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Abstract

High-throughput sequencing technologies have enabled large-scale studies of the

role of the human microbiome in health conditions and diseases. Microbial community

level association test, as a critical step to establish the connection between overall mi-

crobiome composition and an outcome of interest, has now been routinely performed

in many studies. However, current microbiome association tests all focus on a single

outcome. It has become increasingly common for a microbiome study to collect multi-

ple, possibly related, outcomes to maximize the power of discovery. As these outcomes

may share common mechanisms, jointly analyzing these outcomes can amplify the as-

sociation signal and improve statistical power to detect potential associations. We pro-

pose the multivariate microbiome regression-based kernel association test (MMiRKAT)

for testing association between multiple continuous outcomes and overall microbiome

composition, where the kernel used in MMiRKAT is based on Bray-Curtis or UniFrac

distance. MMiRKAT directly regresses all outcomes on the microbiome profiles via a

semi-parametric kernel machine regression framework, which allows for covariate ad-

justment and evaluates the association via a variance-component score test. Since most

of the current microbiome studies have small sample sizes, a novel small-sample cor-

rection procedure is implemented in MMiRKAT to correct for the conservativeness of

the association test when the sample size is small or moderate. The proposed method

is assessed via simulation studies and an application to a real data set examining the

association between host gene expression and mucosal microbiome composition. We

demonstrate that MMiRKAT is more powerful than large-sample based multivariate

kernel association test, while controlling the type I error. A free implementation of

MMiRKAT in R language is available at http://research.fhcrc.org/wu/en.html.

Key Words: Bray-Curtis; Kernel association test; Multivariate outcomes; Small sam-

ple; UniFrac.
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1 Introduction

The human body is inhabited by a huge and complex microbial community called the micro-

biome. The number of microbes that live inside and on us is estimated to be ten times the

number of our somatic and germ cells. The collective genomes of our microbiome contains

two orders of magnitude more genes than the genes in the human genome and contributes

to our normal physiology and disease predisposition [Turnbaugh et al., 2007]. Next genera-

tion sequencing (NGS) technology enables researchers to study the human microbiome using

direct DNA sequencing techniques such as 16S ribosomal DNA-targeted [Lasken, 2012] and

whole genome shotgun (WGS) sequencing [Turnbaugh et al., 2009]. As a result, there has

been a surge of studies interrogating the relationship between the human microbiome and

a wide range of diseases and phenotypes. Through these microbiome studies, many health

conditions and diseases have been linked to the disorder of the human microbiome, such

as obesity [Turnbaugh et al., 2009], inflammatory bowel disease [Morgan et al., 2015] and

diabetes [Qin et al., 2012], providing new insights into the etiology of human diseases.

Within the context of microbiome association studies, a popular strategy for evaluating

the association between the overall microbiome composition and an outcome of interest is

using ecological distances. These ecological distances, also termed as β-diversities, summa-

rize the between-sample variability and distance-based approaches circumvent the difficulty

in direct modeling of the complex microbiome sequencing data, which are usually skewed,

over dispersed and zero-inflated high-dimensional count data [Li, 2015]. For a typical 16S ri-

bosomal DNA-targeted study, the 16S sequencing tags are first clustered on the basis of their

sequence similarity to form Operational Taxonomic Units (OTUs), which are considered to

be surrogates of biological taxa. These OTUs are related by a phylogenetic tree, which pro-

vides important prior information on the phylogenetic relationships among biological taxa.

In a typical microbiome composition data, each OTU variable takes a nonnegative integer
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value representing the count of the taxon detected in a sample. One can then calculate a

distance matrix among the samples based on these OTU counts, with or without taking

into account the phylogenetic tree information. The UniFrac distance and the Bray-Curtis

dissimilarity are widely used in this pipeline [Li, 2015]. To further assess the association

between microbiome profiles and outcome variables of interest, the variability of the mi-

crobiome, which is summarized in distance measures, is compared to the variability of the

outcome variables [McArdle and Anderson, 2001]. A high correspondence usually suggests

existence of association.

Despite their popularity, the distance-based approaches often suffer the following limita-

tions. First, most distance-based tests need permutations to establish significance, which can

be computationally expensive. Furthermore, the distance-based analysis framework does not

easily accommodate adjustment of covariates and confounders that may affect both outcomes

and OTUs. Moreover, it is challenging to handle multivariate outcomes in distance-based

approaches. An alternative to the distance-based approach is kernel machine methods, where

the complex microbiome effects are specified through a kernel function in a semi-parametric

kernel machine regression (KMR) framework, which has been widely used in genetic associa-

tion studies [Wu et al., 2010, 2011b, Zhan et al., 2016]. Recently, the approach was extended

and tailored to microbiome data, via development of the microbiome regression-based ker-

nel association test (MiRKAT) [Zhao et al., 2015]. In MiRKAT, the outcome variable is

regressed on OTU abundances and covariates via KMR, which can simultaneously model

OTU effects nonparametrically and covariate effects parametrically. Moreover, p-value of

the kernel-based test is calculated analytically via a variance-component score test. Hence,

the aforementioned limitations of distance-based approaches are avoided in MiRKAT.

