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ABSTRACT

Naturally evolving proteins gradually accumulate mutations while continuing to fold to stable structures.
This process of neutral evolution is an important mode of genetic change and forms the basis for the
molecular clock. We present a mathematical theory that predicts the number of accumulated mutations,
the index of dispersion, and the distribution of stabilities in an evolving protein population from
knowledge of the stability effects (DDG values) for single mutations. Our theory quantitatively describes
how neutral evolution leads to marginally stable proteins and provides formulas for calculating how
fluctuations in stability can overdisperse the molecular clock. It also shows that the structural influences on
the rate of sequence evolution observed in earlier simulations can be calculated using just the single-
mutation DDG values. We consider both the case when the product of the population size and mutation rate
is small and the case when this product is large, and show that in the latter case the proteins evolve excess
mutational robustness that is manifested by extra stability and an increase in the rate of sequence evolution.
All our theoretical predictions are confirmed by simulations with lattice proteins. Our work provides a
mathematical foundation for understanding how protein biophysics shapes the process of evolution.

PROTEINS evolve largely through the slow accumu-
lation of amino acid substitutions. Over evolution-

ary time, this process of sequence divergence creates
homologous proteins that differ at the majority of their
residues, yet still fold to similar structures that often
perform conserved biochemical functions (Lesk and
Chothia 1980). The maintenance of structure and
function during sequence divergence suggests that
much of protein evolution is neutral in the sense that
observed sequence changes frequently do not alter a
protein’s ability to fold and adequately perform the
biochemical function necessary to enable its host or-
ganism to survive. This comparative evidence for neu-
trality in protein evolution has been corroborated by
experimental studies showing that the mutations sepa-
rating diverged sequences often have no effect other
than modest and additive changes to stability (Serrano

et al. 1993) and that a large fraction of random muta-
tions do not detectably alter a protein’s structure or
function (Shortle and Lin 1985; Pakula et al. 1986;
Loeb et al. 1989; Guo et al. 2004; Bloom et al. 2005,
2006a). In this respect, it seems that protein evolution
should be well described by Kimura’s neutral theory of
evolution, which holds that most genetic change is due
to the stochastic fixation of neutral mutations (Kimura

1983). One of the key predictions of the neutral theory

is that assuming a constant mutation rate, the number
of mutations separating two proteins should be pro-
portional to the time since their divergence (Kimura

1983). Indeed, the observation by Zuckerkandl and
Pauling (1965) that proteins are ‘‘molecular clocks’’
that accumulate mutations at a roughly constant rate
has long been taken as one of the strongest pieces of
evidence supporting the neutral theory (Ohta and
Kimura 1971).

However, mutations that are neutral with respect to
a protein’s capacity to perform its biological function
often affect protein thermodynamics. The biological
functions of most proteins depend on their ability
to fold to thermodynamically stable native structures
(Anfinsen 1973). Yet natural proteins are typically only
marginally stable, with free energies of folding (DGf)
between�5 and�15 kcal/mol (Fersht 1999). Most ran-
dom mutations to proteins are destabilizing (Pakula

et al. 1986; Matthews 1993; Godoy-Ruiz et al. 2004;
Kumar et al. 2006), and their effects on stability (mea-
sured as DDG, the DGf of the mutant protein minus
the DGf of the wild-type protein) are frequently of the
same magnitude as a protein’s net stability. The impact
of a mutation on a protein’s function can therefore de-
pend on the protein’s stability: a moderately destabiliz-
ing mutation that is easily tolerated by a stable parent
protein may completely disrupt the folding of a less
stable parent. This effect of protein stability on mu-
tational tolerance has been verified by experiments
demonstrating that more stable protein variants are
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markedly more robust to random mutations (Bloom

et al. 2005, 2006a).
The fact that mutations that are neutral with respect

to direct selection for protein function can affect a
protein’s tolerance to subsequent mutations is not
consistent with the simplest formulation of the neutral
theory of evolution, which tends to assume that the
fraction of mutations that is neutral remains constant in
time. Kimura (1987) himself recognized the possibility
that the neutrality might change, and Takahata (1987)
mathematically treated the consequences of a ‘‘fluctu-
ating neutral space.’’ In particular, Takahata showed
that fluctuating neutrality could explain the observed
overdispersion in the molecular clock (Cutler 2000b)
(the tendency for the variance in the number of fixed
mutations to exceed the expectation for the Poisson
process predicted by the neutral theory) long consid-
ered troublesome for the neutral theory. However,
further progress on this topic was stymied by the lack
of a specific model for how or why protein neutrality
might fluctuate.

More recently, researchers have preferred to describe
neutral evolution using the concept of ‘‘neutral net-
works,’’ which are networks in the space of possible
protein sequences in which each functional protein is
linked to all other functional proteins that differ by only
a single mutation (Smith 1970; Huynen et al. 1996;
Govindarajan and Goldstein 1997; Bornberg-Bauer

and Chan 1999; van Nimwegen et al. 1999; Tiana et al.
2000; Bastolla et al. 2002). A neutrally evolving protein
population is then envisioned as moving on the neutral
network, and the neutrality of the population may
fluctuate if the nodes on the network differ in their
connectivities. A general theoretical treatment of evo-
lution on neutral networks by van Nimwegen et al.
(1999) has shown that if the product of the population
size and mutation rate is small then members of the
population are equally likely to occupy any node, while
if this product is large then the population will preferen-
tially occupy highly connected nodes (see also Bornberg-
Bauer and Chan 1999; Taverna and Goldstein

2002b; Xia and Levitt 2004). Simulations with simpli-
fied lattice models of proteins have attempted to
provide insight into the specific features of protein
neutral networks. These simulations have shown that
lattice protein neutral networks are centered around
highly connected nodes occupied by stable proteins
(Bornberg-Bauer and Chan 1999; Broglia et al. 1999;
Xia and Levitt 2004; Wingreen et al. 2004), a finding
consistent with the experimental observation (Bloom

et al. 2005, 2006a) that stable proteins are more mu-
tationally robust. Lattice protein studies also suggest
that protein structures differ in their ‘‘designabilities’’
(defined as the total number of sequences that fold into
a structure) and that sequences that fold into more
designable structures will neutrally evolve at a faster
rate due to the increased size and connectivity of their

neutral networks (Li et al. 1996; Govindarajan and
Goldstein 1997; Chan and Bornberg-Bauer 2002;
England and Shakhnovich 2003; Wingreen et al.
2004). Finally, simulations have demonstrated that fluc-
tuations in neutrality as a protein population moves
along its neutral network can lead to an overdispersion
of the molecular clock (Bastolla et al. 2002), as origi-
nally suggested by Takahata (1987). However, an exten-
sion of these lattice protein simulations of evolution on
neutral networks into a quantitative theory has been dif-
ficult because protein neutral networks are far too large
to be computed for all but the simplest lattice models.

