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We investigate how a protein’s structure influences the rate at which its sequence evolves. Our basic hypothesis is that
proteins with highly designable structures (structures that are encoded by many sequences) will evolve more rapidly.
Recent theoretical advances argue that structures with a higher density of interresidue contacts are more designable,
and we show that high contact density is correlated with an increased rate of sequence evolution in yeast. In addition,
we investigate the correlations between the rate of sequence evolution and several other structural descriptors, carefully
controlling for the strong effect of expression level on evolutionary rate. Overall, we find that the structural descriptors that
we consider appear to explain roughly 10% of the variation in rates of protein evolution in yeast. We also show that despite
the well-known trend for buried residues to be more conserved, proteins with a higher fraction of buried residues, nonethe-
less, tend to evolve their sequences more rapidly. We suggest that this effect is due to the increased designability of struc-
tures with more buried residues. Our results provide evidence that protein structure plays an important role in shaping the
rate of sequence evolution and provide evidence to support recent theoretical advances linking structural designability to
contact density.

Introduction

Protein sequences evolve largely through the gradual
accumulation of amino acid substitutions, and the extent
of sequence divergence is quantified by the number of
nonsynonymous substitutions per site, dN. Over 40 years
ago, Zuckerkandl and Pauling (1965) observed that dN
for homologous proteins is proportional to the time since
divergence, indicating that dN measures a roughly constant
average rate of fixed amino acid substitutions. However, it
has also long been clear that different proteins accumulate
substitutions at markedly different rates: Zuckerkandl and
Pauling (1965) remarked how the large values of dN for
hemoglobin were ‘‘spectacularly at variance’’ with the small
values of dN for cytochrome c. The availability of full
genome sequences now allows for much more extensive
comparisons of rates of protein sequence evolution, and
such analyses have confirmed the widely differing rates
noted by Zuckerkandl and Pauling (1965). For example,
dN varies approximately a 1,000-fold between the fastest
and slowest evolving proteins in yeast (Drummond et al.
2005).

Zuckerkandl and Pauling (1965) and subsequently
Ohta and Kimura (1971) and others (King and Jukes
1969) argued that variation in dN was due to differences
in the selective constraints on proteins’ sequences. The ba-
sic argument is that most sequence divergence is due to the
fixation of mutations with little or no effect on a protein’s
function, and so the rate at which substitutions accumulate
is proportional to the average fraction of mutations that are
effectively neutral (Ohta and Kimura 1971; Brookfield
2000). This argument has now gained widespread accep-
tance, and numerous studies have used high-throughput ge-
nomic data to attempt to pinpoint the biological constraints
that underlie the different rates of sequence evolution.
Numerous properties have been found to correlate with
a protein’s dN, including the dispensability or essentiality

of its encoding gene (Hirsh and Fraser 2001; Jordan et al.
2002; Wall et al. 2005; Zhang and He 2005), the number
of other proteins with which it interacts (Fraser et al. 2002;
Lemos et al. 2005), its length (Marais and Duret 2001;
Lemos et al. 2005), its centrality in the protein interaction
network (Hahn and Kern 2005), and its expression level
(Pal et al. 2001; Drummond et al. 2005, 2006). However,
a casual analysis of these correlations is complicated by the
fact that most of these biological properties are also corre-
lated with each other (Drummond et al. 2006). At this point,
the only clear conclusions are that, by far, the most dom-
inant trend is for highly expressed proteins to evolve slowly
(Pal et al. 2001; Drummond et al. 2005, 2006) and that the
other correlations are either much weaker or potentially due
to confounding factors (Hurst and Smith 1999; Bloom and
Adami 2003; Jordan et al. 2003; Pal et al. 2003; Hahn et al.
2004; Agrafioti et al. 2005; Drummond et al. 2006).

The fact that expression level correlates with dN much
more strongly than properties reflecting a protein’s biolog-
ical role is consistent with protein mutagenesis experiments
showing that deleterious mutations usually act by hindering
the formation of a properly folded protein rather than spe-
cifically altering a protein’s function (Shortle and Lin 1985;
Pakula et al. 1986; Loeb et al. 1989; Bloom et al. 2005,
2006). Therefore, dN should be largely determined by
the fraction of mutations that prevent adequate protein ex-
pression and folding. Highly expressed proteins are under
an increased requirement for fidelity in expression and fold-
ing due to the costs of misfolded proteins, meaning they
have a smaller fraction of effectively neutral mutations
and so evolve more slowly (Drummond et al. 2005). A pro-
tein’s biophysical properties can also influence the fraction
of mutations that allow for adequate expression and folding,
for example, protein mutagenesis experiments have shown
that increasing a protein’s thermodynamic stability dra-
matically increases its tolerance to mutations (Bloom
et al. 2005, 2006). Another factor that has received little
consideration with respect to its effect on dN, but which
may significantly affect a protein’s mutational tolerance,
is the characteristics of the native structure itself.