It has become increasingly popular for a microbiome study to collect multiple, possibly

related outcomes to maximize the power of discovery [Wu et al., 2011a]. Unfortunately,

MiRKAT was designed to test the association between a single outcome and overall mi-
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crobiome composition, and it cannot directly handle multiple outcomes. The advantage of

jointly analyzing multiple outcomes is that the association signal is amplified and easier to

detect by pooling information of multiple outcomes together. The power gain of joint analy-

sis of multiple phenotypes has been clearly demonstrated in many genetic association studies

[Maity et al., 2012, O’ Reilly et al., 2012, Wu and Pankow, 2016, Broadaway et al., 2016].

In the same spirit, we propose the MMiRKAT, which extends the MiRKAT framework to

test the association between microbiome composition and multiple outcomes simultaneously

in order to improve power.

In the framework of MMiRKAT, the association is tested by examining whether the

similarity in the microbiome composition across samples resembles similarity in the multi-

variate outcomes, where the similarity in microbiome composition is captured by a kernel

function. The p-value is calculated analytically as a variation of the variance component

score test used in the multivariate phenotype association test in genetic studies [Maity et al.,

2012]. Compared to genetic studies, most current microbiome studies have moderate sample

sizes. The asymptotic kernel association tests derived for large-sample genetic data may be

conservative for microbiome data, leading to loss of power to detect associations. Such a

small-sample conservativeness problem has been well observed in univariate outcome kernel

association tests [Lee et al., 2012, Chen et al., 2016], which is also expected for multivariate

outcomes situations. We thus implement a novel small-sample adjustment in our MMiRKAT

to correct for the potential small-sample conservativeness issue.

The rest of the paper is organized as follows. We first propose a kernel-based model which

describes the association between multiple outcomes and microbiome composition. Then,

we introduce MMiRKAT within this kernel-based modeling framework and incorporate a

correction procedure in MMiRKAT to improve its small sample behavior. Next, we use both

simulation studies and a data example from a host transcriptome-microbiome association

study to illustrate and evaluate the MMiRKAT. The paper concludes with discussion.
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2 Methods

2.1 A kernel model for association analysis

Suppose we observe p continuous outcome variables Yi = (yi1, . . . , yip)
′

such as the expres-

sions of p genes, q covariates Xi = (xi1, . . . , xiq)
′

such as age and gender, and m biological

taxa (or OTUs) Zi = (zi1, . . . , zim)
′

for each individual i = 1, . . . , n. We relate our outcome

variables (Y’s) to OTUs (Z’s) and covariates (X’s) using the following model:

yil = x′itβtl + hl(Zi) + εil, i = 1, . . . , n, l = 1, . . . , p, t = 1, . . . , q, (1)

where hl(·) : Rm 7→ R is a real function, (εi1, . . . , εip)
′

are distributed as Np(0,Σ), Σll′ is the

covariance between the lth outcome and l′th outcome, and βtl are the coefficients for effect

of the covariate Xt on the lth outcome variable.

The relationship between microbiome profiles and outcome variables is modeled non-

parametrically and is fully described by functions h1(·), . . . , hp(·), where hl(·) characterizes

the effect of microbiome composition on the lth outcome. The objective of this paper is to

test whether microbiome profiles have any effect on the outcome variables after accounting

for the effect of covariates. In other words, we are interested in testing the null hypoth-

esis H0 : h1(·) = · · · = hp(·) = 0. In this paper, we specify each function hl(·) using a

common kernel function k(·, ·), that is, hl(·) is assumed to lie in reproducing kernel Hilbert

spaces (RKHS) spanned by the positive definite kernel function k(·, ·). According to Mercer’s

theorem [Cristianini and Shawe-Taylor, 2000], under some regularity conditions, a positive

definite kernel function k(·, ·) implicity specifies a unique Hilbert space H. Moreover, any

function h(x) ∈ H can be expressed as h(x) =
∑L

i=1 aik(x, xi), for some coefficients ai and

observations xi. This is called dual representation, which states that, hl(·)’s can be fully

determined by the kernel function k(·, ·). Although functions h1(·), . . . , hp(·) are assumed in
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the same space spanned by a common kernel k(·, ·), still they can be very different since the

corresponding dual representation coefficients can be different.

Intuitively, k(Zi,Zj) measures the similarity between two microbiome profiles Zi and Zj,

i, j = 1, . . . , n. Hence, a natural approach of selecting an appropriate kernel is to utilize

the relationship between kernels and distance or dissimilarity measures [Gower, 1966, Zhan

et al., 2015b]. Let K be the kernel matrix corresponding to kernel function k(·, ·), that is

Kij = k(Zi,Zj). Let D be a distance matrix, with Dij being the distance between Zi and

Zj. Based on Gower [1966], we can construct the kernel matrix from the distance matrix as

K = −1

2
(In −

1
¯
1
¯
′

n
)D2(In −

1
¯
1
¯
′

n
), (2)

where n is the sample size, In is the nth order identity matrix, 1
¯

is a n-dimensional vector

of ones, and D2 is the element-wise matrix square.

