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Identification of positive selection in
genes is greatly improved by using
experimentally informed site-specific models
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Abstract

Background: Sites of positive selection are identified by comparing observed evolutionary patterns to those
expected under a null model for evolution in the absence of such selection. For protein-coding genes, the most
common null model is that nonsynonymous and synonymous mutations fix at equal rates; this unrealistic model has
limited power to detect many interesting forms of selection.

Results: I describe a new approach that uses a null model based on experimental measurements of a gene’s
site-specific amino-acid preferences generated by deep mutational scanning in the lab. This null model makes it
possible to identify both diversifying selection for repeated amino-acid change and differential selection for mutations
to amino acids that are unexpected given the measurements made in the lab. I show that this approach identifies sites
of adaptive substitutions in four genes (lactamase, Gal4, influenza nucleoprotein, and influenza hemagglutinin) far
better than a comparable method that simply compares the rates of nonsynonymous and synonymous substitutions.

Conclusions: As rapid increases in biological data enable increasingly nuanced descriptions of the constraints on
individual protein sites, approaches like the one here can improve our ability to identify many interesting forms of
selection in natural sequences.

Reviewers: This article was reviewed by Sebastian Maurer-Stroh, Olivier Tenaillon, and Tal Pupko. All three reviewers
are members of the Biology Direct editorial board.
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Background
An important goal of biology is to identify genetic modifi-
cations that have led to evolutionarily significant changes
in phenotype. In the case of protein-coding genes, this
means identifying mutations that were fixed by selection
to alter properties such as the activity of enzymes or the
antigenicity of viral proteins.
This goal is challenging because not all mutations that

fix do so because they confer beneficial phenotypic effects
that are selected by evolution. Sometimes mutations fix
because they adaptively alter phenotype, but mutations
also fix due to forces such as genetic drift or hitchhiking.
Therefore, it is difficult to examine gene sequences and
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pinpoint specific mutations that have changed evolution-
arily relevant phenotypes. As Zuckerkandl and Pauling [1]
noted a half-century ago:

[Many] substitutions may lead to relatively little
functional change, whereas at other times the
replacement of one single amino acid residue by another
may lead to a radical functional change... It is the type
rather than number of amino acid substitutions that is
decisive.

Unfortunately, Zuckerkandl and Pauling [1] did not pro-
vide a prescription for determining the “type” of sub-
stitution that leads to phenotypic change, and such a
prescription remains elusive decades later.
Because it is difficult to determine a priori which

substitutions have altered relevant phenotypes, methods
have been devised that compare homologous sequences
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to identify sites where mutations have been positively
selected by evolution. The basic strategy is to formu-
late a null model for evolution, and then identify sites
that have evolved in ways incompatible with this model.
If the null model adequately describes evolution in the
absence of selection for phenotypic change, then sites that
deviate from the model are ones where mutations have
been selected because they alter evolutionarily relevant
phenotypes.
For protein-coding genes, the most widely used meth-

ods for identifying specific sites of positive selection are
built around the null model that nonsynonymous and
synonymous mutations should fix at equal rates. These
methods estimate the rates of fixation of nonsynonymous
(dN) and synonymous (dS) mutations at each codon site r
[2–6]. The ratio dN/dS at r is taken as a measure of selec-
tion. If the ratio is clearly> 1 then pressure for phenotypic
change is favoring fixation of protein-altering nonsyn-
onymous mutations, and the site is under diversifying
selection. If the ratio is clearly < 1 then nonsynoymous
mutations are being purged to prevent phenotypic change,
and the site is under purifying selection.
Although dN/dS methods are tremendously useful (the

leading software implementations HyPhy and PAML have
each been cited thousands of times [7, 8]), their underlying
null model is clearly oversimplified. A random nonsyn-
onymous mutation completely inactivates the typical pro-
tein ≈40% of the time [9]. So unsurprisingly, most genes
have many sites with dN/dS < 1. This finding is often of
little biological value, since researchers frequently already
know that the gene they are studying is under some type
of protein-level constraint.
Perhaps more importantly, dN/dSmethods also can fail

to identify sites that have fixed adaptive mutations. For
instance, T-cells drive fixation of immune-escape muta-
tions in influenza – but because the relevant sites are
under strong constraint, dN/dS remains < 1 and the
relative increase in nonsynonymous substitution rate is
only apparent in comparison to homologs not subject to
immune selection [10]. Therefore, even positive selection
for adaptive mutations can fail to elevate dN/dS > 1 at
functionally constrained sites.
The limitations of simply comparing the rates of fixa-

tion of nonsynonymous and synonymous mutations have
become especially glaring in light of deep mutational
scanning experiments. These experiments, which subject
libraries of mutant genes to selection in the lab and query
the fate of each mutation by deep sequencing [11, 12], can
measure the preference of each site in a protein for each
amino acid [13]. A clear result is that sites vary wildly
in their amino-acid preferences. Some sites are relatively
unconstrained and prefer all amino acids roughly equally;
for these sites, simply testing for dN/dS > 1 is a reason-
able approach for identifying positive selection. But most

sites strongly prefer one or a few amino acids, so posi-
tive selection would not necessarily be expected to elevate
dN/dS > 1 for these sites.
As an example, Fig. 1 shows the amino-acid preferences

of five sites in TEM-1 β-lactamase as measured by the
deep mutational scanning of Stiffler et al [14]. Mutations
at three of these sites confer antibiotic or inhibitor resis-
tance in β-lactamases [15]. Inspection of Fig. 1 shows that
the two sites not implicated in resistance have evolved
in ways that seem roughly compatible with their amino-
acid preferences measured in the lab: site 201 tolerates
many amino acids in the lab and is moderately variable in
nature, while site 242 strongly prefers glycine in the lab
and is conserved at that identity in nature. But the three
sites involved in resistance have evolved in ways that seem
to deviate from their amino-acid preferences measured in
the lab: site 238 substitutes from the lab-preferred glycine
to the less preferred serine, site 240 repeatedly substitutes
to lysine despite not strongly preferring this amino acid
in the lab, and site 244 substitutes from the lab-preferred
arginine to several less preferred amino acids. So given the
experimentally measured preferences, it is fairly appar-
ent that the sites where mutations contribute to antibiotic
resistance are evolving in ways that deviate from the pref-
erences measured in the lab. But as Fig. 1 shows, a dN/dS
method fails to find any site with dN/dS > 1 at a false-
discovery rate (FDR) of 0.05. As this example shows, a
null model that fails to account for site-specific amino-
acid preferences can overlook sites that fix adaptive
mutations.
Here I describe how the limitations of dN/dS methods

illustrated in Fig. 1 can be overcome by defining selec-
tion relative to a null model established by experimentally
measured site-specific amino-acid preferences. This more
nuanced null model can be used to identify sites of diver-
sifying selection for unusually rapid amino-acid change
via a statistically principled extension to standard dN/dS
methods. The more nuanced null model can also be used
to heuristically identify sites of differential selection for
unexpected amino acids. Both of these strategies ulti-
mately seek to identify sites that are evolving differently
in nature than expected from constraints measured in
the lab. Although the lab measurements are undoubt-
edly imperfect proxies for actual selective constraints in
nature, they provide a better model for evolution in nature
than phylogenetic substitution models commonly used to
identify positive selection in nature. I demonstrate that
this is the case by analyzing four genes, and showing
that the experimentally informed methods greatly out-
perform a standard dN/dS method at identifying sites of
antibiotic-resistance and immune-escape mutations. As
deep mutational scanning data become more widespread,
approaches like the one here can enhance our ability to
identify sites of biologically interesting selection.
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Fig. 1 Different sites are expected to evolve differently, but dN/dSmethods ignore this fact and so have limited power to detect positive selection.
a The amino-acid preferences of five sites in TEM-1 β-lactamase as measured by deep mutational scanning (using the data measured with the
highest concentration of ampicillin in [14]; letter heights are proportional to amino-acid preferences). Three sites experience mutations that confer
extended-spectrum antibiotic or inhibitor resistance [15]. The two sites not involved in resistance are evolving in a way that seems roughly
compatible with the experimentally measured amino-acid preferences, while the three sites implicated in resistance are evolving in ways that
clearly deviate from the preferences (for instance, site 238 mutates from highly preferred glycine to the very low preference amino-acid serine). b A
standard dN/dSmodel (the M0 variant [4] of the Goldman-Yang model [23], abbreviated GY94) assumes all sites evolve under uniform constraints.
When this model is used to fit a site-specific dN/dS, no sites are deemed under diversifying selection (dN/dS > 1) at a FDR of 0.05 for testing all sites,
although the non-resistance site 242 is deemed under purifying selection (dN/dS < 1). The violin plot shows the distribution of P-values for sites
having dN/dS > or < 1. All sites below the bottom dotted blue line are deemed to have dN/dS < 1 at an FDR of 0.05. No sites have dN/dS > 1 at
this FDR, so the top dotted blue line indicate the P-value that would be needed for a site to have dN/dS > 1 at a significance level of 0.05 using a
Bonferroni correction. A full analysis of all sites and further details are later in the paper. See Additional file 16 for subtleties about amino-acid
preferences versus equilibrium frequencies

Results
An evolutionary null model informed by experimentally
measured amino-acid preferences
To remedy the limitations of dN/dS methods illustrated
in Fig. 1, we formulate a description of how sites should
evolve if selection in nature matches the constraints
measured by deep mutational scanning in the lab. This
description consists of a set of site-specific experimentally
informed codon models (ExpCM). The ExpCM used here
are similar but not identical to those in [16, 17]. Specif-
ically, they differ from the model in [17] by inclusion of
an ω parameter representing the relative rate of nonsyn-
onymous to synonymous substitutions, and by handling
the nucleotide mutation terms via an HKY85-style [18]
formalism rather than the formalism in [17].
Deep mutational scanning experiments provide direct

measurements of the preference πr,a of each site r for each

amino acid a (for details of how these preferences can
be obtained from the experimental data, see [13]). These
preferences are normalized so

∑
a πr,a = 1. We use the

preferences to define an ExpCM for each site. As is typi-
cal for phylogenetic substitution models, each ExpCM is
a reversible stochastic matrix giving the rates of substitu-
tion between codons. The rate Pr,xy from codon x to y at
site r is written in mutation-selection form as

Pr,xy = Qxy × Fr,xy (1)

where Qxy represents the rate of mutation from x to y
and Fr,xy represents the selection on this mutation. The
mutation terms are identical across sites, but the selection
terms are site-specific.
The mutation terms Qxy are given by a HKY85 model

[18], and consist of a transition-transversion ratio κ and
four nucleotide parameters φA, φC , φG, and φT that sum
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to one. These φ parameters give the expected nucleotide
composition in the absence of selection on amino acids;
the actual nucleotide frequencies are also influenced by
the selection (for this reason, the φ terms cannot simply
be equated with the empirical alignment frequencies). The
mutation term is:

Qxy =

⎧
⎪⎪⎨

⎪⎪⎩

0 x and y differ by > 1 nucleotide,

φw x can be converted to y by transversion to w,

κ × φw x can be converted to y by transition to w.
(2)

The site-specific amino-acid preferences πr,a enter the
model via the selection terms Fr,xy. Let A(x) denote the
amino acid encoded by codon x, let β be the stringency
parameter described in [17], and let ω be a gene-wide rel-
ative rate of fixation of nonsynonymous to synonymous
mutations after accounting for the amino-acid prefer-
ences. Then:

Fr,xy =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 ifA(x) = A(y)
ω ifA(x) �= A(y) and πr,A(x) = πr,A(y)

ω ×
ln

[
(πr,A(y))

β

(πr,A(x))
β

]

1− (πr,A(x))
β

(πr,A(y))
β

otherwise.