Here we present a mathematical treatment of neutral
protein evolution that describes the evolutionary dy-
namics in terms of the DDG values for single mutations,
which are experimentally measurable. Our treatment is
based on the experimentally verified (Bloom et al. 2005,
2006a) connection between protein stability and muta-
tional robustness, as well as a few biophysically sup-
ported assumptions about DDG values for random
mutations. By linking a protein’s tolerance to mutations
with stability, we are able to quantitatively describe
neutral evolution without a full description of the
neutral network. We can then compute the average
number of accumulated mutations, the average fraction
of neutral mutations, the index of dispersion, and the
distribution of stabilities in a neutrally evolving popula-
tion solely from knowledge of the DDG values for single
mutations. In addition, we follow the formalism of van

Nimwegen et al. (1999) to calculate all four of these
properties in the limit when the product of the
population size and mutation rate is much less than
one and in the limit when this product is much greater
than one. In demonstrating that these properties are
different in these two limits, we show that the rate of
fixation of neutral mutations can vary with population
size in violation of one of the standard predictions of
Kimura’s neutral theory (Kimura 1987). Our work
presents a unified view of neutral protein evolution that
is grounded in measurable thermodynamic quantities.

MATERIALS AND METHODS

Lattice protein simulations: We performed simulations with
lattice proteins of L¼ 20 monomers of 20 types corresponding
to the natural amino acids. The proteins could occupy any of
the 41,889,578 possible compact or noncompact conformations
on a two-dimensional lattice. The energy of a conformation C is
the sum of the nonbonded nearest-neighbor interactions,
EðCÞ ¼

PL
i¼1

Pi�2
j¼1 CijðCÞ3 eðAi ;AjÞ, where CijðCÞ is one if

residues i and j are nearest neighbors in conformation C and
zero otherwise, and eðAi ;AjÞ is the interaction energy between
residue types Ai and Aj , given by Table 5 of Miyazawa and
Jernigan (1985). We computed the stability of a conformation
Ct as DGf ðCtÞ ¼ EðCtÞ1 T lnfQ ðT Þ � exp½�EðCtÞ=T �g, where
Q ðT Þ ¼

P
fCig exp½�EðCiÞ=T � is the partition sum, made trac-

table by noting that there are only 910,972 unique contact sets.
All simulations were performed at a reduced temperature of
T ¼ 1.0.
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We used adaptive walks to find sequences that folded into
each of the three arbitrarily chosen conformations shown in
Figure 2 with DGf # 0, and then neutrally evolved these
sequences for 104 generations with a population size of N ¼
100. Our evolutionary algorithm was as follows: at each
generation we randomly chose a protein that folded to the
parental structure with DGf # 0 from the population and
mutated each residue to some other randomly chosen residue
with probability 5 3 10�4 and continued doing this until we
had filled the new population with proteins. At the end of this
equilibration evolution, we chose the most abundant se-
quence in the population as the starting point for further
analysis and for the computation of the distribution of DDG
values for all 380 point mutations (sequences shown in Figure
2). In principle, computing the distribution of DDG values
over all sequences in the population rather than just the most
abundant one should give a more accurate representation of
the true form of this distribution, and indeed we found that
doing this slightly increased the accuracy of the predictions
shown in Figure 2. However, the resulting improvement in
accuracy was small, since the approximate constancy of the
DDG distribution during neutral evolution (discussed below)
means that the distribution computed over a single sequence
is representative of that computed over all sequences in the
population. Therefore, we chose to compute the DDG distri-
bution over just the most abundant sequence since this choice
more closely tracks what would be experimentally feasible with
real proteins. (It is experimentally tractable to compute DDG
values for a single protein, but would be unmanageable to do
so for all proteins in a natural population.)

To collect data for the case when the product Nm of the
population size N and the per protein per generation
mutation rate m is>1, we first equilibrated 1000 replicates by
evolving each of them with a population size of N¼ 10 and for
5000 generations starting with a clonal population of the
initial sequence described above. The remainder of the
evolutionary algorithm was as described above: the mutation
rate stayed at 5 3 10�4 per residue per generation (corre-
sponding to a per protein per generation mutation rate of m¼
10�2), and at each generation all proteins that folded to the
target native structure with DGf # 0 reproduced with equal
probability. We then evolved each of these equilibrated
populations for a further 5000 generations to collect data.
We combined the data for all the folded proteins in the final
populations of all the replicates to calculate the average
number of mutations ÆmæT after T generations, the corre-
sponding index of dispersion RT, and the distribution of
stabilities shown in Figure 2. If we instead simply randomly
chose a single folded protein from the final population of each
replicate, we obtained results that were identical within the
precision shown in Figure 2. We emphasize that ÆmæT and RT

were computed by keeping track of the actual number of
mutations that had occurred during the evolutionary history
of each protein, not simply by counting the number of amino
acid differences between the ancestral and the final sequences
(the two quantities may differ if a single site undergoes mul-
tiple mutations, as discussed in more detail in later sections).

To generate the data for N m?1, we used the same pro-
cedure but with N¼ 105 and performed only 10 replicates. We
again computed the statistics shown in Figure 2 by combining
the data for all of the folded proteins in the final populations
of all 10 replicates. Similar results were obtained if we instead
computed ÆmæT and RT over all of the folded proteins in the
final population of a single replicate (average values of ÆmæT

were identical while the RT values of 1.03, 0.95, and 0.94 were
extremely similar to those shown from top to bottom in Figure
2). This outcome is expected since the probability distribu-
tions for N m?1 evolve deterministically.