For microbiome composition data, there are a number of different distances or dissim-

ilarities that can be used to construct the D matrix in (2). The taxa are related by a

phylogenetic tree, which provides important prior information on relationships among the

taxa. A distance metric that exploits the degree of divergence between different sequences

can lead to more meaningful results than those ignore the phylogenetic tree information. One

such distance metric is the UniFrac distance family including unweighted UniFrac distance

dU [Lozupone and Knight, 2005], weighted UniFrac distance dW [Lozupone et al., 2007] and

generalized UniFrac dθ, where θ ∈ [0, 1] [Chen et al., 2012]. The UniFrac distance measures

the phylogenetic distance between two microbial communities as the shared fraction of the

branch length of the phylogenetic tree. The unweighted version is constructed based on he

presence/absence information of OTUs, while the weighted version incorporates the relative

taxa abundances, and the generalized UniFrac further attenuates the weight of branches

with large proportions. Another widely used distance metric for microbiome samples is the
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Bray-Curtis dissimilarity, which quantifies dissimilarity between two microbial communities

on the basis of OTU counts without respect to the phylogenetic tree. It can be useful when

the phylogenetic tree information is unavailable or unreliable. Based on these distance or

dissimilarity metrics, we will construct kernels through (2) to build our association test.

2.2 Multivariate microbiome regression-based kernel association test

2.2.1 Kernel machine regression-based testing framework

To test the association between microbiome composition and multiple outcomes, we first

rewrite model (1) in matrix form as

Y = Xβ + h + ε, (3)

where Y = {yil}n×p,X = {xit}n×q,β = {βtl}q×p,h = {hl(Zi)}n×p, and ε is a n × p er-

ror matrix with each row independent and identically distributed as p-dimensional normal

with mean zero and covariance matrix Σ. To test the microbiome effect on outcomes after

accounting for the covariates effect, one needs to test H0 : h = 0 in model (3). In most

kernel-based association tests, this is done by treating h as a random effect in an equivalent

linear mixed model [Liu et al., 2007, 2008, Wu et al., 2010, 2011b, Maity et al., 2012, Zhan

et al., 2015a, 2016]. Then H0 : h = 0 is tested as whether the corresponding variance com-

ponent is zero in that linear mixed models via a score test. In particular, by stacking the

n×p outcome matrix as a np-vector, the multivariate kernel machine (MVKM) statistic was

proposed [Maity et al., 2012] as

TMVKM = (Y∗ −X∗β∗)′V−10 K∗V−10 (Y∗ −X∗β∗), (4)
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where Y∗ = (y11, . . . , yn1, . . . , y1p, . . . , ynp)
′
is a np-vector which is the vectorization of matrix

Y in (3), X∗ = diag(X1, . . . ,Xp), where X1 = · · · = Xp = X and X is the matrix in (3),

β∗ = (β11, . . . , βq1, . . . , β1p, . . . , βqp)
′
is a qp-vector stacked based on the β matrix in (3), K∗ =

diag(K1, . . .Kp), where Kl (l = 1, . . . , p) is a n× n kernel matrix with Kl(i, j) = k(Zi,Zj),

and V0 = Σ̂ ⊗ In, where Σ̂ is the estimated variance matrix under the null H0 : h = 0 in

model (3), ⊗ is kronecker product, In is the nth order identity matrix. More details can be

found in Maity et al. [2012].

The MVKM statistic (4) asymptotically distributed as mixture of χ2 variables, which is

further approximated by Davies’s exact method [Davies, 1980, Duchesne and De Micheaux,

2010]. The p-values calculated in such a way works sufficiently well for large sample size

[Wu et al., 2011b, Wu and Pankow, 2016]. However, when the sample size is small or modest

(for example, less than 1000), current kernel-based association tests developed for large

sample size can be very conservative, leading to potential power loss in detecting meaningful

associations, especially for binary outcomes [Lee et al., 2012] and microbiome association

studies [Chen et al., 2016]. Given small-sample conservatism, a feasible approach is the

permutation test. However, the permutation test can be computationally expensive and

does not allow for easy covariates adjustment. Instead, we develop a new small-sample

correction procedure to analytically calculate the test p-value.

2.2.2 Small-sample correction

A small-sample adjustment of kernel-based association test was proposed for a single out-

come [Chen et al., 2016]. The univariate small-sample adjustment accounts for estimation

error of sample variance σ̂2 when calculating the p-value. However, it is not technically

straightforward to account for the sample covariance matrix Σ̂ at the multivariate scenario.

To facilitate small-sample p-value calculation, we propose a variant of MVKM statistic as
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T =
tr
{

(Y −Xβ̂)′K(Y −Xβ̂)
}

tr
{

(Y −Xβ̂)′(Y −Xβ̂)
} , (5)

where tr(·) calculates the trace of a matrix, β̂ is the ordinary least squares estimate of

β under the null model Y = Xβ + ε in (3), and K is the kernel matrix on OTUs with

Kij = k(Zi,Zj), i, j = 1, . . . , n. When the dimension of the outcome is one, the test statistic

(5) reduces to (Y − Xβ̂)′K(Y − Xβ̂)/σ̂2, which is the sequence kernel association test

(SKAT) statistic [Wu et al., 2011b]. Moreover, the form of the test statistic (5) is similar

to many statistics widely used in a range of fields, including the distance-based pseudo-F

statistic [McArdle and Anderson, 2001]. Based on the new statistic (5), we derived a new

small-sample correction to calculate its p-value. The detailed mathematical derivation is

included in the Appendix.