(3)

The functional form relating Fr,xy to πr,a for nonsynony-
mousmutations is that derived by Halpern and Bruno [19]
under certain (probably unrealistic) assumptions about
the evolutionary process and the relationship between
the preferences and amino-acid fitnesses (see also
[20–22]). Relative to the equation of Halpern and Bruno
[19], Eq. 3 removes terms related to mutation (these are
captured by Qxy) and corrects a typographical error in the
denominator. The stringency parameter β is> 1 if natural
selection favors high-preference amino acids with greater
stringency than the experiments used tomeasure πr,a, and
is < 1 if it favors them with less stringency. Under the
assumptions of Halpern and Bruno [19], β is related to
effective population size. Note that if β = 0, then the sub-
stitution model defined by Eq. 1 reduces to a F1X4 version
of the M0 variant [4] of the Goldman-Yang [23] model.
The ω parameter indicates if there is a retardation (ω < 1)
or acceleration (ω > 1) in the rate of fixation of non-
synonymous mutations relative to synonymous mutations
after accounting for the preferences. In [17], it is shown
that a model of the form defined by Pr,xy is reversible and
has stationary state

pr,x =
(
πr,A(x)

)β × φx1 × φx2 × φx3
∑

y
(
πr,A(y)

)β × φy1 × φy2 × φy3
(4)

where x1, x2, and x3 are the nucleotides at positions 1, 2,
and 3 of codon x.

The ExpCM can be used to calculate the likelihood of
a phylogenetic tree and an alignment of genes using the
algorithm of Felsenstein [24], which implicitly assumes
that sites evolve independently. The set of ExpCM for a
given gene have six free parameters: ω, β , κ , and three of
the φ’s. The πr,a values are not free parameters, since they
are specified a priori from experimental data. The values
of the six free parameters are fit by maximum likelihood.
Overall, the ExpCM describe how sites evolve if selec-

tion in nature is concordant with the amino-acid prefer-
ences measured in the lab.

Identifying sites of diversifying selection
Having established a null model for how a gene should
evolve if selection adheres to the constraints measured in
the lab, we next want to identify sites that deviate from
this model. Such sites are likely targets of additional selec-
tion. One such form of selection is diversifying selection
for amino-acid change, as occurs at viral epitopes under
continual pressure to escape newly generated immunity.
To detect diversifying selection, we use an approach

analogous the fixed effects likelihood (FEL) method
[5, 25, 26]. After fixing the tree and model parameters to
their maximum likelihood values for the entire sequence,
for each site r we fit a synonymous rate μr and a parame-
ter ωr corresponding to the nonsynonymous rate relative
to the synonymous rate by replacing Eq. 3 with

Fr,xy =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μr ifA(x) = A(y)
μr × ωr ifA(x) �= A(y) and πr,A(x) = πr,A(y)

μr × ωr ×
ln

⎡

⎣

(
πr,A(y)

)β

(
πr,A(x)

)β

⎤

⎦

1−
(
πr,A(x)

)β

(
πr,A(y)

)β

otherwise.

(5)

and optimizing with respect μr and ωr . The reason that
we fit μr as well as ωr is to accommodate synonymous
rate variation among sites; this can be important for the
reasons described in [27]. The null hypothesis is that
ωr = 1. Following [5], we compute a P-value for reject-
ing this null hypothesis by using a χ2

1 test to compare
the likelihood when fitting both μr and ωr to that when
fitting only μr and fixing ωr = 1. The key statistic is
not ωr itself, but rather the difference in log likelihood
(the likelihood ratio) from which we compute the P-value
for rejecting the null hypothesis of ω = 1 in favor of
ωr > 1 or ωr < 1. The former case implies diversi-
fying selection, while the latter case indicates a selective
constraint on amino-acid change that is not adequately
captured by the preferences. To account for the fact that
a different test is performed for each site, we control the
FDR using the Benjamini-Hochberg procedure [28]. As
demonstrated below, this approach has excellent power to
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pinpoint sites like 238 and 244 in Fig. 1, which fix multi-
ple nonsynonymousmutations despite being under strong
functional constraint.

Identifying sites of differential selection
Some interesting forms of selection do not cause sites to
change repeatedly, but rather lead them to substitute to
amino acids that are unexpected given the amino-acid
preferences measured in the lab. Such sites are under dif-
ferential selection to fix mutations different from those
expected if selection in nature parallels that in the lab.
To detect differential selection, we compare the prefer-

ences measured in the lab to those that optimally describe
evolution in nature. We again begin by fixing the tree
and model parameters to their maximum likelihood val-
ues determined over the whole gene. We then examine
the effect of allowing the preferences at each site to dif-
fer from the values measured in the lab. Specifically,
denote the preferences that optimally describe evolution
in nature as π̂r,a, with

∑
a π̂r,a = 1. Denote the differ-

ential preference �πr,a for amino-acid a at site r as the
difference between π̂r,a and the experimentally measured
preferences rescaled by the stringency parameter:�πr,a =
π̂r,a − (πr,a)

β

∑
a′(πr,a′)

β . If we redefine Eq. 3 by replacing
(
πr,a

)β

with π̂r,a as in

Fr,xy=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ifA(x) =A(y)
ω ifA(x) �=A(y) and π̂r,A(x) = π̂r,A(y)

ω ×
ln

[
π̂r,A(y)
π̂r,A(x)

]

1− π̂r,A(x)
π̂r,A(y)

otherwise,

(6)

then we can determine the preferences that optimally
describe natural evolution by optimizing with respect to
π̂r,a after fixing the tree and model parameters to their
maximum likelihood values for the entire sequence. How-
ever, unconstrained optimization of Eq. 6 will overfit the
data [29, 30]. We therefore instead optimize the product
of Eq. 6 and an Eq. that regularizes the �πr,a values by
biasing them towards zero:

Pr
({

π̂r,a
} | {

πr,a
}
,β

) =
∏

a

(
1

1 + C1 × (
�πr,a

)2

)C2

(7)

where C1 and C2 determine how strongly π̂r,a is biased
towards the experimentally measured preferences. Here
I use C1 = 150 and C2 = 0.5; Eq. 7 is illustrated
in Additional file 1. Effectively, this equation biases the
estimated values towards the prior expectation from the
deep mutational scanning, although the equation is not a
true prior as we are using a maximum-likelihood rather
than a Bayesian approach. Note that while the underlying

rationale for regularizing the �πr,a values is clear, the reg-
ularization implemented by Eq. 7 was chosen heuristically
with the rationale that the marginal cost of shifting �πr,a
away from zero should initially be steep but then flatten
somewhat, corresponding to the intuition that most sites
have little differential selection, but some have a lot. How-
ever, a more statistically principled method for assessing
the support for non-zero�πr,a values is an important area
for future work.
A differential preference of �πr,a > 0 implies that nat-

ural evolution favors amino-acid a at site r more than
expected, whereas �πr,a < 0 implies that evolution dis-
favors this amino acid. The total differential selection at
r is quantified as half the absolute sum of the differential
preferences, 1

2
∑

a
∣
∣�πr,a

∣
∣; this quantity ranges from zero

to one. As demonstrated below, this approach has excel-
lent power to pinpoint sites like 238 and 240 in Fig. 1,
which fix mutations to unexpected amino acids. How-
ever, I emphasize that this test for differential selection
is heuristic, and does not incorporate formal statistical
significance testing.

Choice of four genes to test approaches to identify sites of
selection
To test the approaches for detecting selection described
above, I selected four genes: the DNA-binding domain
of yeast Gal4, β-lactamase, the nucleoprotein (NP) of
human influenza, and the hemagglutinin (HA) of human
seasonal H1N1 influenza. Previous deep mutational scan-
ning studies have measured the effects of all mutations to
these genes [14, 31–33], enabling calculation of their site-
specific amino-acid preferences. For β-lactamase there
are actually two deep mutational scanning datasets: one
from Firnberg et al [34] and a more recent one from
Stiffler et al [14]. As will be shown below, a likelihood-
based model comparison shows that the latter of these
two datasets provides a better description of β-lactamase
evolution in nature, and so for that reason this is the β-
lactamase deep mutational scanning dataset used in the
current study. For each gene, I assembled an alignment of
homologs for evolutionary analysis (Table 1).
A great deal is known about the pressures that have

shaped the evolution of all four genes. Gal4 performs a
function that is conserved among homologs from widely
diverged species, and does not appear to be changing phe-
notypically [35, 36]. However, the other three genes are
undergoing adaptive evolution: β-lactamases evolve resis-
tance to new antibiotics and inhibitors [15, 37], while
NP and HA evolve to escape the immune response in
humans [10, 38–40]. These genes therefore provide an
excellent test case. Gal4 is a “negative control”: no sites
in this gene should be identified as under selection to
fix adaptive mutations. But an effective approach for
identifying positive selection should pinpoint the sites of
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Table 1 The four genes analyzed in this study

Gene # of
residues

Deep mutational
scanning

Alignment details

Yeast Gal4 DNA
binding domain

64 [31] 17 sequences
with 87% and
59% avg and min
pairwise protein
identity

β-lactamase 263 [14] 85 sequences
with 82% and
63% avg and min
pairwise protein
identity

Influenza
nucleoprotein
(NP)

498 [32] 180 sequences
with 95% and
90% avg and min
pairwise protein
identity

Influenza H1
hemagglutinin
(HA)

564 [33] 111 sequences
with 95% and
87% avg and min
pairwise protein
identity

drug-resistance and immune-escape mutations in the
other three genes.

Experimentally informed site-specific models are vastly
better descriptors of evolution
Our basic assumption is that site-specific ExpCM are a
better null model for evolution than the non-site-specific
models used by dN/dS methods. Prior work has shown
that experimentally informed site-specific models similar
to the ExpCM defined here greatly outperform non-site-
specific models [16, 17, 32, 33]. To confirm this result for
the ExpCM and genes here, I compared the ExpCM to
the several variants [4] of the Goldman-Yang style models
[23] (denoted as GY94) commonly used by dN/dS meth-
ods. I used F3X4 equilibrium frequencies for GY94, with
the nine F3X4 parameters estimated by maximum likeli-
hood. These equilibrium frequencies are not site-specific;
this is the major difference between GY94 and ExpCM
(Fig. 1).
To compare the models and perform the other analyses

in this paper, I developed the software package phydms
(phylogenetics informed by deep mutational scanning;
https://github.com/jbloomlab/phydms). This software
interfaces with and extends Bio++ [41, 42] to enable anal-
yses with both ExpCM and GY94 models. The analyses
described in this paper use phydms version 1.2.3.
I used phydms to infer a maximum-likelihood phy-

logenetic tree for each gene using GY94 with a single
gene-wide dN/dS ratio (the M0 model in [4]). After fix-
ing the tree topology to that estimated using GY94 M0, I
re-optimized the branch lengths andmodel parameters by
maximum likelihood for four additional models. The first

is GY94 M3 [4], in which the likelihood for each site is a
linear combination of those under three different dN/dS
values, with these values and their weights shared across
the whole alignment and optimized by maximum likeli-
hood. The second is ExpCM. The third is ExpCMwith the
amino-acid preferences averaged across sites – this aver-
aging makes the model non-site-specific, but captures any
gene-wide trends in the deep mutational scanning data.
The final is ExpCM with the amino-acid preferences ran-
domized among sites – this model is still site-specific, but
the site-specific parameters are no longer associated with
the actual site for which they were measured.
I compared these models using Akaike Information