Lattice protein predictions: The numerical predictions for
the lattice proteins given in Figure 2 were computed by
constructing the matrix W described in the first section of
results with a bin size of b ¼ 0.005 and truncating the matrix
by assuming that no proteins would have stabilities ,�5.0. For
the case when N m>1, ÆmæT was calculated using Equation 6
and RT was calculated using Equation 11. For N m?1, ÆmæT was
calculated using Equation 18 and RT was calculated using
Equation 19.

RESULTS

Assumptions and mathematical background: Here we
describe the physical view of protein evolution that mo-
tivates our work. We begin with the basic observations
that evolution selects for protein function and that most
proteins must stably fold to function (Anfinsen 1973),
meaning that protein stability is under evolutionary
pressure only insofar as it must be sufficient to allow a
protein to fold and function. In taking this view, we
ignore those proteins (estimated at 10% of prokaryotic
and 30% of eukaryotic proteins) that are intrinsically
disordered (Uversky et al. 2005), as well as those rare
proteins that are only kinetically stable (Jaswal et al.
2002). Natural selection for function requires a protein
to fold with some minimal stability DGmin

f , since proteins
that lack this minimal stability will be unable to reliably
adopt their native structure and perform their bio-
chemical task. A protein’s extra stability beyond this
minimal threshold is quantified as DGextra

f ¼ DGf�
DGmin

f , meaning that all functional proteins must have
DGextra

f # 0 (more negative values of DGf indicate in-
creased stability). We further assume that as long as
DGextra

f # 0, natural selection for protein function is
indifferent to the exact amount of extra stability a
protein possesses. This assumption is at odds with the
persistent speculation that high stability inherently
impairs protein function and so is selected against by
evolution (DePristo et al. 2005; Somero 1995). But the
circular argument most commonly advanced to support
this speculation—that the observed marginal stability of
natural proteins indicates that higher stability is detri-
mental to protein function—has now been contradicted
both by experiments that have dramatically increased
protein stability without sacrificing function (Serrano

et al. 1993; Giver et al. 1998; van den Burg et al. 1998;
Zhao and Arnold 1999) and by demonstrations that
marginal stability is a simple consequence of the fact
that most mutations are destabilizing (Arnold et al.
2001; Tavernaand Goldstein 2002a; this work). There
is a possibility, however, that certain regulatory proteins
must be marginally stable to facilitate rapid degradation
(Huntzicker et al. 2006). To summarize, current bio-
chemical evidence supports our assumption that (with
certain well-defined exceptions) the only requirement
imposed on protein stability by natural selection for pro-
tein function is that stability must meet or surpass some
minimal threshold (a protein must have DGextra

f # 0).
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A mutation to a protein changes its stability by an
amount DDG, and experimental measurements of DDG
values have shown that most mutations are destabilizing
(have DDG . 0) (Pakula et al. 1986; Matthews 1993;
Godoy-Ruiz et al. 2004; Kumar et al. 2006). A mutation
is neutral with respect to selection for stability if
DDG 1 DGextra

f # 0 since the mutant protein still satisfies
the minimal stability threshold; otherwise the mutant
does not stably fold and is culled by natural selection. Of
course, mutations can also have specific effects on
protein function (such as altering an enzyme’s activity),
but experiments have shown that such mutations are
rare compared to the large number of mutations that
affect stability (Shortle and Lin 1985; Pakula et al.
1986; Loeb et al. 1989; Bloom et al. 2006a). Mutations
can also have effects unrelated to the functioning of the
individual protein molecule: they can affect its propen-
sity to aggregate (Chiti et al. 2000), alter its codon usage
(Akashi 2003), change its mRNA stability (Chamary

and Hurst 2005), affect the efficiency or accuracy of
translation (Akashi 2003; Rocha and Danchin 2004),
or change the fraction of mistranslated proteins that
fold (Drummond et al. 2005). These higher-level effects
are probably most apparent in the evolution of highly
expressed proteins (Pal et al. 2001; Drummond et al.
2005). However, here we ignore such effects and assume
that the evolutionary impact of a mutation is deter-
mined mostly by its effect on protein stability (an as-
sumption in agreement with a recent bioinformatics
analysis by Sanchez et al. 2006). The view we present
therefore describes the impact of a mutation solely by
its DDG value and the DGextra

f of the wild-type protein
and is summarized graphically in Figure 1. We have
previously used a similar view to successfully describe

experimental protein mutagenesis results (Bloom et al.
2005, 2006a).

To use the view of Figure 1 to construct a useful
description of neutral protein evolution, we make one
major assumption: that the overall distribution of DDG
values for random mutations stays roughly constant as
the protein sequence evolves. Actually, this assumption
is stronger than is strictly needed for the mathematical
theory presented below—the theory can be developed
simply by assuming that all proteins with the same DGf

have the same distribution of DDG values (in this case
the matrix elements Wij introduced below depend on j
in addition to the difference i � j). However, we make
the stronger assumption that the DDG distribution
remains constant during sequence evolution, since we
believe that this assumption is consistent with existing
evidence. We emphasize that this assumption does not
imply that we are arguing that the DDG distribution is
identical for every possible protein sequence. Clearly,
any given structure has a most stable sequence (with all
DDG values positive), a least stable sequence (with all
DDG values negative), and a vast range of sequences in
between. However, most of these sequences fall within a
stability range that is never populated by evolution,
since simulations (Tavernaand Goldstein 2002a) and
experiments (Davidson et al. 1995; Keefe and Szostak

2001) clearly show that the vast majority of protein
sequences do not stably fold into any structure (mean-
ing the least stable folded protein is still far more stable
than the typical random sequence). Among the subset
of sequences that do stably fold, the simple statistical
reality that marginally stable sequences are far more
abundant than highly stable sequences causes evolution
to further confine itself mostly to sequences with
stabilities far less than that of the most stable sequence
(Arnold et al. 2001; Taverna and Goldstein 2002a;
this work). This fact is amply demonstrated by engi-
neering experiments that have greatly increased the
stability of natural proteins without sacrificing any of
their functional properties (Serrano et al. 1993; Giver

et al. 1998; van den Burg et al. 1998; Zhao and Arnold

1999). Therefore, although the distribution of DDG
values certainly varies widely among all sequences, it is
still reasonable to assume that it is relatively constant
among those sequences visited by natural evolution.
This assumption of a constant DDG distribution among
evolved sequences is explicitly supported by simulations
(Broglia et al. 1999; Bloom et al. 2005, 2006a; Wilke

et al. 2005; this work) and is consistent with the
observation that the number of neighbors on a protein’s
neutral network is approximately determined by its
stability (Bornberg-Bauer and Chan 1999; Xia and
Levitt 2004). Furthermore, protein mutagenesis ex-
periments indicate that the DDG values for random
mutations are usually additive (Wells 1990; Serrano

et al. 1993), meaning that any given mutation to a
protein of length L will alter only�1/L of the other DDG