It has been shown that the power of MVKM test increase as the correlation among out-

comes increases [Maity et al., 2012]. This is mainly because correlation among outcomes

can be captured by V−10 in the MVKM statistic (4). The corresponding un-stacked covari-

ance matrix Σ̂, however, is missing in (5) for the sake of facilitation of the small-sample

correction. To take the correlation among outcomes into consideration, we propose to use

the de-correlated (or de-covarianced) outcomes Yde = YΣ̂−1/2. We termed the statistic (5)

calculated from de-correlated outcomes the MMiRKAT test statistic. The corresponding M-

MiRKAT test calculates its p-value by incorporating the small-sample correction procedure

fully described in the Appendix.

Finally, compared to the MVKM test, the proposed MMiRKAT has two advantages.

First, instead of stacking the n× p Y-matrix into a np-dimensional Y∗ vector, MMiRKAT

approach is computational faster than the MVKM test. In particular, the computational cost

of MVKM isO((np)3) depending on the inverse of the np×npmatrix V0, while computational

cost of MMiRKAT is about max(O(n3), O(p3)) depending on the eigendecomposition of a
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n × n kernel matrix and a p × p outcome covariance matrix (detailed in the Appendix).

Second, by replacing the inverse of sample correlation matrix term in MVKM by the trace

of that matrix in the denominator in (5), the MMiRKAT test is shown in simulation studies

to have better small-sample behavior.

3 Results

3.1 Simulation studies

We conducted extensive simulation studies to evaluate the performance of MMiRKAT. For

comparison, we also included the large-sample based sequence kernel association test of

multiple continuous phenotypes (denoted as MSKAT) [Wu and Pankow, 2016]. The MSKAT

test was shown to have similar statistical power with MVKM under most scenarios, but

computationally much more efficient than MVKM. The MSKAT approach was originally

proposed as a genetic association test and could be easily adapted for microbiome association

analysis. Let sjk denote the score test statistic for the association between the kth outcome

and jth OTU, and Sj = (sj1, . . . , sjp)
′ be the score vector of jth OTU and all outcomes. The

MSKAT statistic has been proposed as MSKAT=
∑M

j=1 S′jΣ̂
−1Sj [Wu and Pankow, 2016],

where M is the total number of OTUs and Σ̂ is the sample outcome covariance matrix.

Besides, MMiRKAT and MSKAT, we also included the Bonferroni corrected minimum p-

value approach as in Wu and Pankow [2016]. Here the p-values are calculated based on

applying MiRKAT [Zhao et al., 2015] to each individual outcome. We denoted the minimum

p-value approach as minMiRKAT in the rest of this paper. For clarification, the univariate

small-sample adjustment [Chen et al., 2016] was implemented in each individual tests in

minMiRKAT.

For all simulations, we first generated OTUs of each individual from a Dirichlet-multinomial

distribution, which has distribution parameters estimated based on a real upper-respiratory-
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tract microbiome data set [Charlson et al., 2010], to accommodate the over-dispersion of

OTU counts. We simulated in total 856 OTUs using the estimated Dirichlet-multinomial

distribution and assumed that each sample had 1000 OTU counts in total. We partitioned

the 856 OTUs into 20 clusters (lineages) by performing PAM (Partition Around medoids)

algorithm based on the OTU distance matrix and assumed that the outcome variables de-

pend on the abundance of a relatively abundant OTU cluster, which consists of 43 OTUs

and accounts for 19.4% of the total OTUs in the real upper-respiratory-tract microbiome

data. We denoted this selected functional OTU cluster by A hereafter.

After the OTU variables were generated, we simulated our outcome variables using the

following model:

yil = X
′

iβ + f · scale(
∑
j∈A

Zij) + εil, i = 1, . . . , n, l = 1, . . . , p. (6)

The covariates Xi = (Xi1, Xi2), with Xi1 being a binary variable and Xi2 being a standard

normal random variable. We set the true value of β = (0.5, 0.5). The effect size f =

0, 0.1, 0.2, 0.3, 0.4, 0.5, and the function scale(·) standardized the total OTU abundance Z’s

in the associated cluster to have mean zero and standard deviation 1. The error term

(εi1, . . . , εip) ∼ Np(0,Σ) where Σ has the compound symmetry structure with ρ = 0.2, 0.5, 0.8

representing low, moderate and high correlation among outcomes respectively. We used

notations Σ0.2, Σ0.5 and Σ0.8 to denote the corresponding covariance matrices respectively.

The sample size n = 200 or 1000, and the dimension of outcomes p = 10. Under the null

models, all p = 10 outcomes were simulated from yil = X
′
iβ + εil. Under the alternative

model, however, it is possible that only a subset outcomes are related to OTUs in reality. To

study the effect of number of relevant outcomes on the power of our test, we simulated the

first p∗ of p outcomes associated with OTUs according to (6), where p∗ = 2, 8 representing

sparse and dense outcome effect respectively. The rest (p− p∗) outcomes were generated as

12



the Gaussian noises εil, i = 1, . . . n, l = (p∗ + 1), . . . , p, which did not depend on the OTUs.