Criteria (AIC) [43], which measures model fit penalized
by the number of free parameters. Table 2 shows that
ExpCM describe the evolution of all four genes far bet-
ter than any other model. This table also shows that
for β-lactamase, the new Stiffler et al [14] deep muta-
tional scanning dataset informs ExpCM that are superior
to those informed by the older Firnberg et al [34] deep
mutational scanning dataset, although ExpCM informed
by either dataset are vastly superior to any GY94 models.
The huge superiority of ExpCM over the GY94 models
is because ExpCM capture site-specific evolutionary con-
straints, as demonstrated by the fact that ExpCM in which
preferences are averaged across sites are comparable to
GY94. The poor performance of the randomized ExpCM
is because a site-specific model only helps if the experi-
mentally measured preferences are assigned to the correct
sites. Indeed, Table 2 shows that randomly assigned site-
specific preferences are so detrimental that they are nearly
completely flattened by fitting a stringency parameter β

that is close to zero, effectively making the randomized
ExpCMnon-site-specific. Overall, Table 2 confirms previ-
ous work [16, 17, 32, 33, 44] showing that experimentally
informed site-specific models provide vastly improved
descriptions of evolution.
Another informative comparison is between the dN/dS

of GY94 and the ω of ExpCM. ExpCM can represent
protein-level constraint either via the site-specific amino-
acid preferences or by shrinking ω to < 1. In contrast,
GY94 can only represent constraint by shrinking dN/dS
even if the actual selection is for preferred amino acids
at each site rather than against amino-acid change per se
[45]. Table 2 shows that the ExpCM ω is always greater
than the GY94 dN/dS. This effect is most striking for β-
lactamase: while GY94 suggests selection against amino-
acid change per se by fitting dN/dS = 0.3, ExpCM
indicate that this selection is actually accounted for by the
site-specific amino-acid preferences by fitting ω = 1. For
the other three genes, the ExpCM ω is < 1 indicating that
the site-specific amino-acid preferences don’t capture all
constraints, but the ExpCM ω is still always substantially
greater than the GY94 dN/dS.

https://github.com/jbloomlab/phydms
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Table 2 Site-specific ExpCM are vastly better than GY94 or ExpCM with preferences averaged or randomized across sites

Gene Model �AIC Log likelihood # free parameters: values of selection parameters

Gal4 ExpCM 0 –1048 6: β = 0.82, ω = 0.13

GY94 M3 129 –1103 15: ω1 = 0.01, ω2 = 0.11, ω3 = 0.49, p1 = 0.50, p2 = 0.29

GY94 M0 192 –1139 11: ω = 0.06

averaged ExpCM 196 –1146 6: β = 1.07, ω = 0.06

randomized ExpCM 206 –1151 6: β = 0.10, ω = 0.07

β-lactamase ExpCM 0 –3421 6: β = 1.01, ω = 1.02

ExpCM (Firnberg data) 204 –3523 6: β = 1.04, ω = 0.65

GY94 M3 564 –3694 15: ω1 = 0.07, ω2 = 0.55, ω3 = 6.24, p1 = 0.69, p2 = 0.17

GY94 M0 765 –3798 11: ω = 0.34

averaged ExpCM 766 –3804 6: β = 0.77, ω = 0.35

randomized ExpCM 790 –3816 6: β = 0.10, ω = 0.34

NP ExpCM 0 –8624 6: β = 2.43, ω = 0.61

GY94 M3 2175 –9703 15: ω1 = 0.00, ω2 = 0.16, ω3 = 1.31, p1 = 0.59, p2 = 0.24

averaged ExpCM 2584 –9916 6: β = 0.43, ω = 0.11

randomized ExpCM 2593 –9921 6: β = 0.10, ω = 0.11

GY94 M0 2613 –9926 11: ω = 0.11

HA ExpCM 0 –7461 6: β = 1.61, ω = 0.60

GY94 M3 1782 –8343 15: ω1 = 0.02, ω2 = 4.26, ω3 = 4.94, p1 = 0.59, p2 = 0.25

averaged ExpCM 2137 –8530 6: β = 0.42, ω = 0.23

randomized ExpCM 2157 –8539 6: β = 0.10, ω = 0.23

GY94 M0 2176 –8544 11: ω = 0.22

The ExpCM stringency parameter β also provides use-
ful information. Recall that β > 1 means that natural
evolution selects for preferred amino acids with greater
stringency than the deep mutational scanning. Table 2
shows that for both influenza genes (NP and HA), the
stringency of natural selection exceeds that of the deep
mutational scanning, indicating that the selection in
experiments in [32] and [33] was not as rigorous as selec-
tion in nature. For β-lactamase, the stringency of natural
evolution is approximately equal to that of the deep muta-
tional scanning, providing a second indication (along with
the fitting of ω ≈ 1) that the experiments in [14] did an
excellent job of capturing the constraints on β-lactamases
in nature. Only for Gal4 is β < 1: either the selections
in [31] were more stringent than natural selection, or the
measured preferences are not completely representative of
those in nature and so β is fit to < 1 to somewhat flatten
these preferences.
The stringency-rescaled amino-acid preferences are in

Fig. 2 and Additional files 2, 3 and 4. These figures reveal
remarkable variation in constraint among sites, explain-
ing why ExpCM better describe evolution than non-site-
specific models. Overall, the results in this section verify

that ExpCM offer a better evolutionary null model, and so
motivate their use in identifying diversifying and differen-
tial selection.

Experimentally informed site-specific models better detect
diversifying selection
I used the ExpCM to identify sites of diversifying selection
for amino-acid change. This was done by using phydms
to fit ωr and a synonymous rate for each site r via Eq. 5,
fixing all other parameters at their optimized values. To
compare to a standard dN/dS method, I also fit a dN/dS
ratio and synonymous rate for each site using GY94 with
all other parameters fixed to the values optimized under
GY94M3 (equivalent to the fixed effects likelihood or FEL
method as implemented in [5]).
Figure 3a shows that ExpCM have much greater power

to identify diversifying selection than the GY94 dN/dS
method. For Gal4, GY94 findsmany sites with dN/dS < 1,
but no sites with dN/dS > 1 at an FDR of 0.05. As
discussed in the Introduction, identifying sites with
dN/dS < 1 points to the naivety of the GY94 null
model rather than unexpected biology, since any rea-
sonable researcher would have already expected Gal4’s
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Fig. 2 Site-specific amino-acid preferences for β-lactamase. The height of each letter is proportional to the preference for that amino acid at that
site, and letters are colored by amino-acid hydrophobicity. These are the preferences experimentally measured in [14] for TEM-1 β-lactamase under
selection with 2.5 mg/ml ampicillin, re-scaled by the stringency parameter β = 1.01 from Table 2. The re-scaling is done so that if the experimentally

measured preference for amino-acid a at site r is πr,a , then the rescaled preference is proportional to
(
πr,a

)β . The β-lactamase sequence is
numbered using the Ambler scheme [82], meaning that residue numbers 239 and 253 are skipped. Comparable data for Gal4, NP, and HA are
shown in Additional files 2, 3 and 4, respectively

protein sequence to be under evolutionary constraint. The
more plausible ExpCM null model finds that all sites in
Gal4 are evolving as expected from the measurements
in the lab (for no sites does it reject the null hypothesis
ωr = 1). For the other three genes, GY94 again finds that
there are many sites with dN/dS < 1 while failing to iden-
tify any sites with dN/dS > 1 at an FDR of 0.05 – despite
the fact that there is clear evidence that all three genes fix
drug-resistance or immune-escapemutations. In contrast,
the more realistic ExpCM find sites of diversifying selec-
tion for all three genes: there are three sites with ωr > 1 in
β-lactamase, four in NP, and two in HA.
To statistically validate the ExpCM approach for iden-

tifying diversifying selection, I used pyvolve [46] to
simulate alignments of NP under ExpCM informed by the
experimentally measured preferences and using the tree
inferred for the actual NP sequences. In each simulation, I
randomly selected five sites and placed them under diver-
sifying with ωr values ranging from 5 to 30. I then ana-
lyzed the simulated alignments for diversifying using the
ExpCM and the FEL-like GY94 dN/dSmethod. As shown
in Additional file 5, ExpCM consistently outperformed
GY94 at identifying the simulated sites of diversifying

selection. Additional file 5 also shows that the Benjamini-
Hochberg procedure [28] effectively controlled the false
discovery rate. These simulations demonstrate the statis-
tical soundness of the ExpCM approach for identifying
diversifying selection.
Both the FEL-like GY94 dN/dSmethod and the ExpCM

used for the analysis in Fig. 3a test for diversifying selec-
tion across the phylogeny. But in many cases, diversifying
selection is episodic. Therefore, dN/dS methods have
been extended to identify sites under diversifying selec-
tion in only some lineages [6, 47–49]. I used one of these
methods, MEME [6], to test for episodic diversifying selec-
tion. Additional file 6 shows that MEME identifies one site
of diversifying selection each in β-lactamase and NP, and
no sites in HA or Gal4. This makes MEME more power-
ful than the FEL-like GY94 method but still less powerful
than ExpCM. However, MEME and ExpCM outperform
the FEL-like GY94 method for orthogonal reasons: MEME
is superior because it can identify episodic selection,
whereas ExpCM are superior because they account for
functional constraints on individual sites. In principle, it
should be possible to merge ExpCM with methods to
identify episodic diversifying selection.
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Fig. 3 The experimentally informed models (ExpCM) identify many sites of diversifying or differential selection that are missed by a standard dN/dS
analysis (GY94). a The violin plots show the distribution of P-values that a site is under diversifying selection for (positive numbers) or against
(negative numbers) amino-acid change (ωr indicates both the ExpCM parameter in Eq. 5 and the GY94 dN/dS ratio). The portion of the distribution
above / below the dotted blue lines contains all sites for which there is support for rejecting the null hypothesis ωr = 1 at a FDR of 0.05. When there
are no sites with support at this FDR, the dotted blue lines indicate the P-value that would be needed for a site to have ωr > 1 or < 1 at a
significance level of 0.05 using a Bonferroni correction. The dN/dSmethod identifies many sites of purifying selection, but fails to find any sites of
selection for amino-acid change. The ExpCMmodel already accounts for basic functional constraints and so doesn’t identify any sites with ωr < 1,
but does identify sites of diversifying selection in all genes except Gal4 (which is not thought to evolve under pressure for phenotypic change).
b The violin plots shown the distribution of differential selection at each site inferred with the ExpCM. Since Gal4 is not under selection for
phenotypic change, I defined a heuristic threshold at 2-times the Gal4 maximum value of 0.27. At this threshold, sites of differential selection are
identified for all three other genes. The legend labels all sites under diversifying or differential selection. This analysis was performed using phydms;
Additional file 17 shows that similar results are obtained if the dN/dS analysis is instead performed using HyPhy [7]

A variety of other dN/dSmethods have also been devel-
oped. The most prominent other class includes so-called
“random effects” methods that use an empirical Bayesian
approach to share information about the distribution of
dN/dS across sites [2, 50–52]. The relative pros and cons
of “random effects” methods versus the “fixed effects”
methods used in this paper remain an area of active dis-
cussion [5, 53]. It is beyond the scope of the current study
to compare these two classes of methods. Here I simply
note that as with the test for episodic selection described
in the previous paragraph, ExpCM substitution models
could in principle also be incorporated into the “ran-
dom effects” framework, since the essential differences
between “random effects” and “fixed effects” methods
are due to how parameters are handled rather than the
substitution model itself.
Overall, the results in this section show that ExpCM

are better at identifying diversifying selection than several
standard dN/dS methods. The reason for this superiority
is that the ExpCM account for variation in the inherent
constraints on different sites, and so have greater power to
recognize when a functionally constrained site is changing
more rapidly than expected.