Figure 1.—A thermodynamic view of protein evolution. A
mutant protein stably folds if and only if it possesses some
minimal stability, DGmin

f (in this case �5 kcal/mol). The sta-
bility of the wild-type protein is DGwt

f ¼ �7:5 kcal=mol, mean-
ing that it has DGextra

f ¼ �2:5 kcal=mol of extra stability. The
bars show the distribution of DDG values for mutations. Those
mutants with DGextra

f 1 DDG # 0 still stably fold, while all
other mutants do not fold and so are culled by natural selec-
tion. The probability that a mutation will be neutral with re-
spect to stable folding is simply the fraction of the distribution
that lies to the left of the threshold. The data in this figure are
hypothetical.
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values, leaving the DDG distribution mostly unchanged.
Finally, the assumption of a constant DDG distribution
has been shown to explain the experimentally observed
exponential decline in the fraction of functional pro-
teins with increasing numbers of mutations (Bloom

et al. 2005). However, we acknowledge that at present
the assumption of a roughly constant DDG distribution
among neutrally evolving proteins can be verified only
for lattice proteins—for real proteins the most we can
say is that it is consistent with existing experimental
evidence.

We begin our mathematical treatment by conceptu-
ally dividing the continuous variable of protein stability
into small discrete bins of width b. This discretization of
stability allows us to treat mutations as moving a protein
from one bin to another—the bins can be made
arbitrarily small to eliminate any numerical effects of
the binning. The stability of each folded protein in the
evolving population (the folded proteins are all those
with DGextra

f # 0) can be described by specifying its
stability bin. Specifically, a protein is in bin i if it has
DGextra

f between ð1� iÞb and�ib, where i¼ 1, 2, . . . . Let
Wij be the probability that a random mutation has a DDG
value such that it moves a protein’s stability from bin j to
bin i, where i and j both are in the range 1, 2, . . . . Then
Wij is easily computed as the fraction of DDG values
between bð j � i � 1Þ and bð j � iÞ. Since Wij describes
only transitions between folded proteins, and since we
have assumed that a protein’s mutational tolerance is
determined by its stability, then the fraction of folded
mutants (neutrality) of a protein in bin j is nj ¼

P
i Wij .

Clearly, more stable proteins will have larger values of nj.
In the following two sections, we use the matrix W

with elements Wij to calculate the distribution of
stabilities in an evolving protein population of constant
size N, the mean number of mutations ÆmæT after T
generations, the corresponding index of dispersion
RT ¼ Æm2æT � Æmæ2

T

� �
=ÆmæT , and the average fraction of

mutations Ænæ that do not destabilize the proteins past
the minimal stability threshold. We assume that W is
computed from the distribution of DDG values for all
random single-amino-acid mutations, although in prin-
ciple it could be for any type of mutation. We also
assume that the per-protein-per-generation mutation
rate m is small, so that at each generation a protein
undergoes at most one mutation. Our calculations at
first follow and then extend the theoretical treatment by
van Nimwegen et al. (1999) of evolution on a neutral
network. In particular, we follow their lead in separately
treating the two limiting cases where the product Nm of
the population size and mutation rate is >1 and ?1. We
emphasize that all of the equations derived in the
following two sections depend only on the mutation
rate m, the number of generations T, and the matrix W,
which can be computed from the single-mutant DDG
values. The population size N determines the applicable
limiting case, but otherwise drops out of all final results.

Limit when Nm>1: When N m>1, the evolving
population is usually clonal, since each mutation either
is lost or goes to fixation before the next mutation
occurs. If a mutation destabilizes a protein in the
population beyond the stability cutoff, then it is imme-
diately culled by natural selection. If a mutation does
not destabilize a protein beyond the stability cutoff, it
will be lost to genetic drift with probability ðN � 1Þ=N
and go to fixation with probability 1/N (Kimura 1983).
Since mutations occur rarely (N m>1), the loss or
fixation of the mutant will occur before the next mutant
appears in the population. The entire population
therefore moves as one entity along its neutral network.
The population can thus be described by the column
vector pðtÞ, with element piðtÞ giving the probability that
the population is in stability bin i at time t.

If the population is initially in stability bin j, at each
generation there is a probability NmWij that a protein
experiences a mutation that changes its stability to bin i,
and if such a mutation occurs, then there is a probability
of 1/N that it is eventually fixed in the population.
Therefore, at each generation there is a probability mWij

that the population experiences a mutation that even-
tually causes it to move from stability bin j to bin i. If we
define the matrix V so that the diagonal elements are
given by Vii ¼ ni and all other elements are zero, then p
evolves according to

pðt 1 1Þ ¼ ðI� mV 1 mWÞpðtÞ; ð1Þ

where I is the identity matrix. Note that this equation
treats lethal mutations (those that destabilize a protein
beyond the cutoff) as immediately being lost to natural
selection and so leaving the population in its original
stability bin (hence the population accumulates a
mutation with probability mV rather than probability
m). Equation 1 describes a Markov process with the
nonnegative, irreducible, and acyclic transition matrix
A ¼ I � mV 1 mW, and so p approaches the unique
stationary distribution po, satisfying

0 ¼ ðV �WÞpo: ð2Þ

This equation gives the expected distribution of pro-
tein stabilities solely in terms of the single-mutant DDG
values.