The relationship between a protein’s native structure
and its mutational tolerance has been extensively studied
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in the context of protein folding and design. These studies
typically attempt to characterize a structure’s ‘‘designa-
bility,’’ defined as the total number of amino acid sequences
that fold into that structure (Li et al. 1996; Kussell 2005).
Because more designable structures are encoded by more
sequences, proteins that fold into highly designable struc-
tures tend to be more tolerant to mutations and, thus, should
evolve their sequences more rapidly (fig. 1). Most studies of
protein designability have utilized simple computational
models in which designability can be directly estimated
by an extensive or exhaustive enumeration of different
sequences (Li et al. 1996; Govindarajan and Goldstein
1996, 1997; Tiana et al. 2000; Chan and Bornberg-Bauer
2002; Irbäck and Troein 2002; Miller et al. 2002; Wingreen
et al. 2004; Wroe et al. 2005; Zhang et al. 2005). The main
conclusion of these model-protein simulations is that des-
ignability varies widely among structures; however, the
simplicity of the models makes it difficult to extrapolate
any quantitative measures of designability to real proteins.
At the other end of the computational spectrum, a variety
of studies have used state-of-the-art atomistic simulations
to attempt to estimate the designabilities of real proteins
(Zou and Saven 2000; Kono and Saven 2001; Voigt
et al. 2001; Koehl and Levitt 2002; Larson et al. 2002).
But these atomistic simulations are computationally expen-
sive, and their accuracy is not known because there are no
experimental measurements of protein designability with
which they can be compared. Recently, England and
Shakhnovich (2003) have proposed a general theory that
relates designability to the pattern of contacts between res-
idues in the native structure. Their approach is based on the
argument of Wolynes (1996) and Shakhnovich (1998) that
a structure’s designability can be estimated as the number of

sequences that fold into that structure with an energy below
some threshold. By assuming that the energy of a structure
is due to pairwise interactions between residues, England
and Shakhnovich (2003) show that the designability D is
given by a series in traces of powers of the structure’s con-
tact matrix C,

D5
XN

n5 2

ðTr C
nÞan: ð1Þ

This theory has been verified with simulations on
simple model proteins (England and Shakhnovich 2003;
England et al. 2003; Tiana et al. 2004), but, unlike earlier
simulations, it has a theoretical basis and so can, in princi-
ple, be applied broadly. However, the coefficients an in
equation (1) cannot be calculated, but the designability
can be estimated by truncating the series after the first term.
(An alternative method of estimating the series in equation
(1) as the maximum eigenvalue of the contact matrix gives
comparable results, as discussed below.) The first term of
equation (1) is just equal to the contact density (the average
number of contacts per residue) (England and Shakhnovich
2003; England et al. 2003), and so, this truncation recovers
the predictions of Wolynes (1996) and Shakhnovich (1998)
that designability is approximated by contact density.

Here we use this predicted relationship between con-
tact density and designability as the basis for exploring the
contribution of protein structure to evolutionary rate in
yeast. Although numerous earlier studies have shown that
the conservation of residues at individual sites is influenced
by structural characteristics such as secondary structure
or solvent exposure (Overington et al. 1992; Koshi and

FIG. 1.—A model for how the designability of a protein’s structure might affect the rate at which its sequence evolves. If many sequences fold into
a given structure (highly designable), then many mutations preserve the structure, that is, the structure is mutationally tolerant. As a consequence, we
observe rapid evolutionary divergence. Conversely, if few sequences fold into a given structure, then the structure is mutationally brittle, and evolutionary
divergence is slow.
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Goldstein 1995; Thorne et al. 1996; Goldman et al. 1998;
Mirny and Shakhnovich 1999; Bustamante et al. 2000;
Dokholyan and Shakhnovich 2001; Dean et al. 2002; Marsh
and Griffiths 2005), our work looks at how a protein’s struc-
ture affects its global rate of sequence evolution. We examine
the correlation of dN with contact density and several other
structural descriptors (fraction of buried residues, secondary
structure composition, length, and fold classification), while
statistically controlling for the effect of expression level. Our
work shows that dN is influenced by protein structure in
a way that suggests that proteins with more designable struc-
tures evolve their sequences more rapidly.