Experimentally informed site-specific models enable
detection of differential selection
ExpCM also enable identification of differential selection
for unexpected amino acids. I used phydms to estimate
the differential preference �πr,a of each site r for each
amino-acid a by optimizing the product of Eq. 6 and Eq. 7
after fixing all other parameters. The differential selection
at each site r was quantified as 1

2
∑

a
∣
∣�πr,a

∣
∣, which can

range from zero to one.
Figure 3b shows the distribution of site-specific differ-

ential selection. As expected, no sites in Gal4 are under
strong differential selection. But for each of the other
genes, a small subset of sites are under strong differen-
tial selection. I heuristically classified differential selection
as “significant” if it exceeded 2-times the maximum value
for Gal4. At this threshold, there are seven sites of differ-
ential selection in β-lactamase, nine in NP, and three in
HA. So overall, Fig. 3b suggests that most sites are evolv-
ing as expected in all four genes, but a small fraction of
sites are under differential selection in β-lactamase, NP,
and HA due to their roles in drug resistance or immune
escape. This result is concordant from what we expect
given biological knowledge about the selection pressures
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on these genes. Note that similarly reasonable results
are not obtained using the non-phylogenetic Kullback-
Leibler divergence tomeasure differences between amino-
acid frequencies in nature and the experimentally mea-
sured amino-acid preferences (Additional file 7). This fact
emphasizes the importance of examining evidence for
diversifying selection in a phylogenetic framework rather
than analyzing them using statistical approaches that
treat them as independent samples from some underlying
ensemble.
Amore detailed portrayal of the diversifying selection at

each site is in Fig. 4 and Additional files 8, 9, and 10. For
each site, these images display the evidence for diversify-
ing selection, the strength of differential selection, and the
differential preference for each amino acid at sites under
non-negligible differential selection.
There are sites in β-lactamase, NP, and HA that are

under both diversifying and differential selection, but

there are also sites that are only under one of these forms
of selection (Fig. 3). These findings make sense: often,
pressure for amino-acid change will drive multiple sub-
stitutions to non-preferred amino-acid identities, leaving
traces of both types of selection. But sometimes, a rela-
tively unconstrained site substitutes to a variety of differ-
ent amino acids, leading to diversifying but not differential
selection. In other cases, a site fixes just one or a few sub-
stitutions to a non-preferred amino acid that confers some
enduring phenotypic benefit, leading to differential but
not diversifying selection.

The identified sites of selection are consistent with existing
biological knowledge
The ExpCM identified sites of differential and diversifying
selection in all three genes that are undergoing adaptive
evolution (β-lactamase, NP, and HA), while GY94 iden-
tified no sites with dN/dS < 1 in any of the genes. But

Fig. 4 Site-specific selection on β-lactamase inferred with experimentally informed models. The height of each letter above/below the black center
line is proportional to the differential selection for/against that amino acid at that site relative to what is expected from the amino-acid preferences
in Fig. 2. The overlay bar shows the evidence for diversifying selection at each site, which is manifested by strong evidence for a ratio ωr of
nonsynonymous to synonymous substitution rates that is higher (red) or lower (blue) than expected from the amino-acid preferences. The
β-lactamase sequence is numbered using the Ambler scheme [82], meaning that residue numbers 239 and 253 are skipped. Comparable data for
Gal4, NP, and HA are shown in Additional files 8, 9, and 10, respectively
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before concluding that this result indicates the superiority
of the ExpCM, wemust answer the following question: are
the identified sites actually the locations of substitutions
that have altered evolutionarily relevant phenotypes? To
answer this question, I examined the literature on drug
resistance in β-lactamases and immune escape by NP and
HA (Table 3).
For β-lactamases, [15] reports 18 sites at which muta-

tions known to affect resistance are observed in clinical
isolates. The ExpCM identify 9 sites of selection; 6 of
these 9 sites are among the 18 known sites of resis-
tance mutations (Table 3). There are 263 residues in the

Table 3 At most sites of selection identified using ExpCM,
mutations affect drug resistance or immune escape

Gene Site Affects biologically relevant phenotype?

β-lactamase 35 No evidence implicating this site in
resistance [15]

48 No evidence implicating this site in
resistance [15]

104 E104K involved in β-lactam resistance [15]

112 No evidence implicating this site in
resistance [15]

164 R164C, R164H, and R164S involved in
β-lactam resistance [15]

182 M182T potentiates resistance [15]

238 G238S involved in β-lactam resistance [15]

240 E240K involved in β-lactam resistance [15]

244 R244C, R244H, and R244S involved in
inhibitor resistance [15]

NP 20 In a T-cell epitope [94]

101 In an antibody epitope [95]

105 In a T-cell epitope [96]

131 Not part of known immune epitope

290 In an antibody epitope [97]

319 Not part of known immune epitope

371 In an antibody epitope [98, 99]

375 E375G interacts with T-cell escape mutation
at 384 [58, 100]

384 R384G and R384K are T-cell escape
mutations [38, 100]

422 K422R is a T-cell escape mutation [101]

HA 138 Contacts antigenic-site residues defined by
the experiments of [40]

189 Contacts antigenic-site residues defined by
the experiments of [40]

225 An antigenic site residue defined by the
experiments of [40]; also affects
receptor-binding specificity and so known
to undergo substitutions both during host
adaptation and viral passaging in the lab
[84–87]

mature β-lactamase protein, so we can reject the pos-
sibility that the identified sites are not associated with
resistance mutations (P = 10−6, Fisher’s exact test). So for
β-lactamase, the ExpCM mostly identify sites that have
been independently shown to affect drug resistance.
NP is under immune selection to escape T cells [10, 38]

and probably also antibodies [54, 55]. The ExpCM identify
10 sites of selection. I searched the literature and found
reports that 8 of these 10 sites are relevant to immune
escape (Table 3). So for NP, the ExpCM mostly iden-
tify sites that have been independently shown to affect
immunogenicity.
HA is under immune selection to escape antibodies.

Caton et al [40] used antibodies to map escape muta-
tions in H1 HA. A reasonable definition of the antigenic
portion of HA is the set of sites identified in [40] plus
any sites in three-dimensional contact with these sites (a
contact is defined as a Cα − Cα distance ≤ 6Å in PDB
1RVX). Using this definition, 86 of the 509 sites in the HA
ectodomain are in the antigenic portion of the molecule.
The ExpCM identify 3 sites of selection, all of which are in
the antigenic portion of HA. We can reject the possibility
that these identified sites are not associated with the anti-
genic portion of the molecule (P = 0.005, Fisher’s exact
test). So for HA, the ExpCM identify sites that have been
independently shown to affect immunogenicity.
Overall, these results show that sites of selection iden-

tified by ExpCM are indeed the locations of substitutions
that alter evolutionarily relevant phenotypes. For a con-
crete illustration of sites of adaptive substitutions that
are identified by ExpCM but not by a dN/dS method,
Fig. 5 shows the results of the ExpCM analysis of the
five example sites in β-lactamase discussed in the Intro-
duction and Fig. 1. Three of these five sites experience
substitutions that affect resistance, but a dN/dS method
fails to flag any of them as under diversifying selection
(dN/dS > 1) since it doesn’t account for site-specific
constraints (Fig. 1). Figure 5 shows that ExpCM correctly
identify all three resistance sites as under diversifying or
differential selection, while finding that the non-resistance
sites are evolving as expected. Visual inspection of the two
figures provides an intuitive explanation of why account-
ing for site-specific amino-acid preferencesmakes ExpCM
so much more powerful at identifying sites of selection to
alter evolutionarily relevant phenotypes.

Discussion
I have described an approach that uses experimentally
informed models to identify sites of biologically inter-
esting selection in protein-coding genes. This approach
asks the following question: Is a site evolving differently
in nature than expected from constraints measured in the
lab? In contrast, traditional dN/dS methods simply ask:
Is a site evolving non-neutrally? The former question is
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Fig. 5 The experimentally informed models (ExpCM) correctly identify the three β-lactamase sites in Fig. 1 that contribute to drug resistance.
Figure 1 showed five sites in β-lactamase, three of which (238, 240, and 244) experience substitutions that contribute to drug resistance. However, a
dN/dS analysis (GY94) fails to identify any of these sites as under diversifying selection (dN/dS > 1) at a FDR of 0.05 for testing all sites (dotted blue
lines). In contrast, ExpCM correctly determine that the three resistance sites are under diversifying (238 and 244) or differential (238 and 240)
selection, and that the two non-resistance sites (201 and 242) are evolving as expected. ExpCM outperform the dN/dSmethod because they
implement a null model that accounts for the site-specific amino-acid preferences shown in Fig. 1; for instance, this null model is not surprised that
site 242 remains fixed at the highly preferred amino-acid R, but does find it noteworthy that site 240 substitutes to K multiple times even though
that is not a particularly preferred amino acid

sometimes more informative than the latter. It is by now
abundantly clear that most protein residues are under
some type of constraint, so finding that a site evolves non-
neutrally is often unsurprising. Instead, we want to iden-
tify sites of substitutions that have altered evolutionarily
relevant phenotypes. As demonstrated here, experimen-
tally informed models have much greater power to iden-
tify such sites. The improvement is remarkable: while a
dN/dSmethod fails to find any sites of adaptive evolution
in the genes examined, experimentally informed models
identify 22 sites of diversifying or differential selection,
most of which fix mutations that have been independently
shown to affect drug resistance or immunogenicity.
What accounts for the improved power of the exper-

imentally informed site-specific models? As vividly
illustrated by the deep mutational scanning studies that
provide the data used here (Fig. 2 and Additional files 2,
3, and 4), there is vast variation in the constraints on
sites within a protein. Therefore, the significance that
we should ascribe to a substitution depends on where it
occurs: several changes at an unconstrained site may be
unremarkable, but a single substitution away from a pre-
ferred amino acid at a constrained site probably reflects
some powerful selective force. Whereas dN/dS methods
treat all substitutions equally, the models used here eval-
uate the significance of each substitution in the context
of the experimentally measured amino-acid preferences of
the site at which it occurs.
Does this reliance on experimental measurements make

the approach less objective? At first glance, the fact
that dN/dS methods are uncontaminated by messy
experiments feels reassuring. In contrast, experimen-
tally informed models are dependent on all the subjec-
tive decisions associated with experimental design and

interpretation. In addition, experiments in the lab may
fail to fully capture all the selection pressures operating
in nature. But in truth, experimentally informed models
simply make explicit something that is already true: we
define positive selection with respect to a null model for
evolution in the absence of this selection. At least for the
genes examined here, sites of known adaptive mutations
are better identified by leveraging imperfect experiments
that capture many of the constraints on natural evolution
than by objectively testing the implausible null hypothesis
that every site is evolving neutrally.
An assumption of experimentally informed site-specific

models is that amino-acid preferences are conserved
among the homologs under analysis. At first glance this
assumption seems tenuous – epistasis can shift the effects
of mutations as a gene evolves [56–58]. But it is rare
for epistatic shifts to be large enough to undermine the
advantage of site-specific models: this fact is demon-
strated by direct experiments [32, 59, 60], the observation
that parallel viral lineages tend to substitute to the same
preferred amino acids at each site [61], and the empirical
superiority of site-specific models in fitting phylogenies of
diverged homologs (Table 2, [17, 32]). Therefore, epistasis
does not subvert the basic advantage of a model informed
by site-specific amino-acid preferences.
Of course, experimentally informed site-specific models

require measurement of amino-acid preferences. How-
ever, advances in deep mutational scanning will make this
requirement less and less of an impediment [11, 12]. In
a fitting twist, one of the pioneers of deep mutational
scanning [11] was also the first to sequence a gene from
influenza [62, 63]. At the time, sequencing the homol-
ogous gene from thousands of other viral strains must
have seemed unimaginable – a few decades later, for this
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study I had to subsample the �105 publicly available
influenza sequences down to a manageable number. The
core techniques of deep mutational scanning – sequenc-
ing and gene/genome engineering – are improving at a
similar pace, so coming years will see measurement of the
amino-acid preferences of many more genes.
Another possibility is to use non-experimental strate-

gies to inform site-specific models like the one here. One
strategy is to predict site-specific constraints from higher-
level properties such as solvent accessibility [64–66] or via
molecular simulation [67–70]. It remains unclear whether
such non-experimental strategies can predict site-specific
amino-acid preferences with sufficient accuracy to inform
substitution models that can match the ExpCM used
here. Another strategy is to infer preferences from nat-
urally occurring sequences [30, 71–75]. If care is taken
to avoid the over-fitting that could accompany inferring
preferences from the same naturally occurring sequences
that are being analyzed for selection, then this might be
a viable approach. Indeed, while the current paper was
under review, Rodrigue and Lartillot published an elegant
study that implements an approach along these lines [76].
But I suggest that direct measurement of amino-acid pref-
erences via deep mutational scanning may well prove the
best solution in many cases: after all, biology is full of
properties that are challenging to predict or infer, but are
now routinely measured in high-throughput.
Overall, I have described a new approach that lever-

ages high-throughput experimental data to identify sites
of selection in protein-coding genes. This approach clearly
outperforms a standard implementation of the widely
used dN/dS strategy, however there is much room for
improvement. The utility of the dN/dS strategy has been
enhanced by innovations that have made it possible to do
things like test for selection only along certain branches
[6, 49], utilize Bayesian approaches to share information
across sites [2, 50–52], better incorporate synonymous
rate variation [77], and more rapidly perform the com-
putational analyses [52, 78]. Most of these innovations
could also be used in combination with the experimen-
tally informed models described here. Methodological
improvements of this sort, coupled with growing amounts
of deep mutational scanning data, could make experimen-
tally informed models an increasingly powerful tool to
identify genotypic changes that have altered phenotypes
of interest.