After the data were simulated, we applied the MMiRKAT, minMiRKAT and MSKAT to

test the association between OTUs and multiple outcomes. For each test, weighted UniFrac

kernel Kw, unweighted UniFrac kernel Ku, generalized UniFrac kernels Kθ, where θ ∈ [0, 1]

and Bray-Curtis kernel KBC were used in simulation. For the generalized UniFrac distance-

based kernels, we used the kernel K0.5 as suggested [Li, 2015]. We studied the type I error

rate of all tests by generating B0 = 10000 data sets under the null model f = 0, and the test

power by generating B1 = 1000 data sets under alternative models f = 0.1, 0.2, 0.3, 0.4, 0.5

respectively. The empirical type I error rate and empirical power are calculated as the

proportion of data sets with a p-value smaller than the nominal significance level α = 0.05.

Besides the simulations described here, some additional simulations under more specific

scenarios were also conducted and reported in the Supplementary Materials.

3.1.1 Empirical type I error

The empirical type I error rates under n = 200 are reported in Table i. Except for Kw-based

test, empirical type I error of the MSKAT is between 0.03 and 0.035, which is consistently

lower than the nominal significance level 0.05. The performance of MSKAT under this

relative small sample size (n = 200) is quite conservative. On the other hand, both the

MMiRKAT and the minMiRKAT have correct type I error rates when the correlations

between outcomes are low (Σ0.2) or moderate (Σ0.5). The type I error of minMiRKAT for

KBC under Σ0.2 is even a little inflated (0.0557), which is probably due to Monte Carlo

errors. However, when the correlation between outcomes is high (Σ0.8), minMiRKAT is very

conservative with type I error around 0.03 for all kernels. The conservativeness is due to

the fact that the effective number of tests is much smaller under high correlation and thus

Bonferroni correction over corrects it. minMiRKAT can become even worse if we increase the

dimension of outcomes (data not shown). When we increased the sample size to n = 1000,
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the corresponding type I errors are reported in Table ii. With large samples, MSKAT is

no longer conservative. This confirms that the conservativeness is caused by small sample

size, and hence it is necessary to implement the small-sample correction in MMiRKAT for

microbiome association analysis. With n = 1000 samples, minMiRKAT is still conservative

when outcomes are highly correlated. Therefore, MMiRKAT is the only test that can always

protect the nominal type I error rates across all simulation scenarios.

3.1.2 Empirical power

The empirical powers of the MMiRKAT, minMiRKAT and MSKAT are presented in Figure

1 and Figure 2 for n = 200 and n = 1000 respectively. For ease of presenting, all tests are

based on the weighted UniFrac kernel. Power comparison under other kernels have a similar

pattern among MMiRKAT, minMiRKAT and MSKAT, and hence are not reported.

Based on Figure 1, it can be seen that MMiRKAT is consistently more powerful than

MSKAT, which is expected based on the small-sample conservativeness of MSKAT observed

in type I error simulations. Interestingly, minMiRKAT is more powerful when the outcome

correlation is low (ρ = 0.2) and the effect size is large. Under such a scenario, it is less

beneficial to collectively analyze all outcomes together as in MMiRKAT and MSKAT, and

minMiRKAT is powerful in capturing the effect of the strongest associated outcome and is

robust to other noise outcomes.

As the correlation among outcomes increases, MMiRKAT becomes more powerful than

minMiRKAT. The power gain is even more dramatic when the outcomes are highly cor-

related (ρ = 0.8). Under high correlation, the amplification effect achieved by collectively

analyzing all outcomes dominates the negative effect caused by adding noise outcomes in the

joint analysis. A similar phenomenon has also been observed in many other multivariate as-

sociation tests [Maity et al., 2012, Wu and Pankow, 2016]. In contrast, minMiRKAT suffers

from power loss with increasing outcome correlations, which is consistent with the type I er-
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ror study. The decay of power in minMiRKAT as increasing outcome correlation is expected

to be more serious if the number of outcomes p is much larger, due to the conservativeness

of Bonferroni correction. Existing methods such as TATES [van der Sluis et al., 2013] can

be used to address the conservativeness of minMiRKAT under such a high dimensional and

high correlation scenario. More detailed comparison is out of the scope of the current paper.

The powers of three tests under n = 1000 are presented in Figure 2, where similar

patterns have been observed as in Figure 1. MSKAT has improved power at a larger sample

size, while is still less powerful than MMiRKAT. Due to the differences (e.g. the number of

outcomes and different kernels being used) between our simulations and the original MSKAT

simulation [Wu and Pankow, 2016], an even larger sample size (than 1000) is needed for

MSKAT to detect the microbiome association considered in this simulation.