We now calculate the average number of mutations
ÆmæT ;o that accumulate in an equilibrated population
after T generations and the corresponding index of
dispersion RT,o. We emphasize that ÆmæT ;o represents the
average number of accumulated mutations during the
course of the evolutionary process. When the number of
accumulated mutations m is small compared to the
length of the protein sequence L (m>L), then m is just
equal to the number of residues differing from those in
the parent protein sequence (the Hamming distance).
However, when m becomes substantial relative to L, m
becomes larger than the Hamming distance since some
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sites will undergo multiple mutations (Jukes and
Cantor 1969). In this case it is necessary to use a sub-
stitution model to infer m from the observed Hamming
distance. In the treatment that follows, we calculate the
expected value of m; application of these formulas to
actual protein sequences requires use of one of the well-
established statistical techniques for inferring m from
the Hamming distance (Jukes and Cantor 1969;
Goldman and Yang 1994). We begin the calculation
of ÆmæT ;o by defining pðm; tÞ to be the column vector
with element i giving the probability that at time t the
population has accumulated m mutations and is in
stability bin i. The time evolution of pðm; tÞ is given by

pðm; t 1 1Þ ¼ ðI� mVÞpðm; tÞ1 mWpðm � 1; tÞ: ð3Þ

The kth moment of the number of mutations at time
t is

Æmkæt ¼ e
X

m

mkpðm; tÞ; ð4Þ

where e ¼ ð1; . . . ; 1Þ is the unit row vector. We can write
a recursive equation for Æmæt in the long-time limit
(steady state) by multiplying both sides of Equation 3 by
m, summing over m, and left multiplying by e to obtain

Æmæt11 ¼ eðI� mVÞ
X

m

mpðm; tÞ1 meW
X

m

mpðm � 1; tÞ

¼ eA
X

m

mpðm; tÞ1 meWpo

¼ Æmæt 1 mÆnæo ; ð5Þ

where we have used the property eA¼ e, noted that in the
long-time limit

P
m pðm; tÞ ¼ po and

P
m mpðm � 1; tÞ ¼P

m ½ðm � 1Þpðm � 1; tÞ1 pðm� 1; tÞ� ¼
P

m mpðm; tÞ1
po, and defined the average neutrality as Ænæo ¼ eWpo ¼
eVpo. Summing the recursion yields the steady-state
value for the number of accumulated mutations,

ÆmæT ;o ¼ T mÆnæo : ð6Þ

To calculate the index of dispersion RT ;o ¼ Æm2æT ;o�
�

Æmæ2
T ;oÞ=ÆmæT ;o , we need to find the second moment

Æm2æT ;o . In a fashion analogous to the construction of
Equation 5, we can write a recursive expression for the
long-time limit of Æm2æT ;o as

Æm2æt11 ¼ eðI� mVÞ
X

m

m2pðm; tÞ1 meW
X

m

m2pðm � 1; tÞ

¼ eA
X

m

m2pðm; tÞ1 2meW
X

m

mpðm; tÞ1 meWpo

¼ Æm2æt 1 2meW A
X

m

mpðm; t � 1Þ1 mWpo

" #
1 mÆnæo

¼ Æm2æt 1 2m2eW
Xt�1

t¼0

AtWpo 1 mÆnæo ; ð7Þ

where we have used the property (implicit in Equa-
tion 5) that in the long-time limit,

P
m mpðm; tÞ ¼

A
P

m mpðm; t � 1Þ1 mWpo. Summing the recursion
yields the following value for the long-time limit,

Æm2æT ;o ¼ T mÆnæo 1 2m2eW
XT�1

t¼0

Xt�1

t¼0

AtWpo

¼ T mÆnæo 1 2m2eW
XT

t¼1

ðT � tÞAt�1Wpo

¼ T mÆnæo 1 T ðT � 1Þm2Ænæ2
o

1 2m2eW
XT

t¼1

ðT � tÞðAt�1 �QÞWpo; ð8Þ

where we have made the substitution eWQWpo ¼ Ænæ2
o

and noted that limt/‘At ¼ Q ¼ ðpo; . . . ;poÞ since A is
an irreducible, aperiodic, stochastic matrix (Ewens and
Grant 2005). This yields a value for the index of
dispersion in the long-time limit of

RT ;o ¼ 1� mÆnæo 1
2m

Ænæo

eW
XT

t¼1

1� t

T

� �
ðAt�1 �QÞWpo:

ð9Þ
The above equation is consistent with the generic
equation for the index of dispersion given by Cutler

(2000a,b), where we now give concrete expressions for
the variables r and hðtÞ in Cutler’s formula in terms of
measurable quantitites, namely r ¼ mÆnæo and hðtÞ ¼
ðm=ÆnæoÞeWAt�1Wpo.

We can further simplify Equation 9 by performing
spectral decompositions of A and Q. Let l1, . . . , lK be
the eigenvalues of V�W, and let r1, . . . , rK and l1, . . . , lK
be the corresponding right and left eigenvectors, nor-
malized so that lirj ¼ 1 if i ¼ j and 0 otherwise. These
eigenvectors are also eigenvectors of the irreducible,
acyclic, stochastic A, and the corresponding eigenvalues
are 1 � ml1, . . . , 1 � mlK, with Perron–Frobenius
theorems guaranteeing that one eigenvalue (chosen
here to be 1 � ml1) ¼ 1 and all other eigenvalues have
absolute values ,1. Then r1 and l1 are right and left
eigenvectors of Q with eigenvalue 1 (i.e., r1 ¼ po and
l1 ¼ e), and all other eigenvalues of Q are 0. The
spectral decompositions are therefore Q ¼ r1l1 and
A ¼ r1l1 1

PK
i¼2ð1� mliÞri li . Inserting these spectral

decompositions into Equation 9, we find for the index
of dispersion a value of

RT ;o ¼ 1� mÆnæo 1
2m

Ænæo

eW
XT

t¼1

1� t

T

� �XK

i¼2

ð1� mliÞt�1ri liWpo;

ð10Þ
since At ¼ r1l1 1

PK
i¼2ð1� mliÞtri li (Ewens and Grant

2005). In the limit of large T and small m, the value of
RT,o given by the above equation approaches the value

RT ;o � 1 1
2m

Ænæo

eW
XT

t¼1

XK

i¼2

ð1� mliÞt�1ri liWpo

� 1 1
2

Ænæo

eW
XK

i¼2

l�1
i ri liWpo; ð11Þ

260 J. D. Bloom, A. Raval and C. O. Wilke



where the mÆnæo term drops out because m is small and
the

PT
t¼1

t
Tð1� mliÞ

t�1 term drops out because T is large
and j1� mli j, 1. This equation shows that RT,o ap-
proaches a constant value independent of T and m.
Although we could not prove that the value of RT,o given
by Equation 11 is necessarily .1 (since some of the
eigenvalues li could be complex), in all of our simu-
lations we observed RT,o . 1, suggesting that when
N m>1, fluctuations in protein stability tend to over-
disperse the molecular clock.