Methods
Software implementing the analyses
The algorithms described in this paper are implemented
in the phydms software package, which is available
at https://github.com/jbloomlab/phydms. This package
is written in Python, and uses cython to inter-
face with and extend Bio++ (http://biopp.univ-montp2.

fr/, [41, 42]) for the likelihood calculations. Special
thanks to Laurent Guéguen and Julien Dutheil for gen-
erously making the cutting-edge version of Bio++ avail-
able and providing assistance in its use. The software
uses dms_tools (https://github.com/jbloomlab/dms_
tools, [13]) and weblogo (http://weblogo.threeplusone.
com/, [79]) for visualizing the results. The analyses in this
paper used phydms version 1.2.3.

Amino-acid preferences for the four proteins
The amino-acid preferences were taken from previously
published deep mutational scanning experiments. For NP,
the preferences were taken from [32], using the average of
the measurements for the two NP variants. For HA, the
preferences were taken from [33]. For β-lactamase, [14]
provides “relative fitness” scores, which are log10 enrich-
ment ratios. I used the scores for the selections on 2.5
mg/ml of ampicillin (the highest concentration), averaging
the scores for the two replicates. Following the definition
in [13] of the preferences as the normalized enrichment
ratios, the preferences πr,a are calculated from the rela-
tive fitness scores Sr,a so that πr,a ∝ max

(
10Sr,a , 10−4)

and 1 = ∑
a πr,a. For Gal4, [31] provides “effect scores”,

which are the log2 of the enrichment ratios. The prefer-
ences are calculated from the effect scores Er,a so that
πr,a ∝ max

(
2Er,a , 2 × 10−4) and 1 = ∑

a πr,a. A few effect
scores are missing from [31], so these scores are set to the
average for all mutations for which scores are provided.
The formulas to convert the β-lactamase and Gal4 scores
to preferences include the max operators to avoid esti-
mating preferences of zero; the minimal allowable values
specified by the second argument to these operators are
my guess of the lowest frequency that would have been
reliably observed in each experiment.
For the comparison of the two different deepmutational

scanning datasets for β-lactamase shown in Table 2, the
measurements from the Firnberg et al [34] deep muta-
tional scanning were converted into site-specific amino-
acid preferences as described in [17].

Alignments of naturally occurring sequences for each
protein
For NP, the sequence alignment was constructed by
extracting all post-1950 full-length NPs in the Influenza
Virus Resource [80] that are descended in purely human
lineages from the 1918 virus (H1N1 from 1950–1957
and 1977–2008, H2N2 from 1957–1968, and H3N2 from
1968–2015), and retaining just two sequences per-subtype
per-year to yield a manageable alignment. The rationale
for using only post-1950 sequences is that most viruses
isolated before then were passaged extensively in the lab
prior to sequencing. For HA, the alignment was con-
structed by extracting all post-1950 sequences in the
human seasonal H1N1 lineage (H1N1 from 1950–1957

https://github.com/jbloomlab/phydms
http://biopp.univ-montp2.fr/
http://biopp.univ-montp2.fr/
https://github.com/jbloomlab/dms_tools
https://github.com/jbloomlab/dms_tools
http://weblogo.threeplusone.com/
http://weblogo.threeplusone.com/
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and 1977–2008), and retaining just four sequences per
year to yield a manageable alignment. For β-lactamase,
the alignment consists of the TEM and SHV β-
lactamases used in [17]. For Gal4, a set of homologs was
obtained by performing a tblastn search of the Gal4
DNA-binding domain used by [31] against wgs (lim-
iting by saccharomyceta (taxid:716545)) and
chromosomes for hits with E ≤ 0.01, and retaining only
sequences that aligned to the Gal4 DNA-binding domain
with ≥ 70% protein identity and ≤ 5% gaps. For all genes,
alignments were made pairwise to the sequence used
for the deep mutational scanning with EMBOSS needle
[81], and sites were purged if they were gapped in that
sequence.

Sequence numbering
In the figures and tables, the residues in NP are num-
bered sequentially beginning with one at the N-terminal
methionine. The residues in HA are numbered using the
H3 numbering scheme (the one used in PDB 4HMG),
and the site-specific selection analysis is performed only
for the residues in HA ectodomain (residues present in
PDB 4HMG). The residues in β-lactamase are numbered
using the Ambler scheme [82]. The residues in Gal4 are
numbered using the scheme in [31].

Data availability
The software package that implements the algorithms
described in this paper is available at https://github.com/
jbloomlab/phydms. The analyses were performed using
version 1.2.3 of the phydms software. Data and scripts to
perform the specific analyses are provided as Additional
files 11, 12, 13, 14 and 15.

Reviewers’ comments
Reviewer Report 1: Sebastian Maurer-Stroh, Bioinformatics
Institute (BII), A*STAR, Singapore
Reviewer summary –
Interesting well conceived approach.
Author response: Thank you for the kind words.
Reviewer recommendations to author –
This is an interesting approach to overcome simplifica-

tions of dN/dS site selection models by using site-specific
experimental data from deep mutational scanning. As
beautifully detailed and desirable this sounds, one should
not forget that the experimental setup is detrimental for
the types or aspects of protein function that can actu-
ally be investigated which directly influences the range of
obtainable interpretations. For example, influenza hemag-
glutinin has multiple roles to fulfill on top of anti-
genic drift such as pH-dependent conformational changes
and receptor binding. Similarly, functional roles of the

nucleoprotein are not only thermal stability and immune
response evasion but also RNA packing and sub-cellular
shuttling. Also beta-lactamases will mutate differently
under different pressures from different antibiotics or
in competition with other bacteria. The difficulty of the
experimental setup to represent the full complexity of nat-
ural selection pressures is not always just a limiting factor
but looking only at some aspects of function at any one
time allows elegantly gauging details of specifically tar-
geted evolutionary forces at play. The notion of the critical
influence of the experimental setup is mentioned in the
discussion but would be good to be included also in the
introduction.
Author response: This is an important point. I have

elaborated the paragraph in the Discussion that describes
how experiments in the lab will sometimes fail to fully
capture selection in nature (This is the paragraph begin-
ning, “Does this reliance on experimental measurements
make the approach less objective?” I have also added men-
tion of this point in the Introduction by emphasizing that
“lab measurements are undoubtedly imperfect proxies for
actual selective constraints in nature.”
The reviewer also makes excellent points regarding

influenza hemagglutinin in particular. Although I do not go
into these points in the current manuscript (which focuses
more on the general approach than the details of HA),
the reviewer’s intuition is validated by recent work for
my group specifically focusing on HA [44] which found
that the experimentally informed models identify both
sites of actual positive selection from immunity and sites
subject to lab-specific selection pressures related to pro-
teolytic activation of HA. However, despite these caveats,
I think that the current manuscript clearly demonstrates
that site-specific models informed by imperfect experi-
ments are superior to the much more unrealistic standard
non-site-specific models.
The formalism of the approach is well developed and

intuitively makes sense but the practical result for hemag-
glutinin left me a bit wanting. Certainly the identified sites
for HA in Table 3 are important but they seem only a
small subset of such sites that can be identified with other
methods (e.g. SLAC from HyPhy package over naturally
occurring sequences finds dozens that can be rational-
ized to make sense through overlap with known epitopes
etc). Could it simply be that the, in some cases, used
heuristic Gal4-based thresholding is too conservative and
considering less stringent criteria would find more of the
presumably true sites?
Author response: I think the relative paucity of sites

identified in HA is due to the fact that the analysis focuses
on seasonal H1 HA rather than H3 HA. For instance, I ran
the H1 HA alignment used in this paper through SLAC as
implemented in the DataMonkeyweb interface to HyPhy
(data not shown). The SLAC analysis only identified two

https://github.com/jbloomlab/phydms
https://github.com/jbloomlab/phydms
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sites of positive selection for the H1 alignment. I would
expect that all approaches would identify more sites in H3
HA, since human H3N2 influenza undergoes more rapid
antigenic drift than human seasonal H1N1 influenza [83].
Such an analysis will be possible once deep mutational
scanning data are available for an H3 HA.
By the way, the criterion of Caton epitope residues plus

everything within 6A does includes a lot of structurally
buried residues. Maybe an additional surface accessibility
criterion to enrich for direct epitope candidates may be
justifiable here? If I am not wrong, HA 225 (in H3 num-
bering in Table 3) is a classical host/passage specificity
position in H1 context and it is good to be highlighted by
the new approach but its potentially broader functional
importance on receptor binding should also bementioned
and referenced accordingly.
Author response: These are both good points. The three

sites of selection listed in the table are at least partially
surface-exposed. As the reviewer points out, some of the 89
sites within 6Å are buried, and so are probably not true
antigenic sites. Accounting for this fact would deflate the
denominator in the Fisher’s exact test that we use to test the
significance that we are identifying true antigenic sites, and
so further improve the P-value for supporting the validity
of our ExpCMmethod. However, I prefer to be conservative
and keep all 89 sites in the denominator, since in some cases
mutations at buried sites may still introduce slight con-
formational changes or N-linked glycosylation motifs that
escape antibodies.
The point about HA site 225 in receptor-binding is a good

one. I have added a line in the table that emphasizes that
mutations at site 225 are implicated in both host adapta-
tion and lab passaging adaptation via changing receptor
binding, and have cited the following relevant references:
[84–87].
The following additional points are meant to stimulate

further thoughts for future work: Empirical average (nei-
ther site- nor protein-specific) amino acid substitution
tables have been derived en masse since the early works
of Dayhoff (PAM, JTT, BLOSUM, . . .). Picking one of the
most popular, BLOSUM62, how similar or different is it
for the studied proteins’ ExpCM results?
Author response: Good question. Empirical amino-acid

substitution matrices themselves cannot be directly sub-
stituted for codon substitution models. But there are a
variety of empirical codon substitution models, which com-
bine empirical amino-acid substitution models with codon
substitution models. One such set of models are Kosiol et
al 2007 models [88]. In prior work [16, 17, 33] I have com-
pared these Kosiol 2007 models to the various forms of the
Goldman-Yang style models used here, as well as earlier
versions of the ExpCM. As described in that prior work, the
Kosiol 2007 models in general were not substantially bet-
ter (and were often actually worse) than the Goldman-Yang

models in terms of phylogenetic fit. Therefore, it appears
that an empirical model that tries to account for
amino-acid substitutions in a way that is NOT site-
specific does not lead to substantial improvements. This is
probably because protein-level constraints are highly site-
specific, and cannot effectively be modeled in an “average”
across sites.
Classical substitution matrices are traditionally derived

from globular regions of proteins forming 3D struc-
tures but un- or dynamically structured N- or C-terminal
stretches are also under selection pressure for targeting
motifs and other constraints. An unbiased but complete
scanning method may be equally applicable also in non-
globular regions and pinpoint critical sites often neglected
by earlier approaches?
Author response: This is another good question. As the

reviewer suggests, I would expect that perhaps the site-
specific amino-acid preferences for unstructured protein
domains to be quite a bit different than for globular pro-
teins. To my knowledge, no one has yet performed deep
mutational scanning on an unstructured protein domain.
But once such experiments are done, as the reviewer sug-
gests, it would be very interesting to test whether such
experiments could inform substitution models.
On the complexity of adaptive mutations in the sub-

strate binding pocket of beta-lactamases, I found it
curious that antibiotics resistance genes in microbiomes
of an un-contacted Amazonian tribe had the capacity
to also neutralize synthetic man-made antibiotics they
have never been exposed to (http://www.sciencemag.
org/news/2015/04/resistance-antibiotics-found-isolated-
amazonian-tribe). This highlights plasticity of the natural
repertoire of substrate binding pocket residues to accom-
modate a broad range of unknown substrates directly or
with few mutations.
Author response: This is an interesting observation. As

more deep mutational scanning data sets become avail-
able, it will be interesting to compare the inherent plasticity
of different active sites.
Adaptive mutations are of great importance not just in

the context of pathogens but it would be interesting to also
apply deep scanning and ExpCM on key genes in human
diseases (P53, KRas, EGFR, . . . )
Author response: This is a great suggestion. Some recent

studies by other groups have already started to move in
this direction; see for instance [89, 90]. These studies may
have the potential to aid in the prospective identification of
disease-causing human mutations.
Last but not least, the manuscript and suppl. material

with code links are commendably complete descriptions
of the work.
Author response: Thanks! Hopefully the availability of

the code and data will help enable others to extend and
improve the approaches described in this manuscript.