Materials and Methods

All 33,449 protein structures present in the protein
data bank (PDB) on 13 November 2005 were downloaded
as mmCIF files. The downloaded files were parsed to get
the sequences of all the proteins, except for 1quz, 1jhq,
1zhe, 1quz, 2ad1, 1zir, and 2etg, which could not be parsed
effectively. These parsed sequences included only those res-
idues with coordinates—residues without coordinates were
excludedfromthesequences.Nonglycineresidues that lacked
any side-chain atoms were also excluded from the sequences.
This procedure yielded a total of 73,121 protein sequences.

The sequences of all Saccharomyces cerevisiae
open reading frames (ORFs) were downloaded from
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/
sequence/genomic_sequence/orf_dna/ on 19 October 2004.
All the genes that could be translated were considered. This
procedure yielded 5,865 proteins. To match protein struc-
tures with these yeast proteins, we Blasted (Altschul et al.
1990) each protein against all the PDB protein sequences.
Any matches with a Blast E value of at least 10�5 were then
aligned using ClustalW (Thompson et al. 1994), and if the
number of identities in the total length of the alignment was
.80%, then the match was saved. If there were multiple
such matches to a protein, then the best match was saved
as the hit for that protein. This process yielded 275 matches.
Because the number of proteins with solved structures is
small compared with the number of proteins with known
sequences, restricting our data set to yeast proteins with
.80% similarity to a sequence in the PDB limits the size
of our data set. However, we felt it was important to set this
relatively stringent criterium for sequence identity to ensure
that the PDB structures accurately represented the actual
folded conformations of the yeast proteins with which they
were matched.

For each yeast protein with a match, we recorded the
aligned residues, the secondary structure for each aligned
residue, and the percent solvent-accessible area for each
aligned residue. The latter number was computed using
only atoms within that protein chain in the PDB structure
(i.e., we did not consider surface area buried by atoms of
other protein chains in the PDB structure). We first calcu-
lated the exposed surface area using the program given by
McConkey et al. (2002) and then normalized these values
by the reference surface areas of an extended Gly-X-Gly
peptide, as given in Creighton (1992, Table 4.4, p. 142).
We counted a residue as buried if it had less than 25%
solvent accessibility and as exposed, otherwise.

We calculated contact maps of all the 275 PDB struc-
tures. We considered 2 residues in contact if any of their 2
heavy (nonhydrogen) atoms were within a distance of 4.5 Å
from each other and if the 2 residues were not immediate
sequence neighbors (i.e., we excluded trivial contacts). We
then determined the contact density for each structure by
calculating the average number of contacts per residue.

Protein chains were assigned to the Structural Classi-
fication of Proteins (SCOP) database (Murzin et al. 1995)
classes given in version 1.69 available at http://scop.mrc-lmb.
cam.ac.uk/scop/parse/index.html. For each protein chain,
we first searched for the PDB structure ID in the download-
able dir.cla.scop.txt_1.69 file. If we found the ID, we then
searched for the mmCIF file chain ID in the file. In cases
where a structure had multiple chains with different SCOP
classes, we took care to ensure that the mmCIF chain ID
was matched appropriately with the correct SCOP class
(the chain ID used in the mmCIF file is not always the same
as the one used in the PDB file for the same structure, and
the SCOP classifications are made according to the PDB
chain ID). Some chains have different regions assigned
to distinct SCOP classes. If we found multiple entries for
different regions of the chain, we recorded the SCOP class
only if all regions of the chain were assigned to the same
class.

We calculated evolutionary rates (dN) using the
reciprocal-shortest-distance method (Wall et al. 2003). All
ORFs in S. cerevisiae were Blasted against those in Saccha-
romyces bayanus and vice versa. Pairwise hits with an E
value of ,10�20 were retained and aligned with ClustalW,
using the aligned protein sequences to align the nucleotide
sequences. Evolutionary rates, the numbers of nonsynony-
mous substitutions per nonsynonymous site (dN) and syn-
onymous substitutions per synonymous site (dS), were
computed for these hits using the Phylogenetic Analysis
by Maximum Likelihood (Yang 1997) program codeml
operating on codons with a 9–free-parameter model for co-
don frequencies. Pairs with less than 80% aligned residues
were discarded because there are no well-established meth-
ods for dealing with gaps when calculating evolutionary
distances. Remaining aligned gene pairs having each other
as the shortest-distance (smallest dN) hit were designated
orthologs and used in our analysis. Among the previously
identified 275 ORFs with a match to a PDB structure, we
found S. bayanus orthologs in 203 cases.