Limit when Nm?1: When N m?1, the population is
spread across many nodes of the neutral network rather
than converged on a single sequence (van Nimwegen

et al. 1999). In this limit, we treat the evolutionary
dynamics of the population deterministically (i.e., we
assume an infinite population size) and describe the
distribution of stabilities in the population by the col-
umn vector xðtÞ, with element xiðtÞ giving the fraction of
proteins in the population at time t that have stabilities
in bin i. At generation t, the fraction of mutated proteins
that continue to fold is Ænæt ¼ eWxðtÞ. These folded
proteins reproduce, and, to maintain a constant popula-
tion size, this reproduction must balance the removal of
proteins by death, meaning that each folded sequence
must produce an average of at ¼ ½1� mð1� ÆnætÞ��1 off-
spring. The population therefore evolves according to

xðt 1 1Þ ¼ at ½ð1� mÞI 1 mW�xðtÞ: ð12Þ

After the population has evolved for a sufficient period
of time, x approaches an equilibrium distribution of
x‘. The corresponding equilibrium neutrality is Ænæ‘ ¼
eWx‘, and the equilibrium reproduction rate is
a ¼ ½1� mð1� Ænæ‘Þ��1, so

x‘ ¼ a½ð1� mÞI 1 mW�x‘: ð13Þ

This equation can be rewritten to show that x‘ is the
principal eigenvector of W,

Ænæ‘x‘ ¼ Wx‘: ð14Þ

We note that Ænæ‘ approximates the asymptotic neu-
trality for the decline in the fraction of folded proteins
upon random mutagenesis (Bloom et al. 2005; Wilke

et al. 2005).
We now determine the average number of accumu-

lated mutations ÆmæT ;‘ and the corresponding index of
dispersion RT,‘ by treating the forward evolutionary
process. As described in the text immediately prior to
Equation 3, our calculations describe the actual number
of mutations accumulated during the evolutionary pro-
cess, which may differ from the number of sequence
differences relative to the ancestor if a single site un-
dergoes multiple mutations. When N m?1, it is not a
priori obvious that the average number of mutations
present in the population is equivalent to the number of
fixed substitutions along the line of descent. Therefore,
in the appendix, we show that identical results are

obtained by tracing a randomly chosen protein back-
ward in time along its ancestor distribution, proving that
the treatment we give below is mathematically equiva-
lent to treating the time-reversed process. We define
xðm; tÞ as the column vector with element i giving the
fraction of the population at time t that has accumulated
m mutations and is in stability bin i. Once the popula-
tion has reached the equilibrium distribution of stabil-
ities, the time evolution of xðm; tÞ is

xðm; t 1 1Þ ¼ að1� mÞxðm; tÞ1 amWxðm � 1; tÞ: ð15Þ

The recursion can be solved to obtain

xðm; tÞ ¼ at
Xt

k¼0

t
k

� �
ð1� mÞt�kmkWkxðm � k; 0Þ; ð16Þ

as can be verified by direct substitution. Since we are
assuming that the population has equilibrated at time
0 and no mutations have accumulated at that time,
xðm; 0Þ is x‘ for m ¼ 0 and 0 otherwise. Furthermore,
x‘ satisfies Equation 14, so multiplying Equation 16 by
e yields

xðm; tÞ ¼ t
m

� �
atð1� mÞt�mðmÆnæ‘Þm ; ð17Þ

where xðm; tÞ ¼ exðm; tÞ gives the fraction of the pop-
ulation that has accumulated m mutations after t
generations. The average number of accumulated
mutations after T generations is the mean of this
binomial distribution,

ÆmæT ;‘ ¼
T mÆnæ‘

1� mð1� Ænæ‘Þ
: ð18Þ

Using the well-known result for the variance of the
binomial distribution, we find that the index of disper-
sion is

RT ;‘ ¼ 1� mÆnæ‘

1� mð1� Ænæ‘Þ
: ð19Þ

It is important to reiterate that the above equation was
derived under the assumption that there is at most one
mutation per sequence per generation. For realistic
distributions of mutations (i.e., Poisson), this means
that m>1. In this regime, RT,‘ is close to 1.

Lattice protein simulations: We tested our theory’s
predictions on the evolutionary dynamics of lattice pro-
teins. Lattice proteins are simple protein models that
are useful tools for studying protein folding and evo-
lution (Chan and Bornberg-Bauer 2002). Our lattice
proteins were chains of 20 amino acids that folded on a
two-dimensional lattice. The energy of a lattice protein
conformation was equal to the sum of the pairwise inter-
actions between nonbonded amino acids (Miyazawa

and Jernigan 1985). Each lattice protein has 41,889,578
possible conformations, and by summing over all of
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these conformations we could exactly determine the
partition sum and calculate DGf. We set a minimal sta-
bility threshold for the lattice proteins of DGmin

f ¼ 0,
meaning that we considered all proteins that folded to
the target structure with DGf # 0 to be folded and
functional, while all proteins with DGf . 0 were con-
sidered to be nonfunctional. We note that this stability
threshold is equivalent to requiring a lattice protein to
spend at least half of its time in the target native
structure at equilibrium. We began by generating lattice
proteins that stably folded to each of the three different
structures shown in Figure 2. For each of these three
proteins, we determined the distribution of DDG values
for all 380 single mutations (these distributions are
shown in Figure 2). These distributions were used to
construct the matrix W and to predict the equilibrium
distribution of stabilities, the average number of muta-
tions, and the indexes of dispersion for both the N m>1
and the N m?1 cases, using the equations presented in
the preceding sections.