http://www.sciencemag.org/news/2015/04/resistance-antibiotics-found-isolated-amazonian-tribe
http://www.sciencemag.org/news/2015/04/resistance-antibiotics-found-isolated-amazonian-tribe
http://www.sciencemag.org/news/2015/04/resistance-antibiotics-found-isolated-amazonian-tribe
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Additional responses from reviewer after reading the
revised version. The quoted text indicates the author’s
comments in the revision:
“I think the relative paucity of sites identified in HA is

due to the fact that the analysis focuses on seasonal H1
HA rather than H3 HA.” Indeed, could be true.
“. . . keep all 89 sites in the denominator, since in

some cases mutations at buried sites may still introduce
slight conformational changes or N-linked glycosylation
motifs that escape antibodies.” Ok to keep all 89 sites for
this paper but remove in the response the comment on
buried N-glycosylation sites. The latter most commonly
are not buried due to the simple necessity of access for the
modifying enzyme machinery [91].
Author response: The reviewer is correct that the N-

linked glycans themselves are not buried. I had meant that
in some cases the Ser/Thr in the Asn-Xaa-Ser/Thr gly-
cosylation motif might be buried, but admittedly this is
probably a rare event.
“As described in that prior work, the Kosiol 2007 mod-

els in general were not substantially better (and were often
actually worse). . . ” Sure, I did not mean that they would
be better in performance but more that it might be inter-
esting to study trends in observed differences to possibly
improve them with some extra rules e.g. something that
would filter out less reliable sites where differences are
always high. In other words, some amino acid substitu-
tion pairs may be more site-specific than others? In any
case, partially addressed before and possible extension for
future work.
Author response: I agree that this is an interesting area

for future work.
“To my knowledge, no one has yet performed deep

mutational scanning on an unstructured protein domain.
But once such experiments are done, as the reviewer sug-
gests, it would be very interesting to test whether such
experiments could inform substitutionmodels.”Most pro-
teins are not fully structured but typically feature flexible
N- and C-termini as well as often only partially structured
longer loop regions. One way to define these unstructured
regions is by looking for unresolved residues in crystal
structures despite being part of the used sequence. These
are easy to see when looking at the sequence tab of PDB
files online. In fact for the H1N1 HA deep scan, it seem
the author has deep scanning data for ∼18 unstructured
residues in the N-terminus and 60 in the C-terminus [44].
Surprisingly there seems to be quite some constrained
sites in the C-term here which alsomay point to functional
importance as motifs or partial or conditional structure.
Author response: This is a good idea – it would be

interesting to specifically look at unstructured regions in
proteins that have already been studied by deep muta-
tional scanning. Such an analysis is beyond the scope of the
current study, but is an interesting topic for future work. As

the reviewer notes, the conservation at some sites in the C-
terminus of HA is compatible with the fact that parts of the
transmembrane domain and cytoplasmic tail are impor-
tant for virion formation, such as via interactions between
HA’s cytoplasmic tail and the matrix protein.

Reviewer Report 2: Olivier Tenaillon, INSERM, France
Reviewer summary –
In his manuscript entitled “Identification of positive

selection in genes is greatly improved by using experimen-
tally informed site specific models”, Jesse Bloom propose
to use quantitative information based in deep mutational
scanning experiments to detect selection in phylogenies.
In previous articles, he proposed to use such information
to improve the phylogenetic reconstruction, in the present
one he extends the approach to detection of selection,
the rational being that a better underlying model allows
a finer detection of selection, and a site specific model
gives more power to detect local effects. He applies his
method to 4 genes, one in which no selection is expected
and 3 in which there are target sites for selection. The
results suggest a better detection of sites under selection. I
really appreciated the approach used and have just minor
comments.
Author response: Thank you for the nice summary and

kind words about the manuscript.
Reviewer recommendations to author –
The method relies on the use of deep mutational scan-

ning experiments, but does not mention how good and
precise these experiments have to be. For instance, the
Stiffler et al experiments [14] on beta-lactamases are done
after 3 generations of growth and give mostly a growth,
no growth information (actually Firnberg and Ostermeier
data [34] would have been more appropriate as they pro-
vide a much finer resolution). Indeed, in that paper the
distribution of fitness is almost completely bimodal for
mutation effects. These experiments are much less costly
than others that will do deep scanning with much more
time points (or concentrations) and therefore with higher
fitness resolution for the mutants. So how important is
the precision of the experimental data? Would a binary
fit for each amino acid mutation work as well? This is
important for two reasons: first it can define somehow
that price required to get a good signal with mutational
scanning. Second, if the data are binary, then mutation
prediction approach may be relevant. In a recent paper,
Figliuzzi et al (MBE, 2016 [75] that should at least be cited
along side with Hopf in arRxiv [74]), MartinWeigt’s group
showed that the DCA and Independent model based
on protein alignment were providing a good prediction
of mutation effects produced in experiments especially
on grow no-grow kind of data. If the improvement of
the present approach is not very sensitive to the quality
of the experimental data, then it would gain incredibly
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in usage if predictions from pfam alignment such as
the ones done by DCA were used rather than costly
experiments.
Author response: These are all great points.
The first question is how to choose the which deep muta-

tional scanning dataset to use to inform the substitution
models. As the reviewer points out, there are currently two
deep mutational scanning datasets for beta-lactamase: the
one by Stiffler et al used in the current manuscript [14],
and an earlier dataset by Firnberg and Ostermeier [34].
In prior work [17], I have shown that the Firnberg dataset
also improves phylogenetic fit. But the initial version of
this manuscript only used the newer Stiffler data set. So
how do we know which is better? We can compare how
well different deep mutational scanning datasets actu-
ally describe the constraints on natural evolution using
maximum-likelihood phylogenetics via AIC, exactly as is
traditionally done to compare substitution models [43].
Specifically, we can perform phylogenetic fitting of ExpCM
informed by each dataset to see which one yields a higher
likelihood of the actual natural sequences. The new Table 2
now includes analyses with ExpCM informed by each deep
mutational scanning dataset. As can be seen from this
table, ExpCM informed by the Stiffler dataset describe
the natural evolution of β-lactamase better than ExpCM
informed by the Firnberg dataset (�AIC = 204). Therefore,
by the criterium typically used to compare substitution
models, the Stiffler dataset is superior. Note however that
either dataset informs ExpCM that are clearly better than
standard GY94-type models.
The foregoing analyses do not provide a basis for con-

cluding why the Stiffler dataset is superior to the Firnberg
one. As the reviewer notes, one difference is that the more
extended selection in the Stiffler et al experiments leads to
more binary measurements. But the differences could also
be due to reasons that are more technical than biologi-
cal. For instance, Stiffler et al perform two full biological
replicates of their deep mutational scanning, and I have
used the average of the two replicates – this averaging pre-
sumably reduces experimental noise. In contrast, Firnberg
et al did not perform replicates of their experiment, so
perhaps there is more noise that has not been averaged
away. Consistent with this idea, analyses of other genes
have shown that averaging across experimental replicates
of deep mutational scanning typically improves ExpCM
[44], presumably by reducing the effects of measurement
noise.
Thanks for pointing out the Figliuzzi et al [75] study

that predicts mutational effects from sequence alignments.
I have added mention of this study to the paragraph in the
Discussion that addresses whether site-specific amino-acid
preferences could be computationally inferred from natu-
ral alignments rather than measured experimentally (this
is the paragraph beginning “Another possibility is to use

non-experimental strategies to inform site-specific mod-
els like the one here.”). The short answer is that I do not
know whether computational methods like those used in
Figliuzzi et al [75] could be used in place of deep muta-
tional scanning – but certainly I agree that this would
greatly expand the utility of approaches like the one that
I describe in the current manuscript. One caveat about
inferring the preferences from natural sequence alignments
is that care must be taken to avoid over-fitting the data, as
the preferences would then come from the same alignment
that is being analyzed phylogenetically – in my current
manuscript, the preferences are from a separate dataset
(the deep mutational scanning) from the natural sequence
alignment. However, it may be possible to infer the pref-
erences without overfitting – see for instance a paper by
Rodrigue and Lartillot [76] that was published while the
current manuscript was under review. Certainly I hope
that the current manuscript will help inspire future work
to see if the site-specific amino-acid preferences can also
be obtained in other “cheaper” ways than deep mutational
scanning – although I would note that deep mutational
scanning itself is also getting progressively cheaper.
The differential selection is interesting but not as intu-

itive than the diversifying one. The experiments being
made in the lab, they may lack some facets of selection. So
the test will tell us if sites are significantly different from
the selection in the lab. However, we can not, in many
cases, know whether this is a true mark of selection in
the wild or a limited power of the experimental setting to
provide a good model.
Author response: This is a good point. I have added

text to the Discussion that emphasizes that the diversi-
fying selection test looks for differences between selection
in nature and what is expected given measurements in
the lab. I have emphasized why this will sometimes (but
not always) be informative for identifying mutations of
biological interest.
In the different sets of genes studied here the difference

of selection between laboratory and other experiments is
relevant: lack of immune system, or lack of new antibiotic,
but how general can that be? It could be worth discussing
briefly that issue, to give some intuition to future users
about the meaning of the signal they may get.
This is a good point. I have added text that describes how

the tests are especially useful when we know that there are
selection pressures (such as immunity or drug resistance)
that are present in nature but not in the lab. Similar situ-
ations where there are known external pressures in nature
but not in the lab will occur sometimes (as in the case of the
influenza genes and β-lactamase), but not in other cases
(such as Gal4).
It would be appropriate to plot the trees of each gene

alignment that are used for inference and present the state
of the candidate mutations.
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Given the large number of candidate mutations, it is not
feasible to make trees that display the states of each of the
relevant sites for all genes. However, I have included the
phylogenetic trees in the relevant Additional files so that
those can be opened in a program such as FigTree to
examine the trees and map mutations to the branches.
Minor issues –
Are all mutations with a signal reported in the violin

graphs?
Author response: Yes, in the violin plots, the points indi-

cate all mutations with a signal of either differential or
diversifying selection.
Shouldn’t “beta-lactamase” be used throughout the

paper rather than “lactamase”?
Author response: Yes. In the revised version, I have made

sure to fully write out “β-lactamase” rather than sometimes
just saying “lactamase.”