We calculated evolutionary rates at buried/exposed
sites and sites of specific secondary structure by discarding
all but the relevant portions of the ortholog alignments gen-
erated to compute overall evolutionary rates. For example,
to compute the evolutionary rates at buried sites, we con-
sidered only buried residues (identified as described above)
and assembled the corresponding codons into a reduced
pair of ortholog sequences, from which evolutionary rates
were calculated exactly as described above. This procedure
was carried out for buried and exposed residues and for
residues corresponding to the 4 secondary structure types
of helix (DSSP class H), sheet (DSSP class E), turn
(DSSP classes S and T), and coil (DSSP classes B, G, I,
and ‘‘.’’). (DSSP is the ‘‘Dictionary of Protein Secondary
Structure,’’ Kabsch and Sander 1983.)

Structural Determinants of Protein Evolution in Yeast 1753
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We calculated codon adaptation indices (CAIs) exactly
as described by Sharp and Li (1987), using tabulated codon
relative adaptiveness values for S. cerevisiae. We used ex-
pression data from Holstege et al. (1998). After discarding
all ORFs for which we did not have expression data, we ar-
rived at our final data set of 194 ORFs. This data set is given
as supplementary table, Supplementary Material online.

All statistical analyses were carried out with the statis-
tics software R, version 2.1.1 (R Development Core Team
2005). Principal component regression was done using the
R package ‘‘pls.’’ Unless mentioned otherwise, all analyses
were carried out on ranks, rather than on the actual values of
the quantities. In particular, all correlations are Spearman
correlations, and all principal component regression analy-
ses were carried out on rank-transformed data.

Results
Differences in Substitution Rates of Different Classes of
Residues

For each ORF, we determined the evolutionary rate
(dN) of the buried and of the exposed residues and also
of residues belonging to each of the 4 secondary structure
classes of helix, sheet, turn, and coil. We found that exposed
sites evolve substantially faster than buried sites, whereas
secondary structure has little effect on evolutionary rate
(fig. 2). For all residue types, the distribution of evolution-
ary rates was highly skewed. For example, the fastest evolv-
ing buried sites evolve much faster than the median exposed
site. Overall, our findings for type-specific evolutionary
rates confirmed the consensus in the literature that solvent
accessibility has a strong effect on the conservation of in-
dividual residues, whereas secondary structure type has at
most a weak effect (Goldman et al. 1998; Bustamante et al.
2000; Dean et al. 2002).

Effect of Contact Density on Evolutionary Rate

Because buried sites are more conserved, we might
expect that proteins with a larger fraction of buried sites
should evolve slower. On the other hand, the prediction
of England and Shakhnovich (2003) is that proteins with
a higher contact density are more designable and, thus,
would be expected to evolve faster. To find out which of
the two views is correct, we correlated the overall evolution-
ary rate dN with contact density and the fraction of residues
that are buried. The former is the average of the number of
contacts per residue and is the quantity treated theoretically
by England and Shakhnovich (2003) (the first term of
eq. 1). The latter does not explicitly count contacts but is
strongly correlated with contact density (table 1). Through-
out this paper, we usually report results, which hold for both
measures, for only one measure, the contact density. An al-
ternative method for estimating the designability as given
by equation (1) is to use the maximum eigenvalue of the
contact matrix (England and Shakhnovich 2003); doing
so yields results that are highly similar to those for contact
density for all correlations shown in table 1 (the Spearman
correlation between the maximum eigenvalue and dN is
q 5 0.25).
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FIG. 2.—Distributions of evolutionary rate, dN, for different residue
types, shown as modified boxplots. (Boxes enclose all data between the
first and third quartile and are divided at the median. Whiskers at top ex-
tend to the maximum observation or 1.5 times the box height from the top
of the box, whichever is smaller. Similarly, whiskers at bottom extend to
the minimum observation or 1.5 times the box height from the bottom of
the box, whichever is larger. All data points outside the range of the
whiskers are drawn individually. See, for example, Sokal and Rohlf
[1994]). For all residue types, the distribution of dN is heavily skewed
and, thus, not well characterized by its mean and standard deviation.
For the 2 residue types ‘‘exposed’’ and ‘‘helix,’’ one outlier each falls out-
side the top boundary of the graph. The evolutionary rates in all groups are
significantly different from each other with P , 0.01 (Wilcoxon signed-
rank test), apart from helix and coil (P5 0.01) and coil and turn (P5 0.37,
not significant).