To test the accuracy of these predictions, we then
simulated evolving populations of the lattice proteins
with a standard evolutionary algorithm using Wright–
Fisher sampling. Briefly, the populations were held at a
constant size of either N ¼ 10 or N ¼ 105. At each
generation, a new population was created by choosing
parents with equal probability from all folded proteins
in the previous generation’s population and copying
these parents into the new population with a mutation
rate of 5 3 10�4 mutations per residue per generation.
Since the proteins have a length of 20 amino acids,
this mutation rate corresponds to a per-protein-per-
generation mutation rate of m ¼ 10�2. Therefore, the

product Nm is either 0.1 or 103, corresponding to N m>1
or N m?1, respectively. We emphasize that the lattice
protein evolutionary algorithm is the same for both
population sizes. When N¼ 10 the population naturally
follows dynamics approximating those presented for
N m>1, while when N¼ 105 it naturally follows dynamics
approximating those presented for N m?1 (as evi-
denced by the excellent agreement of the predictions
with the simulations). For N ¼ 10, we performed 1000
replicates for each different structure. For N ¼ 105,
computational constraints limited us to 10 replicates for
each structure (however, the evolutionary dynamics are
nearly deterministic in this case, so all replicates yielded
similar results). We note that during the simulations we
recorded the number of mutations that actually ac-
cumulated rather than simply computing the number
of differences (Hamming distance) from the original
sequence.

Figure 2 shows the theoretical predictions and simu-
lation results for each of the three structures. The the-
oretical predictions are in good agreement with the
simulation results. Figure 2 clearly shows that when
N m?1, the proteins tend to be more stable than when
N m>1. This extra stability is a biophysical manifestation
of the neutrally evolved mutational robustness pre-
dicted by van Nimwegen et al. (1999). This increase in
stability leads to a substantial increase in the number of
accumulated mutations. In accordance with the theo-
retical predictions, when N m>1 the index of dispersion
is elevated above one by fluctuations in protein stability.
Another clear result from the simulations is that pro-
teins of different structure show markedly different dis-
tributions of stabilities and rates of sequence evolution

Figure 2.—The theory
gives accurate predictions
for the evolution of model
lattice proteins. Each row
of graphs corresponds to a
different lattice protein.
The left graphs show the
starting protein and the dis-
tribution of DDG values for
all point mutations. The
middle and right graphs
show the predicted (lines)
and measured (bars) distri-
butions of stabilities among
the evolved proteins. The
tables at the top of the
graphs show the predicted
and measured values for
the average number of
mutations (ÆmæT ) and the
index of dispersion (RT) af-
ter 5000 generations of
neutral evolution. The
middle graphs are for a

population size of N ¼ 10, and the right graphs are for N ¼ 105. In both cases, the per-protein-per-generation mutation rate
is m ¼ 0.01. As predicted, the evolving population with N m?1 evolved mutational robustness that is manifested by increased pro-
tein stability. This additional mutational robustness accelerated the rate of sequence evolution.
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due to the differences in their DDG distributions. Over-
all, the simulations offer strong support for the validity
of the theoretical predictions in the preceding sections.

DISCUSSION

We have presented a theory that offers quantitative
predictions about the distribution of stabilities, the
average number of fixed mutations, and the index of
dispersion for an evolving protein population in terms
of the DDG values for individual mutations. We have
demonstrated that these predictions are accurate for
simple lattice proteins and have used existing biophys-
ical evidence to argue that the basic theoretical assump-
tions should also be accurate for real proteins. Here, we
give qualitative interpretations of the mathematical
results and discuss their implications for our under-
standing of protein evolution.

One major result is to show that the effects of protein
structure on the rate of sequence evolution can be
quantitatively cast in terms of the DDG values for single
mutations. Numerous lattice protein simulations have
shown that protein structure can dramatically affect the
rate of sequence evolution, since structures that are
more ‘‘designable’’ (encoded by more sequences) can
evolve their sequences more rapidly (as can be seen in
Figure 2) (Li et al. 1996; Govindarajan and Goldstein

1997; Bornberg-Bauer and Chan 1999; Tiana et al.
2000; Chan and Bornberg-Bauer 2002; Wingreen

et al. 2004; Xia and Levitt 2004). Unfortunately, these
simulations typically measure structural designability by
enumerating a large number of lattice protein sequen-
ces, meaning that their findings cannot be extended
to real proteins for which such extensive enumeration
is impossible. However, recent theoretical work by
England and Shakhnovich (2003) has made pro-
gress in connecting designability to observable struc-
tural properties, and a bioinformatics analysis based
on this theoretical measure of designability indicates
that structure indeed influences the evolutionary rate
of real proteins (Bloom et al. 2006b). Our work provides
a way to quantitatively relate the structural influences
on protein evolution to experimentally measureable
DDG values, opening the door to further connecting
structural designability and sequence evolution to lab-
oratory stability measurements. Although thousands
of DDG values have been measured experimentally
(Kumar et al. 2006), at present there are no large sets
of measurements for truly random mutations to a single
protein. When such sets of measurements become
available, it should be possible to use them in conjunc-
tion with the theory that we have presented to predict
the neutralities of real proteins with different structures.

A second important result is to show that protein
evolutionary dynamics can depend on the product of
population size and mutation rate, Nm. When N m?1,
the evolving protein population is polymorphic in

stability and subject to frequent mutations, so the
more stable (and thus more mutationally tolerant) pro-
teins produce more folded offspring. In contrast, when
N m>1, the population is usually monomorphic in sta-
bility and so all members of the population are equally
likely to produce folded offspring. The general ten-
dency for populations to neutrally evolve mutational
robustness when N m?1 has previously been treated
mathematically by van Nimwegen et al. (1999), and a
variety of lattice protein simulations have noted the
tendency of evolving protein populations to preferen-
tially occupy highly connected neutral network nodes
(Bornberg-Bauer and Chan 1999; Taverna and
Goldstein 2002b; Xia and Levitt 2004). Our work
shows that for proteins, in the limiting cases when
N m>1 or ?1, this process can be rigorously described
by considering only protein stability, rather than re-
quiring a full analysis of the neutral network (provided,
as we have argued is likely to be the case, that the
assumption of a roughly constant DDG distribution
holds for real proteins as well as it holds for our lattice
proteins). In addition, we prove that the number of
accumulated mutations depends on whether Nm > 1 or
?1. This finding is at odds with the standard prediction
(Kimura 1987) of Kimura’s neutral theory that the rate
of evolution is independent of population size. The
reason for this discrepancy is that the standard neutral
theory fails to account for the possibility that increasing
the population size so that N m?1 can systematically
increase the fraction of mutations that are neutral.