Reviewer Report 3: Tal Pupko, Tel Aviv University, Israel
Reviewer summary –
Dr. Bloom is pushing forward an innovative idea: to inte-

grate data from deep mutational scanning to improve the
performance of the challenging task of identifying pos-
itively selected sites. To this end, he proposes a novel
codon model that explicitly integrates such data within its
parameters. I enjoyed the new concept, and I was con-
vinced by the benefit of integrating such experimental
data to improve dN/dS methods. I have some comments
and suggestions to make the manuscript more accurate
and informative.
Author response: Thank you for the nice summary of the

manuscript and the kind words.
Reviewer recommendations to author –
All comments (major and minor) in the order they

appear in the manuscript.
I felt that the first sentence is phrased in a non-scientific

language. It is written that an important goal is to “identify
genetic modifications that have led to interesting changes
in phenotype.” Who decides what is interesting and what
is not? I would rephrase to states that scientists want a
bettermap between genericmodifications and phenotypic
variation.
Author response: I have changed the word “interesting”

to “evolutionarily significant,” which seems less subjective.
However, I think some level of subjectivity is inherent in
studying phenotypic changes. The researcher defines what
is considered a phenotype that is worthy of study: for
instance, in influenza virology we generally consider muta-
tions that alter immunogenicity or host tropism to be
“important,” and in the study of bacterial antibiotic resis-
tance genes we typically consider as “important” mutations
that enhance resistance to new drugs. But our choice to
focus on those phenotypes is somewhat subjective. The
approach in the current manuscript identifies sites that are

evolving differently in nature than expected from exper-
iments in the lab – but the choice to compare natural
evolution to the “null model” of experiments in the lab is
subjective, and is guided by the idea that pressures present
in nature but absent in the lab are often relevant to pheno-
types we consider “important” (for instance, immunogenic-
ity for influenza, or extended-spectrum drug resistance for
lactamase). I have elaborated on this point in the Dis-
cussion in the paragraph beginning “Does this reliance
on experimental measurements make the approach less
objective?”
In page 2, it is written “for protein-coding genes, the

most widely used methods for identifying specific sites
of selection are built around the null model that non-
synonymous and synonymous mutations should fix at
equal rates.” I think this is inaccurate. Most biochemists
interested to find purifying selective forces acting on their
protein of interest do not use dN/dS methods. Instead,
they use tools such as Consurf, which explicitly account
for the physiochemical nature of the amino acids. Codon
models are almost only used when explicitly searching for
positive selection.
Author response: This is a good point. I have changed

“specific sites of selection” to “specific sites of positive selec-
tion.”
Page 2, change “amino-acid mutation” to “non-synony-

mous mutation.”
Author response: Thanks for catching this inconsistency

in word usage, I have made this change.
Page 2, it is claimed “detecting purifying selection as

manifested by dN/dS < 1 points more to the naivety of
the null model than unexpected biology”. As stated above,
from a biochemical perspective it is highly important to
know which sites are highly conserved and which ones
are not. Such information is used, for example, for pre-
dicting which sites are buried and which are exposed to
the solvent, which mutations are likely to cause diseases,
and when themolecular mechanism of an enzyme is eluci-
dated. Thus, when a codon model predicts and quantifies
sites as being evolved under dN/dS < 1, this points to the
fact that the model genuinely captures variation in puri-
fying selective forces among amino acid sites. It does not
point for a naivety of the model. Further, for dN/dS < 1,
there is not a null model and an alternative model (which
is not the case when searching for positive selection), so it
is not clear what “null model” is in this statement.
Author response: These are good points. I have sim-

ply removed the referenced sentence altogether, since it is
unclear for the reason that reviewer notes. Specifically,
the reviewer is correct that (depending on the question
at hand), finding dN/dS < 1 may be important (for
instance, it is important for identifying disease-causing
mutations, but not for finding viral immune escape muta-
tions). However, it is true that many methods (such as
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FEL, FUBAR) for analyzing site-specific selection test both
the alternative model dN/dS < 1 and the alternative
model dN/dS > 1 against the null model dN/dS = 1,
so for these methods there is a null model when testing
dN/dS < 1.
Regarding the paragraph starting with “perhaps more

importantly, dN/dS methods also have limited power to
identify sites that have fixed adaptive mutations”: the term
“fixed adaptive mutations” should be explained. Further,
it is claimed that dN/dS methods have limited power, but
only one example is provided (ref 10). As it is stated, the
claim is not supported.
Author response: I have changed the text from “also

have limited power to identify” to “also can fail to iden-
tify.” This avoids a blanket statement that dN/dS methods
lack power, since as the reviewer points out, I only cite
a single example. However, I think that example justifies
the statement that dN/dS methods can fail. And of course,
the results in the current manuscript provide many more
examples of sites of immune-escape or drug resistance
mutations that are under positive selection but are not
identified by a standard dN/dS method but are identified
by the ExpCM.
It is written that “the limitation of the null model that

assumes equal rates of fixation of non-synonymous and
synonymous mutations have become . . . ”. The standard
codon models assume omega varies over sites according
to a beta distribution (sometimes, a gamma distribution is
assumed). By doing so, they assume that for most sites, the
fixation rate of non-synonymous mutations is lower than
the rate of synonymous mutations. Hence this statement
in this sentence is inaccurate.
Author response: I have re-written the text to read:

“The limitations of simply comparing the rates of fixa-
tion of nonsynonymous and synonymous mutations have
become especially glaring in light of deep mutational
scanning experiments.” This statement along with the
remainder of the paragraph effectively captures the key
point that when sites are under very different levels of
inherent constraint, a method that does not assign a
different expectation of the expected constraint to each
site will have difficulty identifying positive selection at
constrained sites.
In the last paragraph of the introduction it is written

“But most sites strongly prefer one or a few amino acids;
dN/dS methods do not offer a plausible null model for
these sites”. This is again, inaccurate. There were many
efforts to include amino acid preference with codon mod-
els. See for example (1) “An Empirical Codon Model for
Protein Sequence Evolution”, a paper from the group of
Nick Goldman; (2) “Empirical codon substitution matrix”,
from the group of Gaston Gonnet; (3) “A Combined
Empirical and Mechanistic Codon Model” from my own
group; (4) A book chapter about empirical and semi

empirical codon evolutionary models in the book “Codon
Evolution: Mechanisms and Models” edited by David
Liberles.
Author response: I have re-worded the sentence in ques-

tion. However, none of the references mentioned by the
reviewer include site-specific constraints. They do treat
different nonsynonymous substitutions differently, but this
treatment is the same across sites (with the possible incor-
poration of a distributed rate parameter). Therefore, the
stationary state of these models is homogeneous across sites
(a rate parameter does not alter the model’s stationary
state since it is simply a constant multiplying the transi-
tion matrix). The key difference of the ExpCM used here
is that the treatment of each nonsynonymous substitution
depends on the site, and so each site has a different sta-
tionary state. The re-wording of the sentence should better
emphasize the key distinction.
I had difficulties to understand figure 1A. To the best of

my understanding, a comparison is made between amino
acid preferences as measured by the deep mutations scan-
ning of Stiffler et al. to the amino acid preferences in
“nature”. However, it is not clear how the amino acid pref-
erences in nature were computed. In addition, in Stiffler
et al. several deep mutations scanning experiments were
conducted. Which one is presented and why? It should
also be better explained in which sites positive selection
is expected, what is the “real” omega, what is the inferred
omega of PAML.
Author response: I have clarified the figure. I have

added text to explain that the preferences shown in the
figure are for the measurements from deep mutational
scanning. None of the preferences are taken from natural
sequence data – instead, there is just a comparison with
which mutations are common in the naturally occurring
sequences. I have added text to the legend explain that
the Stiffler data is from the experiments with the highest
concentration of ampicillin (this was previously explained
only in the Methods). The violin plots show the P-value for
ω > 1 for each site computed using the FEL method; these
P-values are shown rather than the ω value itself because
site-specific estimates of ω are known to be numerically
unreliable and so most methods focus on estimating the P-
value (or posterior probability) of ω > 1 rather than the
numerical value of ω itself. The top column of text explains
which sites are implicated in extended-spectrum antibi-
otic resistance; these are the ones that might reasonably be
posited to be under positive selection.
The methods are compared only to the “Goldman-Yang

model” from 1994. In 1994 Goldman and Yang were the
first codon model published, back to back with a paper
by Muse and Gaut. I would suggest to use codon models
that are used now, e.g., the M8-M8A model. Also, I am
not sure that the real codon model proposed in Goldman
and Yang (1994) was used. GY94, as stated in that paper
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in equation 3 includes explicit consideration of the amino
acid type. Maybe the Muse and Gaut (1994) codon model
was used instead? In light of these comments, I suggest
that more details are provided for this figure so that read-
ers can be convinced that a problem with standard codon
models exists.
Author response: This is a good point. The origi-

nal Goldman-Yang paper [23] includes the possibility of
weighting substitutions by amino-acid similarity (dij terms
in their notation). In subsequent work [4], Yang and Gold-
man largely abandoned these weightings (i.e., made all
dij) terms equal, and then defined various variants of
these models (e.g., M0, M3, M8, etc). However, the lit-
erature commonly refers to all these model variants as
“Goldman-Yang” style models, even though the reviewer
is correct that they do not contain the weightings in the
original Goldman-Yang paper. To clarify this, I have explic-
itly indicated that I have used specific M variants of the
Goldman-Yang style models (e.g., M0) as defined in [4]. As
far as the M8 model, I have chosen to instead use the M3
model for this paper. Like the M8 model, the M3 model
allows multiple categories of ω. In earlier work using sim-
ilar models [17], I have shown that the M3 and M8/M8a
models give comparable performance.
Figure 1, the P values are corrected for multiple testing

using FDR. But in the legend it is written that Bonferroni
correction is used. Maybe this should be better clarified?
Author response: The tests were performed using an

FDR. But in the case where there are no sites that are signif-
icant at an FDR of 0.05, the blue line indicates the P-value
that would be needed by a single site to be significant with
P = 0.05 using a Bonferroni correction. This is equivalent
to the FDR cutoff for just one site, since FDR and Bonfer-
roni are identical when there is just one significant site. I
have added text to clarify this.
In the last paragraph of the introduction it is claimed

that the goal is to detect sites under “differential selec-
tion for unexpected amino acids”. Is this identical with the
goal of “detecting sites evolving under positive selection”?
There are many other works that aim to detect selection
shifts (e.g., the extensive literature on covarion models).
This is not the same as to detect positive selection.
Author response: This is a valid point, although as the

results in the manuscript show, in many cases the sites
of differential selection turn out to be sites of adaptive
mutations. I have added a sentence in the last para-
graph of the Introduction emphasizing that this strategy
“seeks to identify sites that are evolving differently in
nature than expected from constraints measured in the
lab.” As I think the subsequent results show, in many cases
these sites turn out to be ones that have fixed immune-
escape or drug-resistance mutations that would typically
be envisioned as having arisen from positive selection
for adaptation.