Table 1
Spearman Correlations between Variables Considered in This Study

dN x c fbur d L fH fE fT

x �0.58***
c �0.40*** 0.71***
fbur 0.29*** �0.09 0.20*(*)
d 0.24**(*) �0.01 0.20*(*) 0.80***
L 0.19*(*) �0.14(*) 0.13 0.79*** 0.57***
fH 0.03 �0.01 0.05 �0.05 0.13 0.07
fE �0.01 0.06 �0.05 0.10 0.06 �0.04 �0.80***
fT �0.10 0.10 0.17* 0.19*(*) 0.19*(*) 0.06 �0.46*** 0.28***
fC 0.02 �0.10 0.02 �0.02 �0.33*** �0.01 �0.40*** �0.06 0.11

NOTE.—Significance levels: ***P, 0.001; **P, 0.01; *P, 0.05. dN: nonsynonymous evolutionary rate; x: gene expression level; c: CAI; fbur: fraction of buried sites;

d: contact density; L: protein length; fH, fE, fT, and fC: fraction of sites with secondary structure helix, sheet, turn, and coil, respectively. Significance levels in parentheses

disappear after correction for multiple testing (Benjamini and Hochberg 1995).
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As predicted by the hypothesis that more designable
proteins should evolve faster (fig. 1), we found that contact
density and the fraction of buried sites correlated signifi-
cantly with dN (table 1, fig. 3). However, this correlation
does not imply per se that the increased rate of evolution
is caused by contact density. It is well known that more
highly expressed proteins evolve more slowly in yeast
(Pal et al. 2001), and therefore, we always have to control
for expression level before we can conclude that any quan-
tity has an effect on dN (Bloom and Adami 2003; Pal et al.
2003; Drummond et al. 2006). We calculated the correla-
tions between contact density and both expression level as
measured by DNA microarrays (Holstege et al. 1998) and
CAI, another proxy for gene expression (table 1). Expres-
sion level is not significantly correlated with contact den-
sity. There was a weak correlation between CAI and contact
density, but this correlation had the opposite sign from what
we would expect if a correlation between CAI and contact
density were to cause the correlation between contact den-
sity and dN. These results indicate that the correlation
between contact density and evolutionary rate is not caused
by an underlying correlation between contact density and
expression level.

The results from the analysis of evolutionary rate at
buried and exposed sites (fig. 2) seem to be at odds with
the results from the analysis of the overall evolutionary rate
of the proteins (fig. 3). Buried sites tend to be more con-
served than exposed sites, but the overall evolutionary rate
increases with increasing contact density (and also fraction
of buried sites). However, this apparent paradox can be un-
derstood if we consider the effect of high contact density on
buried and exposed sites separately (fig. 4). Whereas the dN
at buried sites shows a moderate increase with increasing
contact density, the dN at exposed sites grows dramatically.
Even though proteins with high contact density have a
reduced fraction of exposed residues, the residues that
are exposed in these proteins evolve very rapidly. There-
fore, the reduction in the fraction of exposed residues is
more than compensated for by the increased variability
of exposed residues in proteins with high contact density.

Effect of Protein Length on Evolutionary Rate

We found a significant correlation between protein
length and dN and a strong correlation between length
and contact density (table 1). This observation prompted
us to investigate the relationship between contact density
and protein length. We found that the correlation between
these 2 quantities stems primarily from short proteins (fig.
5). For very short proteins, there is a large variation in con-
tact density. In this regimen, contact density can be as low
as 4 or as high as 7. As the protein length increases, there is
an overall increase in contact density, but at the same time
the variability in contact density decreases. Eventually,
contact density levels off and remains in a range between
approximately 6 and 8. Therefore, we next calculated the
correlations between contact density, fraction of buried
sites, protein length, and dN separately for short (,250 res-
idues) and for long (�250 residues) proteins (table 2). For
short proteins, both the fraction of buried sites and the pro-
tein length showed a significant positive correlation with
dN. For long proteins, on the other hand, only the correla-
tion between the fraction of buried sites and dN was pos-
itive and significant; the correlation between length and dN
turned negative and lost significance. The correlation be-
tween contact density and dN was similar to, but weaker
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FIG. 3.—Evolutionary rate dN as a function of a protein’s contact
density.
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FIG. 4.—Evolutionary rate dN for buried sites (left panel) or exposed sites (right panel) only, as a function of the protein’s contact density.
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than, the correlation of the fraction of buried sites and dN
but was not significant at the 5% level. Finally, we noted
that the correlation between length and either contact den-
sity or fraction of buried sites was stronger for short proteins
(table 2).

We then wanted to know whether the correlation be-
tween dN and protein length we observed was potentially
caused by a biased selection of protein structures because
our data set was biased toward short proteins (median
length is 263.5 residues for the 194 proteins with structural
information and a S. bayanus ortholog vs. 440 residues in
all 4,532 S. cerevisiae proteins with a S. bayanus ortholog).
Therefore, we calculated the correlation between length and
dN for all ORFs, including those without structural infor-
mation. We found that the overall correlation between
length and dN was significant but weak (table 3), as previ-
ously reported (Drummond et al. 2006). When we consid-
ered long and short proteins separately, we found a similar
picture as before. Length correlates much more strongly
with dN for short proteins than for long proteins. In fact,
the amount of variance in dN explained by length alone
is approximately 10 times larger for short proteins than
for long proteins.