To summarize, both MMiRKAT and MSKAT can benefit from the correlation among

outcomes, which can sometimes improve the statistical power to a large extent. Under

all scenarios, MMiRKAT is more powerful than MSKAT especially when the sample size

is small or moderate. On the other hand, minMiRKAT focuses on the most significantly

associated outcome and can be most powerful only if the outcome association signal is sparse,

strong, and the correlation among outcomes is low. Under any other scenarios (e.g. dense

association signals, high correlation among outcomes), the proposed MMiRKAT can be much

more powerful than minMiRKAT. Finally, MMiRKAT and MSKAT is computationally faster

than minMiRKAT since the minMiRKAT need to eigendecompose a n × n matrix p times

while the others only need it once.

3.2 Application to a host transcriptome and microbiome association study

To illustrate the potential usefulness of MMiRKAT, we apply it to a real data set from

a study of pouchitis [Morgan et al., 2015]. It is well known that both host genetics and

the microbiome influence the development of pouchitis. However, how they interact is less
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well-understood. To gain insight into the host-microbe interactions in the epithelial mucosa,

paired host transcriptome and microbial metagenome data were collected from the large

J-pouch cohort, which consists of 265 patients [Morgan et al., 2015]. Most patients were

biopsied both in the pouch and in the pre-pouch ileum (PPI). The data set consists of host

gene expressions and microbiome OTU counts, obtained by microarray and 16S rRNA anal-

ysis respectively. After quality control, 255 samples (196 PPI samples and 59 pouch samples)

are available. Besides host transcriptome and microbial data, some clinical metadata such

as antibiotic use (yes/no), inflammation score (0-13), and disease outcome (familial adeno-

matous polyposis/FAP and non-FAP) are also available. This dataset is publicly available

[Morgan et al., 2015].

The original analysis [Morgan et al., 2015] for testing the association between transcrip-

tome and microbiome is based on multivariate analysis with linear modeling (MaAsLin).

In particular, a multivariate linear model: gene ∼ OTU + antibiotic + inflammation score

+ outcomeFAP/non-FAP was used and the OTU regression coefficient was tested whether

being zero. Only 196 PPI samples were used and hence tissue location (PPI/pocuh) was

not adjusted in the linear model. In MaAsLin, one transcript and one OTU was tested each

time. Since 33297 host transcripts and 7000 OTUs had been measured in the data, principal

component analysis (PCA) based dimension reduction was performed in both transcripts

and OTUs to reduce multiple testing burden of MaAsLin. In particular, 9 gene PC features

(gPC) and 9 clade PC features were selected in order to explain 50% of total variance in

host transcripts and OTUs respectively. Finally, MaAsLin was able to claim significance at

a false discovery rate of 0.25 [Morgan et al., 2015].

Alternative to the individual analysis as conducted in MaAsLin, we performed the joint

analysis MMiRKAT in this section. Both the host gene expression and OTUs were analyzed

collectively. In particular, a Bray-Curtis kernel was constructed based on all the 7000 OTU

counts, and the 9 gPCs were tested for association with all OTUs simultaneously. MMiRKAT
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requires n > p, hence we use the 9 gPCs as outcomes rather than all 33297 host transcripts.

We incorporate the additional 59 pouch samples by adding a new covariate of tissue location

(1=PPI, 0=pouch). The working model for MMiRKAT is

Y = Xβ + h + ε,

where Y = {yil}255×9, X = {xit}255×4, β = {βtl}4×9, each column of h is distributed as

Nn(0, τKBC), and each row of ε is distributed as Np(0,Σ) with unknown covariance matrix

Σ. Four covariates are antibiotic use, inflammation score, outcomeFAP/non-FAP and tis-

sue location. Besides MMiRKAT, minMiRKAT and MSKAT were also implemented. The

p-values are 1.3× 10−5, 8.3× 10−4 and 3.6× 10−3 respectively. MMiRKAT has the smallest

p-value of the three, which indicates that it is most powerful in detecting potential associa-

tion signal between host transcriptome and mucosal microbiome while adjusting for effects

of covariates. A more detailed individual testing results are available in Table S5 of the

online Supplementary Materials. Compared with the detected significance at the FDR level

0.25 of MaAsLin in the original study [Morgan et al., 2015], the association testing results

of MMiRKAT, minMiRKAT and MSKAT are much more significant. This is probably be-

cause all MMiRKAT, minMiRKAT and MSKAT test the association between outcomes and

the whole microbiome community rather than each OTU individually. This is concordant

with recent findings that individual association between microbiome and metadata is often

small and requires very large sample sizes to detect [Falony et al., 2016, Zhernakova et al.,

2016]. Given the relatively small sample size (n = 255) in this host transcriptome and mi-

crobiome data, it is not surprising that microbiome community level analyses (MMiRKAT,

minMiRKAT and MSKAT) are more powerful than individual analysis (MaAsLin).

