, 0.6] 0.9 [0.5, 1.3] 0.2 [-0.1, 0.7] -1.3 [-1.7, -0.9]

0.4 -5 0.6 [0.1, 1.1] -0.4 [-1.1, 0.1] 0.8 [0.1, 1.3] 5.5 [5.0, 6.0]
-1 0.7 [0.2, 1.1] -0.0 [-0.7, 0.6] 0.7 [0.1, 1.1] 2.8 [2.3, 3.3]
0 0.5 [0.0, 1.1] 0.8 [0.4, 1.2] 0.7 [0.2, 1.3] 0.8 [0.2, 1.4]
1 0.6 [0.2, 1.3] 1.8 [1.1, 2.4] 0.8 [0.2, 1.3] -1.0 [-1.5, -0.4]
5 0.7 [0.1, 1.2] 3.3 [2.7, 3.9] 0.7 [-0.2, 1.2] -2.4 [-2.8, -1.9]

0.7 -5 1.3 [0.5, 2.1] 0.5 [-0.1, 1.1] 1.4 [0.7, 2.1] 5.9 [5.2, 6.5]
-1 1.4 [0.8, 2.0] 0.7 [0.1, 1.5] 1.1 [0.4, 2.1] 4.1 [3.3, 4.6]
0 1.3 [0.8, 2.0] 1.3 [0.4, 1.9] 1.3 [0.6, 2.0] 1.4 [0.7, 1.8]
1 1.3 [0.7, 1.8] 2.5 [1.8, 3.2] 1.4 [0.7, 2.0] -0.4 [-1.2, 0.1]
5 1.2 [0.4, 1.9] 3.2 [2.6, 3.6] 1.1 [0.5, 2.2] -1.4 [-1.8, -0.7]

Table 7: Median [IQR] of out-of-sample above oracle prediction error (AOPE) when the

number of predictors is 200 (percentage-points scale)
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Missing type

Bayes risk Missing prop β MAR X MAR XY MNAR X MNAR XY

0 50 0 50 0 50 0 50

0.1 0.1 -5
-1
0
1
5

0.4 -5
-1
0
1
5

0.7 -5
-1
0
1
5

0.25 0.1 -5
-1
0
1
5

0.4 -5
-1
0
1
5

0.7 -5
-1
0
1
5

0.4 0.1 -5
-1
0
1
5

0.4 -5
-1
0
1
5

0.7 -5
-1
0
1
5

Table 8: Graphical median [IQR] of out-of-sample above oracle prediction error (AOPE)

when the number of predictors is 2 (percentage-points scale)25



Missing type

Bayes risk Missing prop β MAR X MAR XY MNAR X MNAR XY

0 50 0 50 0 50 0 50

0.1 0.1 -5
-1
0
1
5

0.4 -5
-1
0
1
5

0.7 -5
-1
0
1
5

0.25 0.1 -5
-1
0
1
5

0.4 -5
-1
0
1
5

0.7 -5
-1
0
1
5

0.4 0.1 -5
-1
0
1
5

0.4 -5
-1
0
1
5

0.7 -5
-1
0
1
5

Table 9: Graphical median [IQR] of out-of-sample above oracle prediction error (AOPE)

when the number of predictors is 20 (percentage-points scale)26



Missing type

Bayes risk Missing prop β MAR X MAR XY MNAR X MNAR XY

0 50 0 50 0 50 0 50

0.1 0.1 -5
-1
0
1
5

0.4 -5
-1
0
1
5

0.7 -5
-1
0
1
5

0.25 0.1 -5
-1
0
1
5

0.4 -5
-1
0
1
5

0.7 -5
-1
0
1
5

0.4 0.1 -5
-1
0
1
5

0.4 -5
-1
0
1
5

0.7 -5
-1
0
1
5

Table 10: Graphical median [IQR] of out-of-sample above oracle prediction error (AOPE)

when the number of predictors is 200 (percentage-points scale)27