Because longer proteins are known to be expressed at
lower levels (Coghlan and Wolfe 2000; Munoz et al. 2004),
a positive correlation between length and dN could also be
caused indirectly by expression-level differences. To ascer-
tain whether differences in expression level could explain
the difference in correlation between length and dN for short

and long proteins, we also calculated the correlation between
expression and length for short and long proteins separately.
For all ORFs with evolutionary rate data, this correlation was
almost identical for short and long proteins (table 3). For the
194 ORFs with structural information, neither length nor
contact density correlated significantly with expression level
when we considered short and long proteins separately (not
shown). Therefore, it is unlikely that the increased correla-
tion between length and dN for short proteins is an artifact
of expression-level differences in these proteins.

Effect of Secondary Structure Composition on
Evolutionary Rate

We also asked whether a protein’s composition of sec-
ondary structure types has an influence on evolutionary
rate. For example, do proteins that are composed primarily
of helices evolve faster or slower than other proteins? To
this end, we correlated dN with the fraction of helix sites
fH, fraction of sheet sites fE, fraction of turn sites fT, and
fraction of coil sites fC (table 1). We found that none of
these quantities correlated significantly with dN and neither
did they correlate with expression level or CAI (apart from
a marginally significant correlation between CAI and the
fraction of turn sites). However, not surprisingly, we found
several strong and significant correlations among the differ-
ent secondary structure measures (table 1).

Principal Component Regression

The correlation analysis presented in the previous sub-
sections is useful to get an initial understanding of the data
and to find broad trends but cannot detect more subtle inter-
actions between the various predictor variables or quantify
the amount of variance in dN these predictors explain in-
dependently of each other. Therefore, we carried out a prin-
cipal component regression (Mandel 1982; Drummond
et al. 2006) of dN against the 9 predictor variables of ex-
pression level, CAI, fraction of buried sites, contact density,
protein length, and the fractions of the 4 secondary structure
types. Table 4 summarizes the results from the principal
component regression. We found 5 components that made
a significant contribution to the regression, and the total
amount of variance explained was 43.34%. The component
composition is given in figure 6. Among the components
that contributed significantly to the regression, Component
1 measures primarily the contact density of a protein. Com-
ponent 2 measures primarily aspects of secondary structure.
Component 3 represents a protein’s expression level. Com-
ponent 6 measures primarily the difference between contact
density and length. Finally, Component 7 measures the
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FIG. 5.—Contact density as a function of protein length.

Table 2
Spearman Correlations r for All ORFs with Structural
Information Calculated Separately for Short and
Long Proteins

L , 250 (n 5 85) L � 250 (n 5 109)

q(d, dN) 0.201 0.14
q(fbur, dN) 0.27* 0.21*
q(L, dN) 0.22* �0.14
q(d, L) 0.46*** 0.22*
q(fbur, L) 0.61*** 0.47***

NOTE.—Significance levels: ***P, 0.001; **P, 0.01; *P, 0.05; 1P, 0.01.

n is the number of ORFs in each group, and other symbols are defined as in table 1.

Table 3
Spearman Correlations r for All ORFs with Evolutionary
Rate Data Calculated Separately for Short and Long Proteins

All Lengths
(n 5 4,523)

L , 250
(n 5 935)

L � 250
(n 5 3,597)

q(L, dN) 0.07*** 0.13*** 0.04*
q(L, x) �0.24*** �0.17*** �0.15***

NOTE.—Significance levels: ***P , 0.001; **P , 0.01; *P , 0.05. n is the

number of ORFs in each group, and other symbols are defined as in table 1.
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difference between expression level and CAI. The compo-
nents that did not contribute significantly to the regression
represent secondary structure (Components 4, 5, and 9, not
shown) or differences between contact density and the frac-
tion of buried sites (Component 8). Thus, the component
measuring expression level explained approximately 34%
of the variation in dN, whereas all other components to-
gether explained approximately 10% of the variation in dN.

We also regressed dN separately against expression
level and CAI and against the 7 structural variables to de-
termine how much variance these 2 groups of variables
explained individually. Our results were very much in
agreement with those of the joint regression against all 9
predictor variables. The regression of dN against expression

level and CAI explained 34.03% of the variance, whereas
regression of dN against the 7 structural variables explained
11.97% of the variance. Thus, the total amount of variance
explained in the regression against all 9 variables is approx-
imately the sum of the amounts of variance explained from
the 2 individual regressions, and therefore, the regression of
dN against structural variables is unlikely to be confounded
by expression-level effects.