To further demonstrate potential usefulness of the proposed method, we restricted our

association analysis to a smaller gene set rather than the PCs of all 33297 host transcripts. It
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has been found that the interleukin-12 pathway contains genes which have large magnitude

of loadings on those microbially-associated gPCs [Morgan et al., 2015]. Inspired by this

observation, we were interested in testing the association between the interleukin-12 pathway

gene expression and OTUs. Twenty-one interleukin-12 pathway genes were found in this host

transcriptome and microbiome data set. We used the expression values of these 21 genes as

outcomes to test association with overall microbiome composition. The correlation among

these gene expressions are reported in Figure S6 of the Supplementary Materials, where one

can see that there are some high correlations among the gene expressions. The p-values

of MMiRKAT, minMiRKAT and MSKAT are 0.011, 0.230, 0.028 respectively. MMiRKAT

and MSKAT are much more significant than minMiRKAT. This is because both MMiRKAT

and MSKAT can take advantage of the high correlations among the outcomes to boost the

power of detecting associations. A more detailed individual gene testing results are reported

in Table S6, where most individual association signals are relative weak, which explains the

insignificant testing result of minMiRKAT.

Our analysis can not only provide formal testing for overall association, but also gain new

biological insights on related pathways. Lastly, we emphasize that the proposed MMiRKAT

is a global test and is conducted on the microbiome community level. It is the first step

to associate the overall microbiome composition with multiple outcomes without multiple

testing. More specific tests are the next step to improve biological interpretability, such as

which group of taxa are more associated with outcomes. Such goals can be accomplished by

many variable selection methods.

4 Discussion

In this paper, we propose the MMiRKAT to test for the association between microbial com-

munity composition and multiple outcomes of interest. Similar to MiRKAT [Zhao et al.,

2015], MMiRKAT is able to control for potential confounding effects of covariates with-
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in a principled regression framework by modeling the covariate effect parametrically and

microbiome effect nonparametrically. Beyond that, MMiRKAT enjoys the following three

additional nice features: 1) MMiRKAT can handle multiple outcomes simultaneously, which

can improve the power to detect association due to amplification of the signals when out-

comes are correlated. 2) MMiRKAT is computational efficient since it calculates the p-value

analytically and works on relatively smaller matrix compared to the stacked MVKM statis-

tic. 3) MMiRKAT has good performance even when the sample size is small or moderate.

As a comparison, MVKM [Maity et al., 2012] only enjoys 1) and MSKAT [Wu and Pankow,

2016] only enjoys 1) and 2). Both simulation studies and real data analysis were conducted

to illustrate and evaluate the MMiRKAT approach. Through those numerical studies, it has

been shown that MMiRKAT can control the type I error and is overall more powerful than

other existing methods in detecting potential association signals. Therefore, MMiRKAT

provides a statistically powerful and computationally fast way to test associations between

microbiome community composition and multiple outcomes of interest.

The current MMiRKAT approach requires sample size n to be greater than dimension of

outcomes p, since Σ̂−1/2 is calculated in the de-correlation procedure. The same condition

is also required on other multivariate tests such as MVKM and MSKAT. To fix this issue

in high-dimensional setting where p > n, we propose to perform principal component anal-

ysis (PCA) on the outcomes, just as illustrated in the host transcriptome and microbiome

data. Then, some top PCs are taken as new outcome variables, and association is tested

between those PCs and microbiome compositions. Both phylogeny-based UniFrac kernels

and non-phylogeny-based Bray-Curtis kernel have been used in MMiRKAT. Different kernels

represent different views of the microbial community. Clearly, one kernel is the best when it

captures the relationship between the outcome and the microbiome composition. Therefore,

each kernel has the best performing scenario depending on the underlying biological models

[Chen et al., 2012]. It is helpful to consider several representative kernels in the association
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tests in order not to miss important associations. A robust approach is to conduct an om-

nibus test which combines multiple candidate kernels. Due to page limit, we do not pursue

such an omnibus test in the paper. Interested readers are referred to Wu et al. [2013] and

Zhao et al. [2015] for further references.

Despite the fact that the MMiRKAT method presented in this paper aimed at testing the

associations between multiple outcomes and microbiome composition, one can apply similar

techniques to other types of “omics” data, such as the SNPs, gene expression, methylation,

proteomics and metabolomics. MMiRKAT can be easily adapted to testing the association

between multiple outcomes and other data types. One only need to replace the microbiome

kernels with other suitable kernels which can accommodate the important features of that

data type and apply the same testing methodology in MMiRKAT presented in this paper. It

can be a potential useful association analysis tool in proteomics and metabolomics association

studies, where sample size is usually relatively small.

In this paper, we focus on multiple continuous outcome variables. Some kernel-based

association test for binary outcomes are also available in literature [Liu et al., 2008, Wu et al.,

2010]. In the spirit of those works, the current continuous outcomes based MMiRKAT can be

easily extended to the case of binary outcomes. With the development of techniques, there is

a growing interest in applying microbiome studies to complex clinical and population-based

studies. One issue in those complicated studies is the accommodation of more sophisticated

outcomes (such as longitudinal outcomes and other highly structured outcomes). We will

explore those extensions in future work.
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Appendix

Derivation of small-sample correction

Without loss of generality, we omit the superscript of the de-correlated outcomes Yde for

ease of presenting and use Y instead. The same kernel machine regression model

Y = Xβ + h + ε

and the same statistic

T =
tr
(

(Y −Xβ̂)′K(Y −Xβ̂)
)

tr
(

(Y −Xβ̂)′(Y −Xβ̂)
)

are assumed in this appendix section. The intuition of T is from the univariate small-

sample correction [Chen et al., 2016], where mathematical derivation has been developed to

account for the variability of the variance estimator in the denominator, in order to derive

a distribution that is closer to the true finite-sample distribution. In the multivariate case,

the exact form of T facilitates a multivariate small-sample adjustment described below.