The first part of the results is dedicated to a description
of the ExpCMmodel. It is written: “The ExpCM used here
are similar but not identical to those in [16,17]”. However,
the differences are not explicitly stated nor are the reasons
for changing the model. I suggest making this statement
more explicit.
Author response:Good suggestion. I have clarified in the

text how the ExpCM differ. They differ by including the ω

term, and by using a slightly different model (an HKY85
model) for handling the nucleotide mutation rates.
In Equation 5, variability in the synonymous rate among

sites is included. Why not to include it already in the null
model, i.e., Equation 3 (see also “Towards realistic codon
models: among site variability and dependency of syn-
onymous and non-synonymous rates.” [77])? Also, when
comparing to the standard model, how can one know the
contribution of adding the data from the deep mutation
scanning versus the contribution to power stemming from
adding a component of synonymous variation over sites?
At any rate, a more elaborate way to test for deviation from
the null model, would be to generate an alternative model
for all sites that would allow omega to vary across sites.
Then to estimate, for example, the posterior expectation
of omega for each site. Such an approach would allow for
example to account for uncertainty in model parameters,
by adding a BEB (Bayes Empirical Bayesian) component.
Author response: The synonymous rate variation is not

included in the gene-wide model, but is included in the
site-specific fitting to test for diversifying selection. Specifi-
cally, when fitting Equation 5, the null model is to fit just
μr (synonymous rate) and fix ωr = 1, while the alterna-
tive model is to fit both ωr and μr, so this ensures that any
improvement in site-specific estimation is not due to the
synonymous rate. The reason I have taken this approach
is that it is used in the FEL approaches (and many
other standard approaches) to which the comparisons are
made (see [27]). Therefore, all the comparisons between
the null and alternative models of both the ExpCM and
more standard GY94-style models handle synonymous
rate variation comparably, ensuring an apples-to-apples
comparison.
The reviewer is correct that real biological processes

might involve synonymous rate variation as well. This pos-
sibility is nicely discussed in the reviewer’s own paper on
the topic [77]. Therefore, in the concluding paragraph of
the Discussion, I have cited [77] and added mention of how
better incorporating synonymous rate variation might be
one possible way to extend/improve ExpCM. Note however
that the pros and cons of incorporating synonymous rate
variation remain a topic of active debate [92], although
I tend to side with the reviewer [77] and others [27] that
incorporating such variation is beneficial.
I agree that using an empirical Bayes approach is an

alternative framework to try, although again the relative
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pros and cons of these so-called “random effects” meth-
ods versus their “fixed effects” alternatives remains a
topic of active debate [5, 53, 93]. I discuss this issue
and the possibility of extending ExpCM to an empir-
ical Bayes framework in the Results paragraph begin-
ning “A variety of other dN/dS methods have also been
developed.”
Below equation 5 it is written that the key statistic is not

omega itself, but rather the P-value. I don’t think the P
value is the statistic, but rather, the log likelihood ratio.
Author response: I have clarified this point by stating

that the key statistic is the difference in log likelihoods (the
likelihood ratio), from which a P-value can be computed.
The balancing term introduced in equation 7 seems to

be equivalent to assuming a specific prior distribution
over the amino acid distributions. However, the connec-
tion with a prior distribution is very implicit. I suggest
moving to a Bayesian approach and thus making this prior
assumption explicit. If this is not feasible in the current
version of the manuscript, please consider stating this link
to an implicit prior.
Author response: In a Bayesian approach, this equation

would be the equivalent of a prior. However, since the cur-
rent manuscript uses amaximum-likelihood approach, the
equation is better thought of as a regularization term, since
we are not actually sampling from the posterior established
by the likelihood and prior, but rather simply maximiz-
ing the likelihood subject to the regularization established
by Equation 7. I have added a sentence making this link
between regularization and a Bayesian prior. Given the
current computational implementation, it is not straight-
forward to move the analysis to a Bayesian approach. But
as mentioned in the response two before this one, this is an
interesting area for future work, and one that I discuss in
the manuscript.
When comparing the power of the ExpCM method to

“GY94”, it seems to me that there is also a difference in the
false positive rate.
Author response: This is true. The ExpCM has a false-

discovery rate that is close to what is expected given the
FDR of 0.05, while the GY94 has a lower false-discovery
rate but also a much higher false negative rate.
Minor comments -
Consider reducing the number of additional files and

move some info into the main text.
Author response: I admit there are a lot of additional

files. However, for both an earlier version of this manuscript
submitted elsewhere and the first version I posted on
bioRxiv, I received exactly the opposite complaint that
there were too many figures that would be better moved
to additional files! So I think I am going to keep it as is,
knowing that in the final published version (which will have
working links) it will be much easier for the reader to access
the additional files.

Additional files

Additional file 1: Graph of the function used to regularize the �πr,a
values when inferring differential selection. The log of the regularization
defined by Eq. 7 is a sum of terms like this taken over all differential
preferences at a site. This regularization has the property that the marginal
cost of shifting �πr,a away from zero is initially steep but then flattens
somewhat as �πr,a becomes large. This corresponds to the intuition that
most sites will be evolving as expected (and so have �πr,a ∼ 0), but a few
sites might be under strong differential selection. This plot uses C1 = 150
and C2 = 0.5. ( PDF 284 kb )

Additional file 2: Site-specific amino-acid preferences for Gal4. Shown are
the preferences experimentally measured by [31] for the DNA-binding
domain of yeast Gal4, re-scaled by the stringency parameter β = 0.82 from
Table 2. (PDF 25 kb)

Additional file 3: Site-specific amino-acid preferences for NP. Site-specific
amino-acid preferences for influenza NP. Shown are the preferences
experimentally reported in [32] for the average of the measurements on
the A/PR/8/1934 and A/Aichi/2/1968 strains, re-scaled by the stringency
parameter β = 2.43 from Table 2. (PDF 68 kb)

Additional file 4: Site-specific amino-acid preferences for HA. Shown are
the preferences experimentally measured by [33] for influenza HA
(A/WSN/1933, H1N1 strain), re-scaled by the stringency parameter β =
1.61 from Table 2. The residues are numbered according to the H3
numbering scheme (the one used in PDB 4HMG), and data are only shown
for sites in the HA ectodomain (residues present in the crystal structure in
PDB 4HMG). (PDF 100 kb)

Additional file 5: Simulations validate the statistical approach used to
identify diversifying selection. Using the actual ExpCM parameters for NP in
Table 2 except fixing ω = 1 for all sites except for those selected to be
simulated under diversifying selection, I used pyvolve [46] to simulate 40
alignments along the tree inferred from the actual NP sequences. For each
simulation, I randomly selected 5 sites to place under diversifying selection,
with ωr values ranging from 1 (no diversifying selection) to 30 (very strong
diversifying selection). I then analyzed the data using phydms in the same
way that the actual data were analyzed. Sites were called as being under
significant diversifying selection using the false discovery rates (FDRs)
indicated in the figure. The top panel shows that ExpCM greatly
outperformed the FEL-like GY94 method at identifying true positives. The
bottom panel shows that the Benjamini-Hocbherg [28] procedure
effectively controls the fraction of false discoveries among the sites called
as being under diversifying selection using ExpCM. The
Benjamini-Hochberg procedure may be slightly too conservative for
ExpCM (for every value of ωr the actual rate of false discoveries is slightly
below the FDR), but the differences seem modest. The computer code to
perform these simulations is in Additional file 17. (PDF 150 kb)

Additional file 6: This figure is same as Fig. 3a but also includes an
analysis with MEME [6] as implemented in HyPhy [7]. MEME reports the
P-value that a site has dN/dS > 1 on at least some branches of the tree. As
can be seen from this figure, MEME is somewhat more powerful than the
GY94-based FEL approach, presumably because some sites are only under
episodic diversifying selection. While the GY94-based FEL approach
identifies no sites of diversifying selection, MEME identifies one site of
diversifying selection in β-lactamase and one site in NP. However, MEME
still identifies fewer sites for all genes than the ExpCM. (PDF 287 kb)

Additional file 7: This figure shows the distribution over sites of the
Kullback-Leibler divergence of the experimentally measured amino-acid
preferences from the alignment frequencies. Note that the Kullback-Leibler
divergence does not take phylogeny into account, and so will be
confounded the incomplete sampling of potentially tolerated amino acids
by natural evolution. The distribution of per-site Kullback-Leibler
divergences shown here lacks the biologically sensible features of the
differential selection computed in a phylogenetic framework and shown in
Fig. 3b. For instance, Gal4 has many sites with very high Kullback-Leibler
divergence even though on biological grounds we expect it to be evolving
mostly in the absence of positive selection. In contrast, β-lactamase and
NP tend to have lower Kullback-Leibler divergence even though we know
that they evolve under selection for adaptive mutations that confer drug

http://dx.doi.org/10.1186/s13062-016-0172-z
http://dx.doi.org/10.1186/s13062-016-0172-z
http://dx.doi.org/10.1186/s13062-016-0172-z
http://dx.doi.org/10.1186/s13062-016-0172-z
http://dx.doi.org/10.1186/s13062-016-0172-z
http://dx.doi.org/10.1186/s13062-016-0172-z
http://dx.doi.org/10.1186/s13062-016-0172-z
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resistance or immune escape. The biologically unreasonable distribution of
Kullback-Leibler divergences shown in this plot are probably due to the
failure of the Kullback-Leibler divergence to account for phylogeny, which
may in turn make the results highly sensitive to uneven phylogenetic
sampling and differences in the total sequence divergence spanned by the
alignments (see Table 1). The Kullback-Leibler divergence was computed
using logarithms taken to the base two. (PDF 86 kb)

Additional file 8: Site-specific selection on Gal4 inferred with the
experimentally informed models. This figure is equivalent to Fig. 4 but for
Gal4. (PDF 252 kb)

Additional file 9: Site-specific selection on NP inferred with the
experimentally informed models. This figure is equivalent to Fig. 4 but for
NP. (PDF 278 kb)

Additional file 10: Site-specific selection on HA inferred with the
experimentally informed models. This figure is equivalent to Fig. 4 but for
HA. (PDF 282 kb)

Additional file 11: The data and code for running the analysis for Gal4.
This is a 7-Zip file containing an iPython notebook and the relevant
data files. (7z 1260 kb)

Additional file 12: The data and code for running the analysis for
lactamase. This is a 7-Zip file containing an iPython notebook and the
relevant data files. (7z 2692 kb)

Additional file 13: The data and code for running the analysis for NP. This
is a 7-Zip file containing an iPython notebook and the relevant data
files. (7Z 2910 kb)

Additional file 14: The data and code for running the analysis for HA. This
is a 7-Zip file containing an iPython notebook and the relevant data
files. (7Z 3000 kb)

Additional file 15: The data and code for running the pyvolve
simulations. This is a 7-Zip file containing an iPython notebook and
the relevant data files. (7Z 7450 kb)

Additional file 16: Clarification of subtleties in the relationship between
amino-acid preferences and substitution model equilibrium frequencies.
Figure 1 shows the experimentally measured amino-acid preferences and
the equilibrium frequencies of the GY94 model. The equilibrium
frequencies of the experimentally informed codon models (ExpCM) are
given by Eq. 4, and are similar but not identical to the preferences: the
ExpCM equilibrium frequencies are also influenced by the unequal number
of codons per amino acid, nucleotide mutation biases, and the stringency
parameter β . The equilibrium frequencies of the GY94 model already
account for the codon/mutation factors. To clarify these distinctions, this
figure shows the preferences and equilibrium frequencies of the ExpCM
model, and the “all-equal” amino-acid preferences that would lead to the
equilibrium frequencies of the GY94 model if the nucleotide frequency
parameters in that model are construed as representing mutation-level
rather than selection-level processes. Note that the logo plots show the
amino-acid frequencies implied by the equilibrium codon frequencies (i.e.
the sum of the frequencies of all encoding codons for each amino acid).
(PDF 76 kb)

Additional file 17: The results of the dN/dS analysis are qualitatively
similar when using HyPhy rather than phydms. This figure shows the
same data as that in Fig. 3a, but also includes the results of a dN/dS analysis
using the fixed effects likelihood (FEL) method implemented in HyPhy [7].
The results are not identical to the phydms GY94 results because the
HyPhy implementation differs slightly from the phydms implementation:
HyPhy performs the dN/dS analysis using the substitution model of [102]
rather than GY94, and infers a neighbor-joining tree with a nucleotide
substitution model rather than a maximum-likelihood tree using a codon
model. Nonetheless, the results of the HyPhy FEL analysis are highly
similar to those of the phydms GY94 analysis, both in terms of the overall
distribution of results and in terms of the values for the specific indicated
sites. The point markers represent the same sites as in Fig. 3. (PDF 236 kb)

Abbreviations
AIC: Akaike Information Criterion; ExpCM: Experimentally informed codon
model; GY94: Goldman Yang 1994 substitution model; HA: Hemagglutinin;
NP: Nucleoprotein
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