Does Structure Classification Determine Contact Density
or Evolutionary Rate?

We investigated the relationship between protein struc-
ture classification and both contact density and evolutionary

Table 4
Percent Variance Explained in dN and in the Predictor Variables as Found by a Principal
Component (PC) Regression of dN against 9 Predictor Variables

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 Total

dN 2.81 1.32 33.59 0.00 0.00 3.54 1.27 0.65 0.15 43.34
Predictor
space 28.83 23.86 19.10 12.47 7.94 3.63 1.27 0.65 0.15 100.00

NOTE.—Predictor variables are x, c, fbur, d, L, fH, fE, fT, and fC, with symbols defined as in table 1. Principal components that

make a statistically significant contribution to the variation in dN are shown in boldface (P, 0.05 for all components in boldface).

The percent values for the individual components do not sum exactly to the numbers given under total because of rounding errors.

See figure 6 for component composition.
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FIG. 6.—Composition of the first 8 principal components (PCs). Symbols representing predictor variables are as defined in table 1. Each dot rep-
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rate for 137 proteins (out of our final data set of 194) for
which we could determine the class of the structure accord-
ing to the SCOP (Murzin et al. 1995). Figure 7 shows that
there are some differences in both contact density and evo-
lutionary rate among proteins with different structure clas-
ses but that these differences are relatively minor. We found
all-a proteins to have the lowest median contact density and
the highest variability in contact density, whereas a/b pro-
teins had the highest median contact density and the lowest
variability. The median contact density was significantly
higher for a/b proteins than for all-a proteins (P 5
0.0001) or for a 1 b proteins (P 5 0.0008) but not for
all-b proteins (P 5 0.070) (Wilcoxon rank-sum tests with
false discovery rate correction [Benjamini and Hochberg
1995] for multiple testing). The median evolutionary rate
was the highest for all-b proteins, but the individually larg-
est evolutionary rates were observed for a/b and a1 b pro-
teins. However, neither all-b proteins nor any other class of
proteins had a significantly elevated evolutionary rate after
correction for multiple testing (Wilcoxon rank-sum tests
with false discovery rate correction).

Discussion

Our results show that protein structure has a moderate
effect on protein evolutionary rate. Furthermore, this effect
is consistent with the idea that proteins with more design-
able structures, as indicated by higher contact densities
(England and Shakhnovich 2003), tend to evolve more rap-
idly. Specifically, contact density, the fraction of buried
sites, and protein length each showed a significant correla-
tion with dN, with R2 values between 4% and 8%. These
correlations were not caused by confounding effects due to
cocorrelations with protein expression level, which is the
dominant determinant of evolutionary rate in yeast (Pal
et al. 2001; Drummond et al. 2006). The contact density
and the fraction of buried sites were strongly correlated with
each other and had roughly comparable predictive power
for the evolutionary rate, although the fraction of buried
sites tended to be a slightly better predictor than contact
density. We found that secondary structure composition

and protein-fold classification had almost no effect on evo-
lutionary rate. Protein length was significantly correlated
with both dN and contact density, making it difficult to fully
elucidate the separate contributions of length and contact
density to evolutionary rate. However, the fact that length
is positively correlated with dN only for short proteins, but
that higher contact density leads to faster evolutionary rates
for both long and short proteins, supports the notion that
higher contact density increases evolutionary rate indepen-
dent of length effects.

We corroborated the correlations we observed with
a principal component regression of dN against all struc-
tural predictor variables plus protein expression level and
CAI. We found that the principal components that mea-
sured primarily the aspects of contact density or fraction
of buried residues explained 6.35% of the variation in
dN. In comparison, the principal component related to sec-
ondary structure explained only 1.32% of the variation in
dN. Overall, the principal component regressions indicated
that the structural characteristics we considered explained
between 10% and 12% of the variation in evolutionary rate
and that the important variables in this explanation were
contact density (or the highly correlated variable of fraction
of buried residues) and protein length.