Existing tests [Maity et al., 2012, Wu and Pankow, 2016] often calculate their p-values

based on asymptotic distribution of T . However, it has been observed that the p-values

calculated in this way is often over-protected when the sample size is small or moderate

[Chen et al., 2016]. To overcome the potential small-sample conservatism, we propose the

following procedure to calculate the p-value. Let P := In −X(X′X)−1X′ be the projection

matrix of the null model Y = Xβ + ε, where In is the nth order identity matrix. Then the

test statistic can be calculated as

T =
tr
(

(Y −Xβ̂)′K(Y −Xβ̂)
)

tr
(

(Y −Xβ̂)′(Y −Xβ̂)
) =

tr (ε′PKPε)

tr (ε′Pε)
,
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and we have that

Pr

tr
(

(Y −Xβ̂)′K(Y −Xβ̂)
)

tr
(

(Y −Xβ̂)′(Y −Xβ̂)
) > t0

 = Pr

(
tr (ε′PKPε)

tr (ε′Pε)
> t0

)

= Pr (tr (ε′P[K− t0In]Pε) > 0)

= Pr

(
n∑
i=1

λitr(εiε
′
i) > 0

)

= Pr

(
n∑
i=1

λiε
′
iεi > 0

)
,

(7)

where λ1, . . . , λn are the eigenvalues of the matrix P[K − t0In]P. Let εi := Σ1/2ηi where

Σ = Cov(εi). Then ηi ∼ N(0, Ip) and thus

Pr

(
n∑
i=1

λiε
′
iεi > 0

)
= Pr

(
n∑
i=1

λiη
′
iΣηi > 0

)
= Pr

(
n∑
i=1

λi

p∑
j=1

µjη
2
ij > 0

)
, (8)

where µi, . . . , µp are the eigenvalues of Σ. Since η2ij follows χ2 distribution with 1 degree of

freedom, then combining (7) and (8), we have

Pr

tr
(

(Y −Xβ̂)′K(Y −Xβ̂)
)

tr
(

(Y −Xβ̂)′(Y −Xβ̂)
) > t0

 = Pr

(
n∑
i=1

λi

p∑
j=1

µjχ
2
ij(1) > 0

)
, (9)

where χ2
ij(1), i = 1, . . . , n, j = 1, . . . , p are i.i.d. χ2 random variables with 1 degree of

freedom. The last probability on the right hand side of equation (9) can be calculated using

the Davies’s exact method [Davies, 1980, Duchesne and De Micheaux, 2010]. The procedure

requires the p eigenvalues of the covariance matrix Σ. In practice, we use the eigenvalues

of the sample covariance matrix of the residuals. Extensive simulation studies have been

conducted in this paper to evaluate the proposed small-sample correction procedure. Based

on the those numerical studies, our small-sample correction procedure works very well as

long as the dimension of the outcomes is smaller than the sample size.
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Table i: Empirical type I error of MMiRKAT, minMiRKAT and MSKAT when n = 200.

Method Σ Kw Ku K0.5 KBC

Σ0.2 0.0464 0.0489 0.0456 0.0434
MMiRKAT Σ0.5 0.0446 0.0461 0.0460 0.0431

Σ0.8 0.0428 0.0457 0.0474 0.0447
Σ0.2 0.0516 0.0512 0.0519 0.0557

minMiRKAT Σ0.5 0.0392 0.0527 0.0448 0.0445
Σ0.8 0.0270 0.0280 0.0336 0.0277
Σ0.2 0.0422 0.0338 0.0322 0.0355

MSKAT Σ0.5 0.0435 0.0327 0.0318 0.0338
Σ0.8 0.0403 0.0314 0.0337 0.0344

Table ii: Empirical type I error of MMiRKAT, minMiRKAT and MSKAT when n = 1000.

Method Σ Kw Ku K0.5 KBC

Σ0.2 0.0503 0.0485 0.0503 0.0496
MMiRKAT Σ0.5 0.0451 0.0511 0.0502 0.0550

Σ0.8 0.0503 0.0485 0.0444 0.0499
Σ0.2 0.0510 0.0485 0.0468 0.0500

minMiRKAT Σ0.5 0.0375 0.0387 0.0399 0.0416
Σ0.8 0.0247 0.0283 0.0275 0.0281
Σ0.2 0.0497 0.0438 0.0448 0.0495

MSKAT Σ0.5 0.0478 0.0467 0.0484 0.0493
Σ0.8 0.0496 0.0448 0.0413 0.0471
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Figure 1: Empirical powers of MMiRKAT, minMiRKAT and MSKAT under n = 200. ◦, 4
and + represent MMiRKAT, minMiRKAT and MSKAT respectively.
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Figure 2: Empirical powers of MMiRKAT, minMiRKAT and MSKAT under n = 1000. ◦,
4 and + represent MMiRKAT, minMiRKAT and MSKAT respectively.
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