A third important contribution of our theory is to use
the distribution of DDG values for single mutations to
predict the distribution of protein stabilities in an
evolving population. Several researchers have pointed
out that evolved proteins will be marginally stable simply
because most mutations are destabilizing (Arnold et al.
2001; Taverna and Goldstein 2002a); we have de-
scribed this process quantitatively. In addition, we have
shown how the neutral evolution of mutational robust-
ness when N m?1 will shift the proteins toward higher
stabilities (as shown in Figure 2), although this increase
in stability is limited by the counterbalancing pressure
of predominantly destabilizing mutations. The formulas
we provide can in principle be combined with experi-
mentally measured DDG values to predict the expected
range of stabilities for evolved proteins.

Our work also weds Takahata’s concept that fluctuat-
ing neutral spaces might overdisperse the molecular
clock (Takahata 1987; Cutler 2000b; Bastolla et al.
2002) to a concrete description of how protein neutral-
ity fluctuates during evolution. When N m>1, fluctua-
tions in protein stability can cause an overdispersion in
the number of accumulated substitutions that can be cal-
culated from the single-mutant DDG distribution. Fur-
thermore, given our assumption of a roughly constant
DDG distribution, we show that the index of dispersion
will approach a constant value that is independent of
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time or mutation rate, but will depend on whether
N m>1 or ?1. Previous simulations have indicated that
overdispersion indeed depends on the population size
(Bastolla et al. 2002; Wilke 2004)—we have explained
this dependence by showing that stability-induced over-
dispersion does not occur when N m?1 since the
population’s distribution of stabilities equilibrates as it
spreads across many sequences. Mathematically, the
difference in the cases N m?1 and N m>1 is that,
assuming the DDG distribution remains relatively con-
stant, when the population size is sufficiently large, the
distribution of protein stabilities no longer fluctuates in
a manner that influences the probability of a substitu-
tion (Equation 3 contains mV in the first term on the
right side, while Equation 15 does not).

In summary, we have presented a mathematical
theory of how thermodynamics shape neutral protein
evolution. A major strength of our theory is that it makes
quantitative predictions using single-mutant DDG val-
ues, which can be experimentally measured. Our work
also suggests how neutral and adaptive protein evolu-
tion may be coupled through protein thermodynamics.
Protein stability represents an important hidden di-
mension in the evolution of new protein function, since
extra stability that is itself neutral can allow a protein to
tolerate mutations that confer new or improved functions
(Bloom et al. 2006a). Our theory describes the dynamics
of protein stability during neutral evolution—adaptive
protein evolution is superimposed on these stability dy-
namics, with proteins most likely to acquire beneficial
mutations when they are most stable.
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APPENDIX

Here we calculate the properties of the evolving population when N m?1 by analyzing the time-reversed process to
compute the mean and variation in the number of mutations in a single randomly chosen protein over time. We show
that the results so obtained are identical to those found in the main text, where we analyzed the forward-time process
to compute the mean and variation in the number of mutations across the population of evolving proteins.

When N m?1, the population is now never converged to a single sequence, so it is not a priori obvious that the
average number of mutations present in the population is equivalent to the expected number of fixed substitutions
along the line of descent. In fact, in the limit of very large population sizes there may not even be a common line of
descent in relevant time frames, since many new mutations will occur before any given mutation goes to fixation. In the
main text we calculated the average number of mutations ÆmæT ;‘, a sequence in the population that has accumulated
over the last T generations by treating the forward evolution of the population. Here we trace a randomly chosen
protein in the population back in time and show that the average number of substitutions ÆsæT that it has accumulated
over the last T generations is equal to ÆmæT ;‘. We also show that indexes of dispersion of ÆmæT ;‘ and ÆsæT have the same
value of RT,‘.

To calculate ÆsæT , we first define a vector a giving the ancestor distribution (Hermisson et al. 2002): element i of
aðT � tÞ gives the probability that a randomly chosen sequence from the population at time T had a predecessor with
stability in bin i at time T � t. The transition probabilities of aðT � tÞ when the population is in equilibrium are the
discrete time analogue of those computed by Hermisson et al. (2002). From Equation 15, it follows that the fraction of
sequences in bin i at time t 1 1 that had as their ancestor in the previous generation a sequence in bin j is
at ½ð1� mÞdij 1 mWij �xjðtÞ. To obtain the probability that a sequence in bin i at time t 1 1 had an ancestor in bin j, we
have to divide this fraction by the total number of sequences in bin i at time t 1 1. When the population is at
equilibrium, at¼ a and xiðt 1 1Þ ¼ xiðtÞ ¼ xi , where xi is the element from x‘. Hence, the probability that a sequence
in bin i had an ancestor in bin j is a½ð1� mÞdij 1 mHji �, where we have defined

Hji ¼ Wijxj=xi : ðA1Þ
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The time evolution of a is therefore

aðT � tÞ ¼ a½ð1� mÞI 1 mH�aðT � t 1 1Þ; ðA2Þ

where the matrix H is defined by Equation A1. Equation A2 can be solved to show that the equilibrium value of a is a‘,
satisfying

Ænæ‘a‘ ¼ Ha‘: ðA3Þ

If we define aðs;T � tÞ as the vector with element i giving the probability that a randomly chosen sequence at time T
had a predecessor at time T� t in stability bin i and with s substitutions relative to the sequence at time T, then the time
evolution for an equilibrated population is

aðs;T � t � 1Þ ¼ að1� mÞaðs;T � tÞ1 amHaðs � 1;T � tÞ: ðA4Þ

We can solve Equations A4 and A3 in a manner analogous to the forward process to obtain

aðs;T � tÞ ¼ t
s

� �
atð1� mÞt�sðmÆnæ‘Þsa‘: ðA5Þ

Again defining aðs;T � tÞ ¼ eaðs;T � tÞ as the probability of having accumulated s substitutions as one moves back t
generations from time T, we obtain the binomial distribution

aðs;T � tÞ ¼ t
s

� �
atð1� mÞt�sðmÆnæ‘Þs: ðA6Þ

Comparison of Equation 17 and Equation A6 shows that they are identical. Therefore, all moments computed from
the two distributions must be equal. In particular, this proves that ÆmæT ;‘ ¼ ÆsæT and that the corresponding indexes of
dispersion have the same value of RT,‘ defined by Equation 19. This shows that when N m?1, we expect equivalent
results regardless of whether we average over the number of mutations in all sequences present in the population or
randomly choose a single sequence and trace back along its ancestor distribution.
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