We had to restrict our analysis to those yeast proteins
to which we could confidently assign structures. Although
there are tools that use homology modeling or other com-
putational methods to predict the structure adopted by a pro-
tein sequence, we chose to consider only those yeast
proteins that matched with at least 80% identity to an ex-
perimentally determined structure. This choice eliminated
the possibility of introducing biases due to inaccuracies
of the structure prediction tools, but it also substantially re-
duced the size of our data set because the number of pro-
teins with experimentally solved structures is relatively
low. Overall, we were able to match structures with only
194 of the 4,223 yeast proteins for which we had expression
and evolutionary information. The proteins that we
matched with structures tended to be both more highly
expressed and slower evolving than all yeast proteins for
which we had expression and evolutionary information
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FIG. 7.—Modified boxplots of the distributions of contact density (left) and evolutionary rate (right) for different SCOP classes. The following are not
shown: 3 proteins classified as multidomain (a and b), 2 classified as membrane and cell-surface proteins and peptides, 2 for which the classification was
ambiguous, and 55 for which no classification could be determined.
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(the median transcript per cell levels were 2.7 and 0.8, re-
spectively; the median dN values were 0.03 and 0.08, re-
spectively). One clear consequence of limiting ourselves
to proteins with experimentally solved structures is that
we are excluding those (usually faster evolving) proteins
that contain large regions that are intrinsically disordered
(Brown et al. 2002). It is possible that the subset of yeast
proteins with structures also contains other biases that affect
the correlation between contact density and evolutionary
rate. However, it is impossible to assess any such effects
with the currently available protein structures, and so, fur-
ther analysis of this question will have to await the exper-
imental determination of more protein structures.

At first glance, our findings that proteins with higher
contact densities (and therefore a higher fraction of buried
residues) evolve more slowly seem at odds with the ten-
dency for buried residues to be more conserved (Koshi
and Goldstein 1995; Goldman et al. 1998; Mirny and
Shakhnovich 1999; Bustamante et al. 2000; Dean et al.
2002). The key point is to realize that although buried res-
idues are generally more conserved than exposed ones, in-
creasing the fraction of buried residues leads to an overall
increase in the evolutionary rate of all residues in the pro-
tein, primarily via a dramatic increase in dN for the exposed
residues. We suggest that the increase in designability that
accompanies high contact density enhances the mutational
tolerance of exposed residues enough to more than offset
the higher fraction of slower evolving buried sites. A po-
tential reason for the elevated evolutionary rate at exposed
sites is increased protein stability. Highly designable pro-
teins tend to be more stable (Wingreen et al. 2004), and sta-
bility promotes mutational tolerance (Bloom et al. 2005,
2006). A larger fraction of buried residues suggests a more
robust protein core, whose stability may thus allow loops
and other surface features to mutate more freely. In other
words, regions of high contact density form stabilizing
cores of conserved, highly interacting amino acids that al-
low other exposed regions of the sequence to mutate more
freely (Shakhnovich et al. 2005).

Overall, our results support the notion that proteins
with more designable structures tend to evolve their se-
quences more rapidly. These findings suggest that the struc-
tures of real proteins may differ substantially in their
mutational tolerances and that this effect is manifested in
the rates of sequence evolution across the yeast proteome.
However, the overall contribution of protein structure to
evolutionary rate that we detect is still much smaller than
that made by protein expression level: the principal compo-
nent representing protein expression explains 3 times more
variance in dN than all the structural components. Earlier
work has shown that highly expressed proteins are more
likely to adopt mixed a-helix and b-sheet folds (Jansen
and Gerstein 2000). However, this tendency did not lead
to a net relationship between contact density and expression
level in our data set because we found these 2 variables to
be uncorrelated. Therefore, protein structure appears to
make an independent contribution to evolutionary rate, al-
though expression level remains the more dominant force in
determining the rate of sequence evolution.

However, it is possible that our analysis underesti-
mates the contribution of protein structure to evolutionary

rate. In attempting to apply the designability theory of Eng-
land and Shakhnovich (2003), our ignorance of the an co-
efficients in equation (1) has forced us to make the severe
approximation of truncating all higher order powers of the
contact matrix and estimating designability solely from
contact density. The effect of this truncation is unknown,
but contact density is surely less informative than the full
series of equation (1). Furthermore, the derivation of equa-
tion (1) by England and Shakhnovich (2003) makes the
twin assumptions that proteins are stabilized only by pair-
wise contacts and that designability is simply equal to the
number of sequences that fold to a structure with an energy
below some cutoff—both these assumptions are unlikely to
be completely true for real proteins. For these reasons, con-
tact density is clearly an imperfect proxy for designability,
and our inability to more accurately quantify designability
probably causes us to underestimate its true contribution to
protein evolutionary rate.

Despite these caveats, our work makes an important
contribution by providing some of the first evidence about
how a protein’s structure influences its evolutionary rate.
Structure is clearly only one of the many factors that deter-
mine the extent of constraint on a protein’s sequence, but its
effect appears to be significant. Future progress in develop-
ing theoretical treatments of structural designability and in
better characterizing the other factors that constrain se-
quence evolution should eventually allow for improved
measurements of the net effect of structure on protein evo-
lution. For now, we simply add a structure’s designability
to the pantheon of factors that shape the rate of protein
sequence evolution.

Supplementary Material

The data set of 194 S. cerevisiae ORFs analyzed in this
work is available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).
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